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ABSTRACT

Sensor networks provide virtual snapshots of the physical world
via distributed wireless nodes that can sense in different modali-
ties, such as acoustic and seismic. Classification of objects moving
through the sensor field is an important application that requires
collaborative signal processing (CSP) between nodes. Given the
limited resources of nodes, a key constraint is to exchange the
least amount of information between them to achieve desired per-
formance. Two main forms of CSP are possible. Data fusion –
exchange of low dimensional feature vectors – is needed between
correlated nodes, in general, for optimal performance. Decision
fusion – exchange of likelihood values – is sufficient between in-
dependent nodes. Decision fusion is generally preferable due to
its lower communication burden. We study CSP of multiple node
measurements, each modeled as a Gaussian signal vector (corre-
sponding to the target class) corrupted by additive white Gaussian
noise. The measurements are partitioned into groups. The signal
components within each group are perfectly correlated whereas
they vary independently between groups. Three classifiers are
compared: the optimal maximum likelihood classifier, a data av-
eraging classifier that treats all measurements as correlated, and a
decision fusion classifier that treats them all as independent. An-
alytical and numerical results based on real data are provided to
compare the performance of the three CSP classifiers. Our results
indicate that the sub-optimal decision fusion classifier, that is most
attractive in the context of sensor networks, is also a robust choice
from a decision theoretic viewpoint.

1. INTRODUCTION

Wireless sensor networks are an emerging technology for mon-
itoring the physical world with a densely distributed network of
wireless nodes. Each node has limited communication and compu-
tation ability and can sense the environment in a variety of modal-
ities, such as acoustic, seismic, and infra red [1, 2, 3]. A wide
variety of applications are being envisioned for sensor networks,
including disaster relief, border monitoring, condition-based ma-
chine monitoring, and surveillance in battlefield scenarios. Detec-
tion and classification of objects moving through the sensor field
is an important task in many envisioned applications. Exchange of
sensor information between different nodes in the vicinity of the
object is necessary for reliable execution of such tasks due to a
variety of reasons, including limited (local) information gathered
by each node, variability in operating conditions, and node fail-
ure. Consequently, development of theory and methods for collab-
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orative signal processing (CSP) of the data collected by different
nodes is a key research area for realizing the vision of sensor net-
works.

The CSP algorithms have to be developed under the constraints
imposed by the limited communication and computational abilities
of the nodes as well as their finite battery life. A key goal of CSP
algorithms in sensor networks is to exchange the least amount of
data between nodes to attain a desired level of performance. In this
paper, with the above goal in mind, we investigate CSP algorithms
for single target classification based on multiple acoustic measure-
ments at different nodes. The numerical results presented here are
based on real data collected in the DARPA SensIT program.

There are two main forms of information exchange between
nodes dictated by the statistics of measured signals. If two nodes
yield correlated measurements, data fusion is needed, in general,
for optimal performance – exchange of (low-dimensional) feature
vectors that yield sufficient information for desired classification
performance. On the other hand, if two nodes yield independent
measurements, decision fusion is sufficient – exchange of likeli-
hood values (scalars) computed from individual measurements. In
general, the measurements would exhibit a mixture of correlated
and independent components and would require a combination of
data and decision fusion between nodes. In the context of sen-
sor networks, decision fusion is clearly the more attractive choice.
First, it imposes a significantly lower communication burden on
the network, compared to data fusion, since only scalars are trans-
mitted to a manager node (where the final processing is done) [3].
Second, it also imposes a lower computational burden compared
to data fusion since lower dimensional data has to be processed by
the joint classifier at the manager node.

In this paper, we investigate the design of CSP classifiers and
assess their performance in an idealized abstraction of measure-
ments from multiple nodes. We consider K � GnG measure-
ments corresponding to a particular event. The K measurements
are split into G groups with nG measurements in each group. The
signal component in the nG measurements in a particular group is
identical (perfectly correlated), but it varies independently from
group to group. We compare the performance of three classi-
fiers: 1) the optimal maximum likelihood (ML) classifier, 2) a sub-
optimal (decision fusion) classifier that treats all the measurements
as independent, and 3) a sub-optimal (data averaging) classifier
that treats all the measurements as perfectly correlated. Our results
indicate that the decision fusion classifier is remarkably robust to
the true statistical correlation between measurements. Thus, the
decision fusion classifier, that is the most attractive choice in view
of the computational and communication constraints imposed by
the network, is also a robust choice from a decision theoretic view-
point.
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2. CSP CLASSIFIERS FOR MULTIPLE
MEASUREMENTS

In this section, we briefly describe the structure of classifiers based
on multiple measurements. We consider Gaussian classifiers which
assume that the underlying data has complex circular Gaussian
statistics. The notation x � CN ����� means that E�x� � �

and E�xxH � � � and E�xxT � � � (circular assumption). We
first discuss the classifier structure for a single measurement and
then generalize it to multiple measurements.

2.1. Single Measurement Classifier

Consider M target classes. Let x denote a complex-valued N -
dimensional feature vector corresponding to a detected event. Un-
der hypothesis j � �� � � � �M (corresponding to j-th target class),
x is modeled as

Hj � x � s� n � j � �� � � � �M� (1)

where s � CN ��j��j� denotes the Gaussian signal component
corresponding to the j-th class, and n � CN ��� I� denotes addi-
tive white Gaussian noise. A classifier C maps the event feature
vector x to one of the target classes. We assume that all classes
are equally likely. Thus, the optimal classifier is the maximum
likelihood (ML) classifier which takes the form

C�x� � arg max
j�f����� �Mg

pj�x� (2)

where pj�x� denotes the likelihood function for j-th class which
takes the following form under the complex Gaussian assumption

pj�x� �
�

�N j�j � Ij
e��x��j�

H ��j�I�
���x��j�� (3)

In this paper, we assume zero-mean signals so that � j � � for all
j and, thus, all information about the targets is contained in the co-
variance matrices�j . In practice, f�jg have to be estimated from
available training data. We assume that tr��j� (signal energy) is
the same for all j.

2.2. Multiple Measurement Classifiers

Suppose that we have K measurements (in a given modality),
fx�� � � � �xKg, from different nodes available to us. We are inter-
ested in combining these measurements to achieve improved clas-
sification performance. Consider the concatenatedNK-dimensional
feature vector

x
cT � �xT� �x

T
� � � � � �x

T
K� (4)

which has the same form as (1) under different hypotheses except
for the larger number of dimensions. The noise is still white but
the signal correlation matrix underHj can be partitioned as

�
c
j �

�
����

�j��� �j��� � � � �j��K

�j��� �j��� � � � �j��K

...
. . .

...
...

�j�K� �j�K� � � � �j�KK

�
���� (5)

where �j�kk� � E�xkx
H
k� � denotes the cross-covariance between

the k-th and k�-th measurements. The optimal classifier operates
onxc and takes the form (2) with pj�xc� given by (3) by replacing
x with xc and�j with �c

j .

2.3. A Simple Measurement Model

Let K � GnG. Suppose that the signal component of x c can be
partitioned into G groups of nG measurements each as

s
cT � �sT� � � � � � s

T
� �s

T
� � � � � �s

T
� � � � � �s

T
G� � � � �s

T
G� (6)

where the signal component of thenG measurements in each group
is identical and it varies independently from group to group. That
is, fs�� � � � �sGg are i.i.d. according to CN ����j� under Hj .
The noise measurements, on the other hand, are independent across
all measurements. The above signal model can capture a range of
correlation between measurements. For K � G (nG � �), all
the measurements have independent signal components (no corre-
lation), whereas for K � nG (G � �), all the measurements have
identical signal components (maximum correlation).

2.4. Optimum Classifier

There are two sources of classification error: background noise
and the inherent statistical variability in the signals captured by
�j’s. The optimal classifier performs signal averaging within each
group to reduce the noise variance and statistical averaging over
the groups to reduce the inherent signal variations. The optimum
classifier operates on the NG dimensional vector

y �

�
��

y�
...
yG

�
�� �

�
��
s�
...
sG

�
���

�
��
w�

...
wG

�
�� � s�w (7)

where yi, i � �� � � � �G, are obtained by averaging the measure-
ments in each group

yi �
�

nG

nGX
j��

x�i���G�j � si �wi� (8)

Note that w � CN ��� I�nG� due to signal averaging and s �
CN ����G�j� underHj where�G�j � diag��j��j� � � � ��j� is
anNG�NG block diagonal matrix with f�jg on the G diagonal
blocks. It can be shown that the optimal classifier takes the form

Copt�y�� � � � �yG� � arg min
j������ �M

lopt�j�y�� � � � �yG� (9)

where the (negative) log-likelihood function lopt�j �y� is given by

lopt�j�y� � log j�j � I�nGj�
�

G

GX
i��

y
H
i ��j � I�nG�

��
yi

� log j�j � I�nGj� tr���j � I�nG�
�� 	�y� (10)

and 	�y � �
G

PG
i�� yiy

H
i is the estimated data correlation matrix

of fyig.
It is insightful to consider two limiting cases. First, suppose

that K � nG (G � �) so that all measurements are perfectly
correlated. Then, in the limit of large K

lim
K��

lopt�j �y� � log j�j j� y
H
� �

��
j y� (11)

which shows that noise is completely eliminated and the only re-
maining source of error is the inherent statistical variation in the
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signal component. Now, suppose that K � G (nG � �) so that all
measurements are i.i.d. In the limit of large K we have

lim
K��

lopt�j�y� � log j�j � I j� tr���j � I����y� (12)

where�y � �m � I underHm. In this case, all statistical varia-
tion in the signal is removed due to ensemble averaging. However,
there is a bias in the estimated data correlation (relative to�j) due
to noise. In this case, it can be shown that perfect classification
can be attained in the limit of large K as long as the differential
entropies satisfy D�pjkpm� � 
 for all j �� m (pj is defined in
(3)). Note that both data averaging (correlated measurements) and
ensemble (decision) averaging (uncorrelated measurements) con-
tribute to improved classifier performance. However, as we will
see, ensemble averaging is more critical in the case of stochastic
signals.

2.5. Data-Averaging Classifier

As mentioned earlier, for the measurement model of the previous
section, we compare the optimal classifier to two sub-optimal clas-
sifiers. In this section, we describe the first sub-optimal classifier
that treats all measurements as correlated. It operates on the aver-
age of all measurements

yda �
�

K

KX
i��

xi �
�

G

GX
i��

yi � sda �wda (13)

where sda � CN ����j�G� under Hj and wda � CN ��� I�K�
in the measurement model. The data-averaging classifier takes the
form

Cda�yda� � arg min
j������ �M

lda�j�yda�

lda�j�yda�� log j�j � I�Kj� y
H
da��j � I�K���yda�(14)

Note that Copt and Cda are identical for K � nG in the mea-
surement model. Furthermore, all measurements fx ig have to be
communicated to the manager node for the computation of C opt

and Cda. However, the computational complexity of Cda is lower
than that of Copt.

2.6. Decision-Fusion Classifier

The decision-fusion classifier treats all measurements as indepen-
dent. It takes the form

Cdf �x�� � � � �xK� � arg min
j������ �M

ldf�j �x�� � � � �xK�

ldf�j �x� � log j�j � I j�
�

K

KX
i��

x
H
i ��j � I���xi

� log j�j � I j� tr���j � I��� 	�x� (15)

where 	�x � �
K

PK
i�� xix

H
i is the estimated data correlation ma-

trix of fxig. Note that Copt and Cdf are identical for K � G in
the measurement model. Note also from (15) that the M scalars
fxHi ��j � I���xig for j � �� � � � �M need to be transmitted
from the K nodes to the manager node. Thus, C df imposes a
much smaller communication (and computational) burden on the
network.

2.7. Performance of the Three Classifiers

The optimal classifier does data averaging over the correlated mea-
surements in each group to improve the effective SNR and com-
bines the likelihoods across independent groups to stabilize the in-
herent variability in the stochastic signal. Comparing (10) and (15)
we can note that the decision fusion classifier is very similar to the
optimal classifier: the main difference is that since Cdf does not
do data averaging within each group, it encounters a lower effec-
tive SNR compared to Copt (evident from xi � CN ����j � I�
in (15) compared to yi � CN ����j � I�nG� in (10)). In fact,
it can be shown that the performance of Cdf can be conservatively
approximated by that ofCopt by modelingyi � CN ����j�I� in
(10). The data-averaging classifier, on the other hand, operates on
yda � CN ����j�G� I�K� and thus captures SNR gain of nG
afforded by correlated measurements within each group but does
not exploit the statistical independence across groups to reduce the
statistical variation in the signal. Thus, in the limit of large num-
ber of uncorrelated measurements, we expect bothC opt andCdf to
exhibit improved performance (perfect classification under certain
conditions), but the performance of Cda will always be limited by
the inherent statistical variation in the signal.

We note that for M � � the average probability of detection
(PD) and the average probability of false alarm (PFA) can be
exactly computed for Copt and Cda and those for Cdf can be ap-
proximated via Copt as discussed above [4]. For M � � bounds
for PD and PFA can be obtained [4]. This is because both l opt�j
and ldf�j are weighted sums of NG��� random variables, whereas
lda�j is a weighted sum of N ��� random variables. The combining
weights are determined in all cases by G, nG and the eigenvalues
of �j . Thus, standard analysis for performance of diversity sig-
naling over fading channels can be adapted to this problem [5].

3. SIMULATION RESULTS BASED ON REAL DATA

In this section, we first consider and motivate a special scenario in
which the covariance matrices for different classes are simultane-
ously diagonalizable. We then present some numerical results on
real data collected as part of the DARPA SensIT program.

3.1. Simultaneously Diagonalizable Classes

We assume that all the covariance matrices share the same eigen-
functions, that is

�j � U�jU
H � j � �� � � � �M (16)

where U represents the matrix of common (orthonormal) eigen-
vectors for all the classes – the different classes are characterized
by the diagonal matrix of eigenvalues� j . One scenario in which
this assumption is approximately valid is when the source signals
for different targets can be modeled as stationary processes over
the duration of the detected event. In such a case, choosingU as a
discrete Fourier transform (DFT) matrix would serve as an approx-
imate set of eigenfunctions. The eigenvalues will then correspond
to samples of the associated power spectral densities (PSD’s). The
numerical results in the next section are based on this assumption
and rely on experimental data collected in the SensIT program.
Note that given the knowledge of �j , a realization for the signal
from j-th class can be generated as

s � U�
���
j z � z � CN ��� I�� (17)
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3.2. Numerical Results for M=2 Classes

In this section, we present results for classifying two vehicles (Am-
phibious Assault Vehicle (AAV) and Dragon Wagon (DW)) based
on simulated N � �� dimensional measurements from K �
GnG � �
 nodes according to the model in Section 2.3. The
eigenvalues (PSD samples) for the two vehicles were estimated
from experimental data. The measurements at different nodes were
generated using (17) according to the model in Section 2.3. The
PD andPFA were estimated using Monte Carlo simulation over
�


 independent events.

Figure 1 plots the PD as a function of SNR for the three clas-
sifiers for the two extreme cases: K � nG � �
 (correlated)
and K � G � �
 (independent). The PFA is simply given by
� � PD for M � �. As expected, Copt and Cda perform identi-
cally in the first case, whereasCopt andCdf perform identically in
the second case. However, Cdf incurs a small loss in performance
in the correlated case which diminishes at high SNRs. The perfor-
mance loss in Cda in the independent case is very significant and
does not improve with SNR. This is due the classifier mismatch
and due to averaging over independent realizations of a zero mean
signal – yda is converging to the zero vector due to the law of large
numbers. In fact, at high SNR, all events are classified as DW by
Cda since that class has a larger largest eigenvalue compared to
AAV, as evident from Figure 2(a). Figure 2(b) compares the PD
of the three classifiers for an intermediate case (G � nG � �) with
K � 
 measurements (N � ��). Analytically computed PD for
Copt andCda , and the conservative approximation for PD of Cdf

are also plotted and agree well with the simulated results.
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Fig. 1. PD of the three classifiers versus SNR. (a) K � nG � �

(perfectly correlated measurements). (b). K � G � �
 (indepen-
dent measurements).
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Fig. 2. (a) Covariance matrix eigenvalues (PSD estimates) for
AAV and DW. (b) Comparison of simulated and analytically com-
puted PD for K � 
, G � �, nG � � and N � ��.

Figure 3 plots the PD for the three classifiers as function of
G (K � �
) for two different SNRs. It is evident that Cdf closely

approximates Copt whereas Cda incurs a large loss when K ��
nG.
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Fig. 3. Comparison of PD of the three classifiers for varying values
of G (K � �
). (a) SNR = -5dB. (b) SNR = 0dB.

4. CONCLUSIONS

We have taken a first step in addressing the problem of how much
information should be exchanged between nodes for distributed
decision making in sensor networks. Our analysis is based on
modeling the source signal as a stationary Gaussian process. In
general, measurements from multiple nodes will provide a mixture
of correlated and uncorrelated information about the source signal.
The optimal classifier exploits the correlated measurements to im-
prove the SNR and the independent measurements to stablize the
inherent statistical variability in the signal. Both effects are impor-
tant for improving classifier performance. However, for stochastic
signals, the fusion of independent measurements is most signifi-
cant. In this context, our results demonstrate that the simple sub-
optimal decision fusion classifier, that treats all measurements as
independent, is an attractive choice given the computational and
communications constraints in a sensor network. Compared to the
optimal classifier, the decision fusion classifier fully exploits the
independent measurements but incurs an effective SNR loss de-
pending on the fraction of the measurements that are correlated.
However, if the source signal exhibits fewer degrees of freedom
(lower-rank covariance matrix), data averaging to improve SNR
might become more important. In ongoing research we are devel-
oping a framework for near-optimal fusion techniques that are best
matched to the constraints of sensor networks.
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