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ABSTRACT

Systemcapacityis consideredfor a group of interfering
usersemploying singleuserdetectionandantennaselection
of multiple transmitandreceive antennasfor flat Rayleigh
fadingchannelswith independentfadingcoefficientsfor each
path.Thecaseconsideredis thatwherethereis verylimited
channelstateinformation(only theselectedantennas)at the
transmitter, but channelstateinformationis assumedat the
receiver. Thefocusis on extremecaseswith very weakin-
terferenceor very stronginterference.It is shown that the
optimumsignalingcovariancematrix is sometimesdiffer-
ent from the standardscaledidentity matrix. In fact this
is true even for caseswithout interferenceif SNR is suffi-
ciently weak. Furtherthescaledidentity matrix is actually
thatcovariancematrix thatyieldsworstperformanceif the
interferenceis sufficiently strong.

1. INTRODUCTION

Considera systemwherecochannelinterferenceis present
from

�����
otherusers.Let us focuson the

�
th userand

assumeeachuseremploys ��� transmitantennasand �	� re-
ceive antennas.In this casethevectorof receivedcomplex
basebandsamplesaftermatchedfiltering becomes
	�
��� ��������� ���	��� ��������� � � � ��� � ����� � � � �! (1)

where ����� � and � � representthe normalizedchannelma-
trix andthenormalizedtransmittedsignalof user" respec-
tively. Thesignal-to-noiseratio (SNR)of user

�
is � � and

theinterference-to-noiseratio(INR) for user
�

dueto inter-
ferencefrom user" is � ��� � . For simplicity, weassumeall of
theinterferingsignals� �$# " � � #&%&%'%�# �
�(� areunknown to
thereceiver andwe modeleachof themasbeingGaussian
distributed,theusualform of theoptimumsignalin MIMO
problems. Then if we conditionon ����� � #&%&%'%	# ����� � , the
interference-plus-noisefrom (1), ) �������� � � � ��� � ����� � � � �* ,
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is Gaussiandistributedwith the covariancematrix + � �) �������� � � ��� � � ��� �-,�� ��.��� � �0/&132 where ,�� denotesthe co-
variancematrix of � � and /4132 is the covariancematrix of . Under this conditioning,the interference-plus-noiseis
whitenedby multiplying 
	� by + �	�6587� . After performing
this multiplication we can useresultsfrom [1] to express
theergodicmutualinformationbetweenthe input andout-
put for theuserof interestasin 9�: �	�<; : 
	� #6=?>6> �@BADCFE-G 7	HJILK4MONP/ 1 2O�Q�R������� � , ��� .��� � + ����TS4UDV % (2)

In (2) theidentity ILK&M : /W�!XZY > �[ILK4M : /W�\Y]X > wasused.
If we wish to computetotal systemmutualinformationwe
shouldfind , � #&%&%'%8, � to maximizê]: , � #&%'%&%�#_, � > �) �` � � 9a: � ` ; : 
 ` #b=?>�> .

Now assumethateachuserin thesystemselects�dc �fe� � transmitantennasand �dc �Qe � � receive antennas1 us-
ing an antennaselectionalgorithm. Thenthe observations
from theselectedantennasfollow themodelin (1) with ���
and �	� replacedby � c � and � c � respectively and � ` � � re-
placedby g� ` � � . The matrix g� ` � � is obtainedby eliminat-
ing thosecolumnsandrows of � ` � � correspondingto uns-
electedtransmitandreceive antennas.Thuswe canwriteg� ` � � �ih : � ` � �'> wherethe function h will choose g� ` � � to
maximizetheinstantaneous(andthusalsotheergodic)mu-
tual information.

2. OPTIMUM SIGNALING FOR SYSTEM
CAPACITY

We definea generalconvex combinationof two possible
solutions,: , � #&%'%&%	#_, � > and :-j, � #'%&%'%�# j, � > , as:4k, � #'%&%&%�# k, � > � : �l�(m > : , � #&%'%&%�#_, � > � m : j, � #'%&%'%�# j, � >� : , � #'%&%'%�#n, � > � m : ,	o� #&%'%&%	#_,	o� > (3)

for pQq m q �
a scalar. Then ^]: , � #&%&%'%�#n, � > is a convex

functionof : , � #&%'%&%	#_, � > if [2]r 7r m 7 ^ N k, � #'%&%&%d# k, � Sts p uvk, � #&%'%&%�# k, � % (4)

1Thecasewhereeachuseremploysadifferent w�xPy and w�xPz is alsoeasy
to handle.
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Similarly ^]: , � #'%&%&%�#_, � > isaconcavefunctionof : , � #&%'%&%�#n, � >
if r 7r m 7 ^ N k, � #&%'%&%�# k, � S q�p u{k, � #&%'%&%�# k, � % (5)

Thereareseveralusefulknown relationshipsfor thederiva-
tive of a functionof a matrix | with respectto a scalarpa-
rameter

m
. In particularwenoterr m~}���� r�� m :P| >P� � m����R� �O� | �	��� rr mD|O��� (6)

and rr m | �	� � � | �	��� rr m | � | ��� % (7)

Assumingselectionis employedwecanuse(2), (6) and(7)
to find (interchanginga derivativeandanexpectedvalue)rr m ^ N k, � #'%&%'%�# k, � S � �}���:�� > �� ` � � @
��m����R� � ��� �	�` rr m � ` �~�

(8)

where
� ` �/ 1$� 2O�\� ` g� ` � ` k, ` g� .` � ` � / 1$� 2v� ����� �_� ���� ` � ` � � g� ` � � k, � g� .` � � � ����[/ 1$� 2O�Q� ` g� ` � ` k, ` g� .` � `��� �	�` # (9)rr m � ` ��� ` g� ` � ` ,	o` g� .` � `a�� �	�` � � ` g� ` � ` k, ` g� .` � `��� �	�` � rr m �� ` � �� ���`

(10)

and rr m �� ` � ����� �n� ���� ` � ` � � g� ` � ��,	o� g� .` � � % (11)

A secondderivativeyields �n�� � � ^ N k, � #&%'%&%	# k, � S ��}���:�� > �� ` � � @ � m����R� �O� � ���` � r 7r m 7 � ` � �� ���` � rr m � ` � � �	�` � rr m � ` ����� (12)

withr 7r m 7 � ` � � � � ` g� ` � ` , o` g� .` � ` �� �	�` � rr m �� ` � �� ���` �
� � ` g� ` � ` k, ` g� .` � `a�� �	�` � rr m �� ` � �� ���` � rr m �� ` � �� �	�` % (13)

3. OPTIMUM SIGNALING FOR WEAK
INTERFERENCE

We canuse(12) to investigateconvexity andconcavity for
any particularsetof SNRs� ` #�� � � #&%'%&%�# � andINRs � ` � � #��8# " �� #'%&%'%�# � #��� � " . Wefocusonextremecases,weakor strong
interference,to gain insight. For thecaseof very weakin-
terferencewe ignoretermswhich aremultiplesof � ` � � (es-
sentiallywe set � ` � �*¡ p for � � � #'%&%&%&# � , " � � #'%&%'%4# �
and "  � � ) andwe find �� � �� ` � p sothat �n�� � � � ` � p which

leadsto �n�� � � ^ N k, � #'%&%&%�# k, � S � � �¢ £d¤ 7�¥L¦�� ` � � @
�~m����R� � �'§ / 1$� 2O�\� ` g� ` � ` k, ` g� .` � `�¨ ��� � ` g� ` � ` ,	o` g� .` � `§ / 1$� 2O�\� ` g� ` � ` k, ` g� .` � `�¨ �	� � ` g� ` � ` ,do` g� .` � ` �~� % (14)

Since k, ` is acovariancematrix : / 1$� 2~�©� ` g� ` � ` k, ` g��.` � ` > �	� �:Fª . ª � ª .�« ª > �	� � :�ª©: /���« > ��� ª . > � ª©:­¬ > 7 ª .T�ª(:�¬ > ª . ª(:�¬ > ª . where ª is unitary and « and ¬ are
diagonalmatriceswith non-negative entries. Define X®�� ` g� ` � ` , o` g��.` � ` and note that X¯.°�±X due to , o` being a
differenceof two covariancematrices(easyto seeusingª « ª . expansionfor eachcovariancematrix). Thusthem����R� �

in (14)iswrittenas
m����R� � � ª(:�¬ > 7 ª .�X ª©:­¬ > 7 ª .²X � �m����R� � � ª
¬{ª .tX ª(:�¬ > 7 ª .�X ª
¬{ª . � � m����R� � � Y]Y]. � sincem����R� � � ³µ´ � � m����R� � � ´
³ � [3]. We see

m����R� � � Y]Y . � must
be non-negative since the matrix inside the trace is non-
negativedefinitesothat(14) implies ^]: , � #'%&%&%�#_, � > is con-
cave. This will be true for sufficiently small � ` � �$#6�n# " �� #'%&%'%�# � #��� � " relativeto � ` #�� � � #&%'%&%�# � . Now by aslight
extensionof the resultsin [1], basedon concavity onecan
show [4] the optimum : , � #'%&%&%�#_, � > mustbe of the form
suchthatit is invariantto transformsby permutationmatri-
ces.This impliesthatthebest : , � #'%&%&%�#_, � > mustbeof the
form :4k, � #&%'%&%	# k, � > �¶ :F· /41 ��¸ #'%&%&%�# · /&1 �F¸ > � : ��� ¶ > :F·<¹ 1 ��¸ #'%&%&%d# ·<¹ 1 ��¸ >

(15)

where¹ 1 ��¸ is an � c � by � c � matrixof all ones,· � �1$��¸ , andpºq ¶ q � . We furthernotethat(15) is in exactly thesame
form as(3) with : , � #'%&%&%�#_, � > � ·v:­¹ 1D�F¸ #&%&%'%�# ¹ 1$�F¸ > ,:�j, � #&%&%'%�# j, � > � ·v: / 1$�F¸ #&%'%&%�# / 1$��¸ > and

m �»¶ .

Weak SNR

Thuswe have determinedthebestsignalingexceptfor
anunknown singlescalarparameter¶ whichwenow inves-
tigate. Generallythebestapproachwill changewith SNR.
First considerthecaseof weakSNR(recallwe arenow al-
readyfocusedon very weak, or no, interference). Using
the similarity of (15) to (3) just mentionedand (8) with
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: , � #'%&%'%�#n, � > � �1$�F¸ :­¹ 1$��¸ #&%'%&%	# ¹ 1$��¸ > , :�j, � #&%'%&%	# j, � > ��1$��¸ : / 1$�F¸ #&%'%&%	# / 1$��¸ > , m �¼¶ , � ` � � ¡ p�u �8# " and � ` ¡ p�u �
wefind � ���` rr m � ` ¡ rr m � ` ¡ � ` g� ` � ` ,do` g� .` � `
to give ��8½ ^ N k, � #&%'%&%	# k, � S ���dc � }���:­� > �� ` � � � ` @ � m������ ��¾ g� ` � ` : /41 ��¸ � ¹ 1 �F¸ > g� .` � `F¿ �

(16)

wherethe �dc � ¦ �dc � matrixcanbeexplicitly writtenas

/41 ��¸ � ¹ 1 ��¸ �
ÀÁÁÁÁÁÂ p �t�ÄÃ&Ã&ÃÅ�t� �t� �t��t� p �t� Ã'Ã&ÃÆ�t� �t��t�Ç�t� p �t� Ã&Ã'ÃÈ�t�

...
...

...
...

...
...�t�Ç�t�ÄÃ&Ã&ÃÅ�t� �t� p
É&ÊÊÊÊÊË % (17)

Furthersimplificationof (16)givesrr ¶ ^ N k, � #&%'%&%�# k, � S � � ��dc � }���:­� > ��Ì � � � Ì@ � 1$� 2� ` � � 1$�F¸���� � 1$�F¸���Í�� �n� ��Í����� �Î�Ï :ÑÐ # Ð > ` � � �Î :JÐ # Ð > ` � ��Í � (18)

where
�Î :JÐ # Ð > ` � � denotesthe : �8# " > �FÒ entryof thematrix g� Ì � Ì .

Now noticethatwithoutselection( g� Ì � Ól��� Ì � Ó ) thequan-
tity in (18)becomeszeroundertheassumedmodelfor � Ì � Ó
(iid complex Gaussian).Thusselectionturnsout to be an
importantaspectin theanalysis.In fact,if theselectional-
gorithmturnsoutto forcethetermin thesecondline of (18)
to bepositive (aswe will show next) thenwe seethat (18)
is alwaysnegativewhich impliesthebestsolutionemploys¶»� p sinceany increasein ¶ away from ¶�� p causesa
decreasein ^ .

Considera matrix X andlet Ô � : X >_#&%'%&%	# Ô 1 : X > denote
theeigenvaluesof X . For sufficiently weakSNR � ` wecan
approximate}��d� ILK&M : /��?� ` X >�� � }��d�ÖÕ 1` � � : � �?� ` Ô ` : X >�>P� �) 1` � � }��d� � �[� ` Ô ` : X >P�t× � ` ) 1` � � Ô ` : X > �Ø� ` m����R� � : X > .
Now consider̂ itself for thesetof covariancematricesin
(15) andassumeselectionis employed. Thuswe consider
theresultinĝ asafunctionof ¶ andweseê]:&k, � #&%&%'%	# k, � > ��� c ��}���:­� > �� ` � � � ` @
�~m������ � ¾ g� ` � ` � ¶�/ 1$��¸ � : ��� ¶ > ¹ 1$�F¸ � g� .` � ` ¿ � % (19)

Note that the �dc � ¦ �dc � matrix canbeexplicitly written as� ¶�/ 1D�F¸ � : �l� ¶ > ¹ 1D�F¸ � �ÀÁÁÁÁÁÂ � ��� ¶ Ã'Ã&Ã ��� ¶ ��� ¶ ��� ¶��� ¶ � ��� ¶ Ã&Ã'Ã ��� ¶ ��� ¶��� ¶ ��� ¶ � ��� ¶ Ã&Ã'Ã ��� ¶
...

...
...

...
...

...��� ¶ ��� ¶ Ã'Ã&Ã ��� ¶ ��� ¶ �
É ÊÊÊÊÊË % (20)

Using(20) in (19)gives ^]: k, � #&%&%'%�# k, � > ��� c ��}���:­� > ��Ì � � � Ì @ � 1$� 2� ` � � 1$��¸���� �~Ù �Î :JÐ # Ð > ` � � Ù 7 �: �l� ¶ > 1 � 2� ` � � 1 �F¸���� � 1 �F¸�� Í � �n� � Í ���� �Î�Ï :ÑÐ # Ð > ` � � �Î :JÐ # Ð > ` � ��Í � % (21)

Thus it is clear from (21) that optimumselectionwill at-
temptto makethesecondtermin theexpectedvalueaslarge
positive aspossiblefor any p*q ¶ e �

. Giventhis we see
(18) is non-positive (note it hasthe sametermsin it) and
thus ¶T� p is bestfor weakSNR caseswith small � ` u � .
Thusthebestsignalinguses:4k, � #&%'%&%	# k, � > � �� c � :­¹ 1$��¸ #&%'%&%	# ¹ 1$��¸ >_% (22)

Dueto limitedspacewejustoutlineajustificationshow-
ing thattheoptimumapproachwill useantennaselectionto
make @
� 1 � 2� ` � � 1 �F¸���� � 1 �F¸�� Í � �n� � Í ���� �Î�Ï :ÑÐ # Ð > ` � � �Î :ÑÐ # Ð > ` � ��Í �
positive.Firstconsidertheantennaselectionapproachwhich
maximizestheergodicmutualinformationin (21)when¶?��
. Thustheselectionapproachwill maximizethequantity

in (21) with ¶*� � by selectingantennasfor eachsetof in-
stantaneouschannelmatricesto make the termsinsidethe
expectedvaluein (21) with ¶*� � aslargeaspossible.It is
importantto notethechoice(if ¶
� � ) dependsonly on the
squaredmagnitudeof elementsof thechannelmatrices.

If we usethis selectionapproachwhen ¶  � �
thenthe

termsmultiplying
�~� ¶ in (21)will beaveragedto zerodue

to thesymmetryin theselectioncriterion. Dueto thecross
termsin (21) in the term multiplying : ��� ¶ > we canuse
selectionto do betterby modifying theselectionapproach.
Thebasicideais to selectantennasto getanadditionalnet
positive contribution from thecrosstermsto increase(21).
A moredetailedjustificationis givenin [5].

Strong SNR

Now considerthecaseof strongSNR.To simplify mat-
ters,hereweassume�dc � � � �6� . Thenusing(8) wefind� �	�` rr m � ` ¡ § � ` g� ` � ` k, ` g� .` � `­¨ ��� � ` g� ` � ` ,	o` g� .` � ` #
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sothat ��8½ ^ N k, � #&%'%&%�# k, � S � �¢ £�¤ 78¥ ¦@ � m����R� � ¾ : ¶�/ 1$��¸ � : ��� ¶ > ¹ 1$��¸ > ��� : / 1$��¸ � ¹ 1$�F¸ > ¿ �� �dc � � :Ú�dc � �Û� > : ¶ �Û� >¶ :�:Ú� c � �Ü� > ¶ � � c � > }���:­� > s p (23)

which is positive for pÝq ¶ e � since :Ú� c � �(� > ¶ e � c � and
zeroif ¶Ü� �

. In (23) we used
m����R� � �Ö³µ´ � � m����R� � � ´�³ �

[3]. Thusfor the strongSNR case� ` ¡ßÞ u � whenthe
interferenceis veryweak(and �dc � � � ��� ) thebestsignaling
uses(15)with ¶
� � . Thus:4k, � #'%&%&%d# k, � > � ��dc � : /&1 �F¸ #&%'%&%�# /41 ��¸ > (24)

is thebestsignalingin thiscase.

4. OPTIMUM SIGNALING FOR STRONG
INTERFERENCE

Now considertheotherextremeof dominatinginterference
where � ` � �D#�� � � #'%&%'%&# � , " � � #&%'%&%4# � is large(compared
to �à� #'%&%&%d# �R� ). Provided � ` � ��átá � wecanapproximate(9)
as
� ` �B/ 1$� 2 . After applyingthis to (12)andusing(13) for

large � ` � � so that
�� ���` × � ) ���� �_� ���� ` � ` � � g� ` � � k,�� g��.` � � � �	�

we find the first term inside the tracein (12) dependsin-
verselyon � ` � � while the secondterm inside the trace in
(12) dependsinverselyon � 7` � � so that the first term dom-
inatesfor large � ` � � . Further, we can interchangethe ex-
pectedvalueandthetracein (12)soweareconcernedwith
theexpectedvalueof (13). Now notethat thefirst term in
(13) consistsof theproductof a term Xâ� g� ` � ` , o` g��.` � ` and

anotherterm dependingon g� ` � � for "  � � . Now consider
the expectedvalue of (13) computedfirst as an expected
valueconditionedon g� ` � � andthenthis expectedvalueis
averagedover g� ` � � . Now notethattheconditionalexpected
valueof X becomesthezeromatrix. Thusthecontribution
from the first term in (13) averagesto zero and the sim-
plified result �n�� � � ^ N k, � #&%&%'%�# k, � S canbe shown to be non-
negative usingsimilar manipulationsasfor (14). Now us-
ing the samepermutationargumentas usedfor the weak
interferencecasewe canarguethat theworst performance
is obtainedby : , � #&%'%&%�#_, � > �»¶ �1 ��¸ : / 1$��¸ #'%&%'%�# / 1$��¸ > � : ���¶ > �1 ��¸ :­¹ 1$��¸ #&%'%&%�# ¹ 1$��¸ > .

Next we attemptto find the exact ¶ giving worst per-
formance.Towardsthis goal we first considerthe form of^]: , � #'%&%&%d#n, � > for : , � #&%'%&%	#_, � > ontheline : , � #&%&%'%	#n, � > �¶ �1D�F¸ : / 1$��¸ #'%&%'%�# / 1$��¸ > � : ��� ¶ > �1$��¸ :P¹ 1$��¸ #'%&%'%�# ¹ 1D�F¸ > which

is (from (2)) ^]: , � #&%'%&%�#n, � > ��� ` � � @[ã�CFE-G 7 ¾ ILK&M § /41 � 2v�\� ` g� ` � ` , ` g� .` � ` + ���` ¨ ¿aä� �� ` � � � ` @ ã m����R� � ¾ g� ` � ` , ` g� .` � ` + �	�` ¿aä� �� c �D}���:�� > ��Ì � � � Ì @
� 1D� 2� ` � � 1$�F¸���� � Ù jÎ :ÑÐ # Ð > ` � � Ù 7� : �{� ¶ > 1 � 2� ` � � 1 �F¸���� � 1 �F¸�� Í � �n� � Í ���� jÎ�Ï :ÑÐ # Ð > ` � � jÎ :ÑÐ # Ð > ` � ��Í � (25)

where the first simplification follows from large � ` � � and
the samesimplificationsusedin (19). The secondsimpli-
fication follows from thosein (21) but now jÎ :JÐ # Ð > ` � � de-

notesthe : �8# " > �FÒ entryof thematrix + ��å�Ì g� Ì � Ì . Now note
thatantennaselectionwill attemptto makethesecondterm,
which multiplies thepositive constant

��� ¶ , aslargepos-
itive asit possiblycan. Thuswe seethatbestperformance
on the line : , � #&%'%&%�#_, � > �¼¶ �1$�F¸ : / 1D�F¸ #&%&%'%	# / 1$�F¸ > � : �æ�¶ > �1$��¸ :P¹ 1$��¸ #'%&%&%d# ¹ 1D�F¸ > mustbeobtainedfor ¶
� p andthe
theworstperformancemustoccurat ¶
� � or : , � #&%'%&%�#n, � > ��1$��¸ : / 1$��¸ #'%&%&%�# / 1$��¸ > . Thustheoverallworstsignalingin this
caseuses: , � #&%&%'%	#n, � > � �1D�F¸ : / 1D�F¸ #&%&%'%�# / 1D�F¸ > . Sothebest
signalingfor caseswithout interferenceandselectionis the
worstfor stronginterferenceandselection.
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