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ABSTRACT

This paper considers the problem of density estimation and cluster-
ing in distributed sensor networks. It is assumed that each node in
the network senses an environment that can be described as a mix-
ture of some elementary conditions. The measurements are thus
statistically modeled with a mixture of Gaussians, each Gaussian
component corresponding to one of the elementary conditions. A
distributed EM algorithm is developed for estimating the Gaussian
components, which are common to the environment and sensor
network as a whole, as well as the mixing probabilities which may
vary from node to node. The algorithm produces an estimate (in
terms of a Gaussian mixture approximation) of the density of the
sensor data without requiring the data to be transmitted to and pro-
cessed at a central location. Alternatively, the algorithm can be
viewed as an distributed processing strategy for clustering the sen-
sor data into components corresponding to predominant environ-
mental features sensed by the network. The convergence of the dis-
tributed EM algorithm is discussed, and simulations demonstrate
the potential of this approach to sensor network data analysis.

1. INTRODUCTION

The slogan “the sensor is the network,” coined at Oakridge Na-
tional Labs, aptly captures the sensor networking spirit — mas-
sively distributed, small devices, networked for communication
and equipped with sensing and processing capabilities, that give
us a new eye with which to explore our universe. Viewing the
network as a single sensing entity motivates the basic question:
What is the network sensing? This paper proposes a new frame-
work for distributed data exploration in sensor networks. Density
estimation and unsupervised clustering are central first steps in ex-
ploratory data analysis. They aim to answer the question: What
are the basic patterns and structures in the measured data? Both
problems can also be naturally posed as maximum likelihood esti-
mation problems, and have been widely studied under the assump-
tion that data are stored and processed at a central location. Here
that assumption is changed; we assume that the data are not cen-
tralized, but rather are distributed across a collection of networked
devices. Moreover, it is assumed that the cost (in terms of power or
related resources) of computation at each node is much less than
the cost of communication between nodes, which makes the op-
tion of cenralized data processing very expensive and unattractive.
The approach pursued here is based on the following model. It
is assumed that each node in the network senses an environment
that can be described as a mixture of some elementary conditions.
The measurements are thus statistically modeled with a mixture of
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Gaussians, each Gaussian component corresponding to one of the
elementary conditions. A distributed EM-type algorithm is devel-
oped to estimate the Gaussian components, which are common to
the environment and sensor network as a whole, as well as the mix-
ing probabilities which may vary from node to node. This amounts
to an unsupervised clustering of the data into components corre-
sponding to common environmental conditions.

2. PROBLEM STATEMENT

Assume that we have M nodes, 1,..., M. The m-th node senses
and records NN,, independent and identically distributed (i.i.d.)
Measurements 4m, 1, ..., Ym,Nn- The i.i.d. assumption implies
that the environmement is stationary and unchanging during the
course of the measurement process. Let A'(u, ) denote the Gaus-
sian density function with mean g and covariance 3. The measure-
ments are assumed to obey Gaussian mixture distributions of the
form

J
Ym,i ~ Zaj,m/\/(uj,zj), i=1,...,Np.
j=1

where the mixing parameters {«; .} are potentially unique at
each node, but the means {u;} and covariances {X;} are com-
mon at all nodes. All parameters are unknown. The goal of this
work is a distributed algorithm for estimation of these parameters
from the data y = {ym,: }. Figure 1 depicts a sensor network in an
inhomogeneous environment. Figure 2 shows sensor network data
in a simulated experiment.

Fig. 1. Sensor network in an inhomogeneous environment. Discs
represent nodes in the sensor network. Background represents spa-
tially varying environmental conditions being sensed by the nodes.

Define ¢ = {u%, £5}7_;, the set of means and covariances.
For each node m = 1,. .., M define am = {am,; }7=1, the mix-
ing probabilities for node m. Finally, define 6§ = ¢ U {a.m }22_,.
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This paper describes a distributed algorithm for computing a max-
imum likelihood estimate; i.e., # maximizing the log-likelihood
function

M Nm J
= Z Zlog (Z aj.mN
m=1i=1

(Yrmil1ts, 2j)> )]

where N (y|p, X) denotes the evaluation of a Gaussian density
with mean u and covariance X at the point y.

3. THE STANDARD EM ALGORITHM

Introduce a set of missing data z = {zm,s }. Each z, ; takes on a
value from the set {1,..., J}, where z,, ; = j indicates that y.,, ;
was generated by the j-th mixture component. In other words,

~ N(I’l’jizj)‘

This is the usual choice of missing data in EM approaches to mix-
ture modeling. The quantity x = (y, ) is referred to as the com-
plete data for y [1].

Define ¢* = {u%, £t}7_,, the set of means and covariances
at the t-th iteration of the EM algorithm. For each node m =
1,..., M define of, = {ak, ;}/=1, the mixing probabilities for
node m at the ¢-th iteration. Finally, define 6* = ¢* U {af, }21_;.
Define the conditional expectation

Q(H, et) = Ey: [logp(y, Zla)] s 2

where p(y, z|0) denotes the joint distribution of y and z with pa-
rameters 6 and E,: denotes expectation with respect to the joint
probability law with parameters #*. This is the usual missing data
formulation, and it is easy to verify [1] that

Ym,i|(2m,i = J)

M Nm J

Q.6 = >3 N whil; (log am,j +10g N (ym,ils, 55))

m=1 i=1 j=1

where .

wt.:,.! o am,]N(ym,”/L;aE;)
T Y @l N milinh, B
From this it is easy to see that the E-Step, computing the con-

ditional expectation Q (6, 8*), boils down to computing {wfrf,},j
according to (3). The M-Step is

6" = argmax Q(6,6"),

©)

and has a simple closed form expression. Specifically, for each

nodem=1,...,Mandforj=1,...,J
t+1 _ t+1
mj = N Zwm,i,j-
And for each component j =1,...,J
t41
Ht‘+1 _ Zm 1 Zz 1 wm z,]ym i
- t4+1 ’

Zm:l Ei:l m,i,j

M Nm
st Yot it Wiy Wmi = 05 ) (ym i — i)

i = .

M N . 41
Dom=1 it 'njz]

Under certain conditions, the EM algorithm converges to a local
maximum of the log likelihood function. It can be shown that in

certain cases EM converges more rapidly than gradient methods
[2], and in certain cases the convergence rate is superlinear, com-
parable to that of Newton-type methods [3]. On the other hand,
overall EM is a conservative algorithm with better stability prop-
erties than more aggressive schemes such as Newton’s method.
These facts make EM a good choice for mixture estimation in
general, and distributed (and unsupervised) applications like those
arising in sensor networks especially.

In anticipation of a distributed version of this EM algorithm,
define the “sufficient” statistics

M N,
t t
w; = Wm,i,5s
m=1 i=1
M Nm
t t )
a; = Wn,i,5Ym,i
m=1i=1
M Nm

b; = Zzwfn”ygnl (4)

m=1 i=1

Notice that with these summaries the M-Step calculations for the
means and covariances can be computed according to

t
t a;
1221 = ’LU_]t-7
bt
t
Ej = wt — M (:u/_] ) ) (5)

J

where the superscript ' denotes matrix transposition (unnecessary
in the scalar case).

A distributed implementation of the standard EM algorithm
is obtained as follows. Assume that all nodes have the current pa-
rameter estimate 6¢. The next EM iterate **! can be computed by
performing two message passing cycles through the nodes. In the
first cycle, each message passing operation involves the transmis-
sion of the partial sum of the sufficient statistics in (4) from one
node to another. Upon the completion of one full cycle, the last
node has the complete sums in (4), which are then passed back-
wards in the cycle. Each node now has the summary statistics in
(4) and can compute the update 8*71. Note that each iteration of
the EM algorithm requires the transmission of 2M — 2 messages
of dimension dim(s*).

4. ADISTRIBUTED EM ALGORITHM FOR SENSOR
NETWORKS

This section proposes a fully distributed EM (DEM) algorithm that
eliminates the need for the forward and backward message passing
process in the distributed implementation of the standard EM al-
gorithm discussed above. The DEM algorithm cycles through the
network and performs incremental E and M steps at each node us-
ing only the local data at each node and summary statistics passed
from the previous node in the cycle.

The DEM algorithm operates as follows. Initialize
{1?,%9,p? ..} at some chosen values (possibly random) and set
the quantities w?, aJ and b7 to zero. Assume that the algorithm
proceeds in a cyclic fashion (i.e., messages are passed between
nodes inthe order 1,2,...,M,1,2..., M, ...); other non-cyclic
possibilities are also possible. The following processing and com-
munication is carried out at each node in succession. At iteration
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t+1 node m receives w}, a% and b from the preceding node. The
node then computes the means and variances according to (5), and

" et @l kN (Yom i |1, 1)
Then node m updates its mixing probabilities according to
1
ot = 5= wiil, 0
™ oi=1

and computes w1 = YV wh

i ;- Finally, the summary quan-
tities are updated according to

t+1 t t41 t
w; Wj + Wy j — Win s
1t 1 ¢
a; = @+~ Ay
41 t t+1 gt
bj = a;+ bm,j bim,j- (8)

Here, all that is done is that the old values of the sufficient statis-
tics are being replaced by updated values. The updated values
{wit!, alt! i} are then transmitted to the next node and the
above process Is repeated there. Note that no processing is per-
formed at any node other than m on this iteration. In particular,
fork # msetw; ! = wj ;, aft! = af ;,and b} =0} ;.

The DEM algorithm can be viewed as a type of incremental
EM algorithm. Incremental versions of EM were first considered
in [4]. It follows from the general theory of incremental EM al-
gorithms, DEM monotonically converges to a local maximum (or
saddle point). Before moving on, a variant of DEM is discussed.
In wireless sensor network applications, it is likely that commu-
nications are the major source of power consumption, rather than
computation. Therefore, it may be desirable to employ more effec-
tive (and intensive) computations at each node in order to reduce
the number of communications (cycles through the nodes). In the
DEM algorithm above, in effect each node computes a single, local
E-Step and M-Step. It is possible, however, that additional local
E-Steps and M-Steps (more computation at each node) may lead
to faster overall convergence (in terms of the number of required
communications). Specifically, the computations in (5)-(8) can be
repeated several times in succession until updated means and co-
variances {u ™", £4*} reach a fixed point (or until the incremen-
tal change from one set of parameters to the next falls below a
preset tolerance). This process is seeking to maximize, as opposed
to simply increasing, the local log-likelihood at each node before
moving on to the next. This algorithm is referred to as “DEM
with multiple EM steps at each node” as opposed to “DEM with a
single EM step at each node”. The simulation experiments in the
following sections demonstrate that this procedure can lead to sig-
nificant speed-ups in the rate of convergence per communication.
This variant is also guaranteed to converge to a local maximum (or
saddle point).

5. CONVERGENCE BEHAVIOR OF DISTRIBUTED EM

Although the DEM is intuitively reasonable, a formal convergence
proof of incremental versions of EM was not given in [4]. Re-
cently, an analysis was presented in [5] which shows that the accu-
mulation points of incremental EM algorithms are are fixed points
of the corresponding standard (global) EM algorithms. This analy-
sis can be specialized to apply to DEM. The convergence behavior

of standard EM in the Gaussian mixture case is examined thor-
oughly in [2, 3]. Usually, the EM fixed points are points of local
maxima of the log likelihood (although saddle points are also pos-
sible). It can be shown that in the Gaussian mixture case DEM is
linearly convergent (in a certain sense) to a local maximum of the
log likelihood 1, (9) [6].

Assume that the sequence {8} converges to a point 8* where
the log likelihood 7, assumes a local maximum. It can be shown
[6] that for sufficiently large ¢ there exists a constant 0 < 8 < 1
such that

o =671l < BlgT" -6, ©)
where 8~ is aweighted average of the past {§*~™}2_, . This re-
sult is crucial in applications since it ensures that DEM converges
reasonably quickly to 8*. In the sensor network context, the con-
vergence rate guarantees that the parameter estimates converge to
6* (within some prespecified tolerance) in a finite number of iter-
ations/communications. The precise form of the weighted average
6*=! depends on the nature of the distribution (see [6] for details).
In cases in which all sensors make i.i.d. observations in equal and
sufficient numbers, then

g ~ L % gt-mtt (10)
M m=1

a simple average of the past M iterates. From here it follows that
|61 — 6*|| < Bmaxy,—1,.. um ||§°~™T! — 6*||, demonstrating
that the error converges at least linearly over each cycle.

6. A SIMULATED SENSOR NETWORKING
APPLICATION

A simulated sensor network application is presented here to illus-
trate the proposed ideas. Consider a network of M wireless nodes,
each equipped with two sensors, a temperature sensor and a sen-
sor that measures the presence of certain microorganisms. Under-
standing the relationship between microorganisms and their envi-
ronmental conditions is viewed as one of the important potential
application areas for sensor networks. An example is the study of
the relationship between marine microorganisms and temperature
[8]. In that setting, clusters in temperature/microorganism-density
feature space can be expected due to the existence of thermoclines
in the ocean. The simulation here is meant to mimic this situa-
tion. Each sensor records N measurements. Each measurement
is a pair of numbers corresponding to a temperature reading and
a microorganism density reading. The units of the measurements
are assumed to be scaled so that the feature space is the unit square
[0, 1]2.

Figure 2(a)-(d) depict a simulated set of data. In this simu-
lation M = N = 100. The data were generated according to a
three-component Gaussian mixture model. The mixing probabili-
ties at each node were selected randomly, but in each case roughly
90% of the total mass was placed on one of the components to
simulate the effect of the thermoclines. To mimic the effect of
sensor saturation, the Gaussian data was thresholded to force the
data into the unit square (which is apparent especially in the upper
right hand corner). Standard EM (distributed implementation) and
DEM with single EM step at each node, and DEM with multiple
EM steps at each node are were used to estimate the three compo-
nents. The algorithms were randomly initialized with the Gaussian
mixture components depicted by the dashed circles in Figure 2(e).
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All three algorithms converged to the same solution. The solid el-
lipsoids in Figure 2(e) indicate the estimated components, which
agree very well with the data clusters. The estimated means and
covariances are very close to the values used to generate the data.
The normalized squared errors (squared errors divided by squared
norms of the true parameters) were on the order of 10~%. The esti-
mated mixing parameters were also close to there true values. The
average absolute error between the estimated and true probabilities
was 0.0179.

The rate of convergence of the three algorithms, as a function
of number of transmitted bits — which corresponds to numbers
of messages passed between nodes — is compared in Figure 2(f).
Clearly the DEM algorithm with multiple EM steps per node con-
verges most rapidly in this case. Note that upon convergence, ev-
ery node has (roughly) the same estimates of the global mean and
covariance parameters. Therefore, any one of the nodes may be
called upon to transmit the result to a remote site. Any node may
also be queried for its local mixing probability estimates. Thus,
global and local information can be retrieved from the sensor net-
work with low bandwidth/power communications (relative to the
communication cost of transmitting all the data to a remote site).
Other experiments (not discussed here) demonstrated similar be-
havior and performance.

7. CONCLUSIONS

This paper presented a distributed EM algorithm suitable for clus-
tering and density estimation in sensor networks. DEM is a dis-
tributed algorithm that performs local computations on the sen-
sor data at each node and passes a small set of sufficient statistics
from node-to-node in the iteration process. Under mild conditions,
DEM converges to a stationary point of the log likelihood func-
tion, usually a local maximum. DEM converges at a linear rate (in
a certain sense), potentially converging more rapidly than standard
EM. This makes DEM attractive for sensor network applications.
A simulation study demonstrated the potential of DEM for sensor
network data analysis.

There are several potential avenues for future work. The cru-
cial question of selecting the appropriate number of components
in the Gaussian mixture might be dealt with by incorporating the
MML criterion proposed in [9]. The density estimates or data clus-
ters derived by the DEM algorithm could play a role in subsequent
processing and analysis, perhaps in the optimization of distributed
coding techniques [7]. Finally, most of the results discussed in this
paper can be easily extended to other mixture models consisting of
component distributions from the exponential family.
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