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ABSTRACT

Sensor networks provide virtual snapshots of the physical world
via distributed wireless nodes that can sense in different modali-
ties, such asacoustic and seismic. Classification of objectsmoving
through the sensor field is an important application that requires
collaborative signal processing (CSP) between nodes. Given the
limited resources of nodes, a key constraint is to exchange the
least amount of information between them to achieve desired per-
formance. Two main forms of CSP are possible. Data fusion —
exchange of low dimensional feature vectors — is needed between
correlated nodes, in general, for optimal performance. Decision
fusion — exchange of likelihood values — is sufficient between in-
dependent nodes. Decision fusion is generally preferable due to
its lower communication burden. We study CSP of multiple node
measurements, each modeled as a Gaussian signal vector (corre-
sponding to the target class) corrupted by additive white Gaussian
noise. The measurements are partitioned into groups. The signal
components within each group are perfectly correlated whereas
they vary independently between groups. Three classifiers are
compared: the optima maximum likelihood classifier, a data av-
eraging classifier that treats all measurements as correlated, and a
decision fusion classifier that treats them all asindependent. An-
alytical and numerical results based on real data are provided to
compare the performance of the three CSP classifiers. Our results
indicate that the sub-optimal decision fusion classifier, that is most
attractive in the context of sensor networks, is also arobust choice
from a decision theoretic viewpoint.

1. INTRODUCTION

Wireless sensor networks are an emerging technology for mon-
itoring the physical world with a densely distributed network of
wireless nodes. Each node haslimited communication and compu-
tation ability and can sensethe environment in avariety of modal-
ities, such as acoustic, seismic, and infra red [1, 2, 3]. A wide
variety of applications are being envisioned for sensor networks,
including disaster relief, border monitoring, condition-based ma-
chine monitoring, and surveillancein battlefield scenarios. Detec-
tion and classification of objects moving through the sensor field
isanimportant task in many envisioned applications. Exchange of
sensor information between different nodes in the vicinity of the
object is necessary for reliable execution of such tasks due to a
variety of reasons, including limited (local) information gathered
by each node, variability in operating conditions, and node fail-
ure. Consequently, devel opment of theory and methodsfor collab-
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orative signal processing (CSP) of the data collected by different
nodesis a key research areafor realizing the vision of sensor net-
works.

The CSP agorithms haveto be devel oped under the constraints
imposed by the limited communi cation and computational abilities
of the nodesas well astheir finite battery life. A key goal of CSP
algorithms in sensor networks is to exchange the least amount of
databetween nodesto attain adesired level of performance. Inthis
paper, with the above goal in mind, we investigate CSP algorithms
for singletarget classification based on multiple acoustic measure-
ments at different nodes. The numerical results presented here are
based on real data collected in the DARPA SenslT program.

There are two main forms of information exchange between
nodes dictated by the statistics of measured signals. If two nodes
yield correlated measurements, data fusion is needed, in general,
for optimal performance— exchange of (low-dimensional) feature
vectors that yield sufficient information for desired classification
performance. On the other hand, if two nodes yield independent
measurements, decision fusion is sufficient — exchange of likeli-
hood values (scalars) computed from individual measurements. In
general, the measurements would exhibit a mixture of correlated
and independent components and would require a combination of
data and decision fusion between nodes. In the context of sen-
sor networks, decision fusion is clearly the more attractive choice.
First, it imposes a significantly lower communication burden on
the network, compared to data fusion, since only scalars are trans-
mitted to a manager node (where the final processingis done) [3].
Second, it also imposes a lower computational burden compared
to datafusion sincelower dimensional data hasto be processed by
thejoint classifier at the manager node.

In this paper, we investigate the design of CSP classifiers and
assess their performance in an idealized abstraction of measure-
ments from multiple nodes. We consider X' = Gn s measure-
ments corresponding to a particular event. The ' measurements
are split into G groupswith ¢ measurementsin each group. The
signal component in the n ¢ measurementsin a particular group is
identical (perfectly correlated), but it varies independently from
group to group. We compare the performance of three classi-
fiers: 1) the optimal maximum likelihood (ML) classifier, 2) asub-
optimal (decision fusion) classifier that treats all the measurements
as independent, and 3) a sub-optimal (data averaging) classifier
that treatsall the measurementsas perfectly correlated. Our results
indicate that the decision fusion classifier is remarkably robust to
the true statistical correlation between measurements. Thus, the
decision fusion classifier, that is the most attractive choicein view
of the computational and communication constraints imposed by
the network, is also arobust choicefrom adecision theoretic view-
point.
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2. CSPCLASSIFIERSFOR MULTIPLE
MEASUREMENTS

In this section, we briefly describethe structure of classifiersbased
on multiple measurements. We consider Gaussian classifierswhich
assume that the underlying data has complex circular Gaussian
statistics. The notation & ~ CA(p,X) meansthat E[z] =
and E[xz] = ¥ and E[z2T] = 0 (circular assumption). We
first discuss the classifier structure for a single measurement and
then generalizeit to multiple measurements.

2.1. Single Measurement Classifier

Consider M target classes. Let & denote a complex-vaued N -
dimensional feature vector corresponding to a detected event. Un-
der hypothesisj = 1, --- , M (correspondingto j-th target class),
x ismodeled as

HJ:w:s+n7j:17"'7M7 (1)

where s ~ CN(p;, ;) denotes the Gaussian signal component
corresponding to the j-th class, and n ~ CA/(0, I) denotes addi-
tive white Gaussian noise. A classifier C' maps the event feature
vector & to one of the target classes. We assume that all classes
are equaly likely. Thus, the optimal classifier is the maximum
likelihood (ML) classifier which takesthe form

Clw) =arg _max . p,(x) @
where p; () denotes the likelihood function for j-th class which
takesthe following form under the complex Gaussian assumption

! ~mn) T EAD T e (3)

ps(®) = me :

In this paper, we assume zero-mean signals so that g ; = 0 for al
7 and, thus, all information about thetargetsis containedin the co-
variancematrices X ;. In practice, {X; } haveto be estimated from
available training data. We assumethat tr(X ;) (signal energy) is
the samefor al j.

2.2. Multiple Measurement Classifiers

Suppose that we have K measurements (in a given modality),
{@1,---,®x}, from different nodesavailableto us. We areinter-
ested in combining these measurements to achieve improved clas-
sification performance. Consider the concatenated N K -dimensional
feature vector

T T T T
x° :[33173327"'7331(] (4)

which has the sameform as (1) under different hypotheses except
for the larger number of dimensions. The noiseis still white but
the signal correlation matrix under H ; can be partitioned as

E],ll E],12 E],II\"

. E],21 E],22 E],2I\"
== _ _ : : ©)

iK1 X5 K2 Y KK

where £, ;. = E[z, 1] denotes the cross-covariance between
the k-th and k’-th measurements. The optimal classifier operates
on« © and takestheform (2) with p; () given by (3) by replacing
x with 2° and 33; with X5.

2.3. A Simple Measurement Model

Let X = Gng. Supposethat the signal component of « ¢ can be
partitioned into G groups of n  measurementseach as

cT T
8 :[317"'

73?7337"'7337"'7357"'735] (6)
wherethe signal component of then ¢ measurementsin each group
isidentical and it varies independently from group to group. That
is, {s1,--+,8c} arei.i.d accordingto CN(0,X;) under H;.
Thenoise measurements, on the other hand, areindependent across
all measurements. The above signal model can capture a range of
correlation between measurements. For X' = G (ng = 1), dl
the measurements have independent signal components (no corre-
lation), whereasfor K = ng (G = 1), al the measurements have
identical signal components (maximum correlation).

2.4. Optimum Classifier

There are two sources of classification error: background noise
and the inherent statistical variability in the signals captured by
X;'s. Theoptimal classifier performs signal averaging within each
group to reduce the noise variance and statistical averaging over
the groups to reduce the inherent signal variations. The optimum
classifier operatesonthe VG dimensional vector

Y S1 w1
y= = + =stw (1)
Ya Sa wa
wherey,, 1 = 1,--- , G, are obtained by averaging the measure-
mentsin each group
1 &
Y= Z T(i—1)G4+; = Si + Wi. (8)

J=1

Note that w ~ CA(0,I/ng) dueto signal averaging and s ~
CN(0,Xq ;) under H; whereX g ; = diag(X;, X2, -- , X;)is
an NG x NG block diagonal matrix with {32 ;} onthe G diagonal
blocks. It can be shown that the optimal classifier takesthe form

Copt(Y1,---,yg) = arg . _min_ lope;(y1,---,ya)  (9)

J=1

where the (negative) log-likelihood function ., ; (y) is given by

G
1 —
log |Z; + I/nal + 5 D _ v (T + I/nc) "y

=1

= log|=; 4 I/ng| + tr((Z; + I/nc)'3,) (10)

lopt,; (y) =

and ﬁ:y = é Zle y;yE isthe estimated data correlation matrix
of {y:}.

It is insightful to consider two limiting cases. First, suppose
that X = ne (G = 1) so that all measurements are perfectly
correlated. Then, in thelimit of large K

Hm lope ; (y) = log |2 + 91 S5 'y1 (11)

K—=co

which shows that noise is completely eliminated and the only re-
maining source of error is the inherent statistical variation in the

IV - 833




signal component. Now, supposethat K’ = G (n ¢ = 1) sothat all
measurementsarei.i.d. Inthelimit of large K we have

I\lii)noo lopt,; (y) = log |Z; + I| + tr((Z; + I)_lzy) (12)
whereX, = X,, + I under H,,. Inthiscase, all statistical varia-
tion inthe signa is removed dueto ensembleaveraging. However,
thereisabiasin the estimated data correlation (relative to X ;) due
to noise. In this case, it can be shown that perfect classification
can be attained in the limit of large K as long as the differential
entropies satisfy D(p;||pm) > 0 for al j # m (p; is definedin
(3)). Note that both data averaging (correlated measurements) and
ensemble (decision) averaging (uncorrelated measurements) con-
tribute to improved classifier performance. However, as we will
see, ensemble averaging is more critical in the case of stochastic
signals.

2.5. Data-Averaging Classifier

As mentioned earlier, for the measurement model of the previous
section, we comparethe optimal classifier to two sub-optimal clas-
sifiers. In this section, we describe the first sub-optimal classifier
that treats all measurements as correlated. It operates on the aver-
age of all measurements

1 K 1 G
yda:?;wizagyizsda+wda (13)
where sq. ~ CN(0,X;/G) under H; and wa, ~ CN(0, I/K)

in the measurement model. The data-averaging classifier takesthe
form

Cda(yda) = arg min lda,] (yda)
j=1, M

laaj (Yaa) =log |Z; + T/ K|+ y1a(Z; + I/K) ™ ya.(14)

Note that C,,; and Cq4, are identical for k' = ng in the mea-
surement model. Furthermore, all measurements {«;} haveto be
communicated to the manager node for the computation of C' ¢
and C4,. However, the computational complexity of C'q, islower
than that of Clop;.

2.6. Decision-Fusion Classifier

The decision-fusion classifier treats all measurements as indepen-
dent. It takesthe form

Cg(wr, - &) = arg  min _ lg (@1, - ,@x)
=1, M

K
1 _
las(x) = log |, +I|+f § a:,H(E]—i—I) o

=1

log [ + I|+ tr((Z; + I)™'8s)  (15)

whereS, = L S a2/ isthe estimated data correlation ma-
trix of {«;}. Notethat C.,: and C4s areidentical for K = G in
the measurement model. Note also from (15) that the M scalars
{f(Z; + [)7'=;} for j = 1,---, M need to be transmitted
from the /' nodes to the manager node. Thus, C 4 imposes a
much smaller communication (and computational) burden on the
network.

2.7. Performanceof the ThreeClassifiers

The optimal classifier doesdataaveraging over the correlated mea-
surements in each group to improve the effective SNR and com-
binesthe likelihoods acrossindependent groupsto stabilize thein-
herent variability in the stochastic signal. Comparing (10) and (15)
we can note that the decision fusion classifier isvery similar to the
optimal classifier: the main difference is that since C'4s does not
do data averaging within each group, it encounters a lower effec-
tive SNR compared to C'op¢ (evident from a; ~ CA(0,%; + I)
in (15) compared to y; ~ CA(0,%; + I/ng) in (10). Infact,
it can be shown that the performance of C'4s can be conservatively
approximated by that of C'o, by modelingy; ~ CA(0, X,+1)in
(10). The data-averaging classifier, on the other hand, operates on
Yaa ~ CN(0,X;/G + I/K) and thus captures SNR gain of n g
afforded by correlated measurements within each group but does
not exploit the statistical independenceacrossgroupsto reducethe
statistical variation in the signal. Thus, in the limit of large num-
ber of uncorrelated measurements, we expect both C',,; and C'4s to
exhibit improved performance (perfect classification under certain
conditions), but the performance of C'4, will alwaysbelimited by
theinherent statistical variationin thesignal.

We note that for M = 2 the average probability of detection
(P D) and the average probability of false alarm (P F A) can be
exactly computed for C'p,¢ and Cq, and those for C'4¢ can be ap-
proximated via C'p,¢ as discussed above [4]. For M > 2 bounds
for P and PF' A can be obtained [4]. Thisis becauseboth{ .p:
andl 4 ; areweighted sumsof NG 3 random variables, whereas
laa,; iISaweighted sumof N y3 random variables. Thecombining
weights are determined in al casesby G, n ¢ and the eigenvalues
of ;. Thus, standard analysis for performance of diversity sig-
naling over fading channels can be adapted to this problem [5].

3. SSIMULATION RESULTSBASED ON REAL DATA

In this section, wefirst consider and motivate a special scenarioin
which the covariance matrices for different classes are smultane-
ously diagonalizable. We then present some numerical results on
real data collected as part of the DARPA Sensl T program.

3.1. Simultaneously Diagonalizable Classes

We assume that all the covariance matrices share the same eigen-
functions, that is

T, =UAUY j=1,-- M (16)

where U represents the matrix of common (orthonormal) eigen-
vectors for all the classes— the different classesare characterized
by the diagonal matrix of eigenvalues A ;. One scenario in which
this assumption is approximately valid is when the source signals
for different targets can be modeled as stationary processes over
the duration of the detected event. In such acase, choosing U asa
discrete Fourier transform (DFT) matrix would serve as an approx-
imate set of eigenfunctions. The eigenvalueswill then correspond
to samplesof the associated power spectral densities (PSD’s). The
numerical results in the next section are based on this assumption
and rely on experimental data collected in the SenslT program.
Note that given the knowledge of A ;, arealization for the signal
from j-th class can be generated as

s=UA?z, z ~CN(0,1). (17)
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3.2. Numerical Resultsfor M=2 Classes

Inthis section, we present resultsfor classifying two vehicles(Am-
phibious Assault Vehicle (AAV) and Dragon Wagon (DW)) based
on smulated N = 25 dimensional measurements from K =
Gns = 10 nodes according to the model in Section 2.3. The
eigenvalues (PSD samples) for the two vehicles were estimated
from experimental data. Themeasurementsat different nodeswere
generated using (17) according to the model in Section 2.3. The
PD and PF A were estimated using Monte Carlo simulation over
5000 independent events.

Figure 1 plotsthe P D asafunction of SNR for the three clas-
sifiers for the two extreme cases. K = ng 10 (correlated)
and X = G = 10 (independent). The PF A issimply given by
1— PD for M = 2. Asexpected, Cop; and C 4, perform identi-
caly inthefirst case, whereas C' s and C'qy performidentically in
the second case. However, C' 4 incursasmall lossin performance
in the correlated case which diminishes at high SNRs. The perfor-
mancelossin Cg4, in the independent caseis very significant and
does not improve with SNR. This is due the classifier mismatch
and due to averaging over independent realizations of a zero mean
signal —y4, IS converging to the zero vector dueto the law of large
numbers. In fact, at high SNR, all events are classified as DW by
Ca, Since that class has a larger largest eigenvalue compared to
AAV, as evident from Figure 2(a). Figure 2(b) comparesthe PD
of thethree classifiersfor anintermediatecase (G = n ¢ = 2) with
K = 4 measurements (/N = 15). Analytically computed P D for
Copr and C 4, and the conservative approximation for PD of Cgf
are aso plotted and agree well with the simulated resullts.
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Fig. 1. PD of thethreeclassifiersversusSNR. (Q) K = ns = 10
(perfectly correlated measurements). (b). X = G = 10 (indepen-
dent measurements).
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Fig. 2. () Covariance matrix eigenvalues (PSD estimates) for
AAV and DW. (b) Comparison of simulated and analytically com-
puted PD for K = 4,G = 2,ng =2and N = 15.

Figure 3 plots the P D for the three classifiers as function of
G (K = 10) for two different SNRs. It is evident that Cy; closely

AVERAGE PD

approximates C'.,: Whereas Cg4, incurs a large loss when K #
nga.
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Fig. 3. Comparison of PD of the threeclassifiersfor varying values
of G (K = 10). (a) SNR=-5dB. (b) SNR = 0dB.

4. CONCLUSIONS

We have taken afirst step in addressing the problem of how much
information should be exchanged between nodes for distributed
decision making in sensor networks. Our analysis is based on
modeling the source signal as a stationary Gaussian process. In
general, measurementsfrom multiple nodeswill provideamixture
of correlated and uncorrel ated information about the sourcesignal.
The optimal classifier exploits the correlated measurementsto im-
prove the SNR and the independent measurements to stablize the
inherent statistical variability in thesignal. Both effects areimpor-
tant for improving classifier performance. However, for stochastic
signals, the fusion of independent measurements is most signifi-
cant. In this context, our results demonstrate that the simple sub-
optimal decision fusion classifier, that treats all measurements as
independent, is an attractive choice given the computational and
communications constraintsin a sensor network. Compared to the
optimal classifier, the decision fusion classifier fully exploits the
independent measurements but incurs an effective SNR loss de-
pending on the fraction of the measurements that are correlated.
However, if the source signal exhibits fewer degrees of freedom
(lower-rank covariance matrix), data averaging to improve SNR
might become more important. In ongoing research we are devel-
oping aframework for near-optimal fusion techniquesthat are best
matched to the constraints of sensor networks.
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