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ABSTRACT

Systemcapacityis consideredfor a group of interfering
usersemploying singleuserdetectiorandantennaelection
of multiple transmitandreceve antennagor flat Rayleigh
fadingchannelsvith independenfiadingcoeficientsfor each
path.Thecaseconsidereds thatwherethereis verylimited
channektateinformation(only theselectecintennasatthe
transmitter but channelstateinformationis assumedt the
recever. Thefocusis on extremecaseswith very weakin-
terferenceor very stronginterference.lt is shavn thatthe
optimum signalingcovariancematrix is sometimediffer-
ent from the standardscaledidentity matrix. In fact this
is true evenfor caseswithout interferencdf SNRis suffi-
ciently weak. Furtherthe scaledidentity matrix is actually
that covariancematrix thatyields worst performancef the
interferencas sufficiently strong.

1. INTRODUCTION

Considera systemwherecochannelnterferencds present
from L — 1 otherusers.Let usfocuson the Lth userand

assumeachuseremploys n; transmitantennagandn,. re-

ceive antennasin this casethe vectorof receved comple

basebandamplesftermatchediltering becomes

L-1
v =+prHpxp + Z VoL He jxj +n (1)

=1

whereHp, ; andx; representhe normalizedchannelma-
trix andthe normalizedransmittedsignalof user;j respec-
tively. The signal-to-noiseatio (SNR) of userL is pr, and
theinterference-to-noiseatio (INR) for userL dueto inter
ferencerom userj is iz, ;. For simplicity, we assumeall of
theinterferingsignalsx;,j = 1,... , L — 1 areunknavnto
therecever andwe modeleachof themasbeingGaussian
distributed,the usualform of the optimumsignalin MIMO
problems. Thenif we conditononHy, 1,... ,Hy 1, the

interference-plus-noisieom (1), Y7 /AL Hz ;%; +n,
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is Gaussiardistributedwith the covariancematrix Ry =

Yot no,H ;S;HIE + 1, whereS; denotesthe co-
variancematrix of x; andI,, is the covariancematrix of

n. Underthis conditioning,the interference-plus-noisis

whitenedby multiplying y;, by R£1/2. After performing
this multiplication we canuseresultsfrom [1] to express
the egodic mutualinformationbetweerthe input andout-
putfor theuserof interestasin I(x.; (yr,H)) =

E {l0g2 [det (Inr -+ pLHL7LSLHIFII,LREI):| } . (2)

In (2) theidentitydet (I + AB) = det (I + BA) wasused.
If we wish to computetotal systemmutualinformationwe
shouldfind Sy, .. .S, to maximize¥(Sy,...,S.) =
SE L I(xi; (yi, H)).

Now assumehateachuserin the systemselectsn; <
ny transmitantennasindn,, < n, receve antennasus-
ing an antennaselectionalgorithm. Thenthe obsenations
from the selectecantennagollow the modelin (1) with n;
andn, replacedoy n, andng, respectrely andH; ; re-
placedby H; ;. The matrix H, ; is obtainedby eliminat-
ing thosecolumnsandrows of H; ; correspondingo uns-
electedtransmitandreceve antennas.Thuswe canwrite
H;; = f(H; ;) wherethefunction f will chooseH; ; to
maximizetheinstantaneou@ndthusalsothe ergodic)mu-
tualinformation.

2. OPTIMUM SIGNALING FOR SYSTEM

CAPACITY
We definea generalcornvex combinationof two possible
solutions,(Sy,...,Sr) and(Sy,...,SL), as
(Sl, .,SL) = (l—t)(Sl,...,SL)+t(S1,...,SL)
= (S1,...,80) +¢(8},...,87)  (3)

for 0 < ¢t < 1 ascalar Then¥(Sy,...,Sy) is a convex
functionof (Sy,...,S) if [2]

2 _ - - -

@111 (Sy,...,SL) >0  V¥Sy,...,S;. (4)

1Thecasevhereeachuseremplysadifferentn,s; andn, is alsoeasy
to handle.
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Similarly ¥(S,, ... ,S) isaconcaefunctionof (Sy,... ,Sr)
if
d? ~ _ _ ~
ﬁqx(sh... ,S.) <0 VSy,...,Sz. (5

Thereareseveralusefulknown relationshipgor the deriva-
tive of afunctionof a matrix & with respecto a scalarpa-
rametetrt. In particularwe note

%ln [det(®)] = trace [@1 (%‘I’)] (6)

and

d d
— @ l=— (-] " 7
dt (dt > (7)

Assumingselectionis employedwe canuse(2), (6) and(7)
to find (interchanging derivative andan expectedvalue)

dt

d 1 & d
—0 (Sl, . ,SL) =L @ 2 {tTace [QZIEQi]}

(8)

whereQ; =

d IR (A A A
EQz = szz,zS;HHQ - szz zSzHHQ,' ! (an) Qz !

(10)
and
d - L .
ZQi= D miHiSH (12)
J=1,j#1
A secondderivative yields 4 dtZ ¥ (Sy,...,SL) =
L
d2
{tmce[ (dt2 Q,) —
=1
=Q ) Q7 [ —=Q; 12
o' (o)t (o))} @
with
L o= it sira- (La,) aot +
dt2 1 Ko ZX Sagk St % 2ae 41 dt T i
2, SN (L0) @ (La) Q. @9
(Y 2t S R A1 dt T [ dt ? 1

3. OPTIMUM SIGNALING FOR WEAK
INTERFERENCE

We canuse(12) to investigateconvexity andconcaity for
ary particularsetof SNRsp;,i = 1,... , LandINRs; j,4,j =

., L,i # j. Wefocuson extremecasesweakor strong
interferenceto gaininsight. For the caseof very weakin-
terferencewe ignoretermswhich aremultiplesof n; ; (es-
sentiallywe setn; ; — 0 fori = 1,. L j=1,...,L
andj # i) andwe find < Q, =0 sothat = Qi = 0 which

leadsto 45 @ (S, ... ,SL) =

az T In (2)

L
_ o~ -1 . ~
ZE{tmce [( ner + PSR o SIAT

BN T -

(Insr + PszSsz{,) szzzS;HzI{z] } (14)
SinceS; is acovariancematrix (I,,,, + piﬁi,,-s,.ﬁgi)—l =
(UHU4UHAU) ! = (UI+A)1UH) = U(Q)2UH =
UQ)UHU(Q)UH whereU is unitaryand A and) are
diagonalmatriceswith non-neyative entries. Define A =
piH;;S;A andnotethat A¥ = A dueto S} beinga
differenceof two covariancematrices(easyto seeusing
UAU# expansionfor eachcovariancematrix). Thusthe
trace in (14)iswrittenastrace[U(Q)2UF AU(Q)2UHA] =
trace[UQUT AU(Q)2UH AUQUH] = trace[BB] since
trace[CD] = trace[DC] [3]. We seetrace[BBH] must
be non-n@ative since the matrix inside the traceis non-
negative definitesothat(14) implies®¥ (S, ... ,Sy) iscon-
cave. This will be true for sufiiciently small»; ;,i,j =
1,...,L,i # jrelatvetop;,i = 1,... , L. Now byaslight
extensionof the resultsin [1], basedon concaity onecan
shov [4] the optimum (S4, ... ,Sz) mustbe of the form
suchthatit is invariantto transformsy permutatiommatri-
ces.Thisimpliesthatthebest(S,, ... ,S1) mustbeof the
form (Sy,...,Sz) =

’ aInst) +

(1 - ’Y) (aonsu cee ’aonst)

(15)

y(aly,,,- - -

whereQ,,,, isanng by ng matrixof allonesp = ™ ,and
0 <~ < 1. Wefurthernotethat(15)isin exactlythesame

formas(3) with (Sy1,...,S.) = a(On,,,---,04.,),
(S1,...,81) = a(Ins,,--- In,,) andt = v
Weak SNR

Thuswe have determinedhe bestsignalingexceptfor
anunknown singlescalarmparametety which we now inves-
tigate. Generallythe bestapproachwill changewith SNR.
First considerthe caseof weak SNR (recallwe arenow al-
readyfocusedon very weak, or no, interference). Using
the similarity of (15) to (3) just mentionedand (8) with
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(Sla"'asL) = nlst(onsw"'aonst)’ (Sla"'asL) =
L1,.,,...,

In”), t = Y Mij — OVl,] andp,- — 0Vi
we find

. d d 1, ;S F
Q: IEQi - 2 Qi piH; STHT,;

togive%'ll (S1,...,81) =

ntm sz {tmce[ ,<Inn—0nst)ﬂﬁﬂ]}
8

(16)

wheretheng; x ng matrixcanbeexplicitly writtenas

0 -1 - -1 -1 -1
-1 0 -1 - -1 -1

I,,-O,,=| "1 -1 0 -1 - =1/ (7
-1 -1 --- -1 -1 0

E\I’ (Sl,... 7SL) nstln pr

Nsr MNst Nst
E{Z > > A p)z,jh(p:p)i,j’} (18)

i=1 j=1j'=1,5'#j
whereh(p, p); ; denoteshe (i, j)** entryof thematrix H, ,,.
Now noticethatwithoutselection(H,,, = H, ,) thequan-
tity in (18) becomegeroundertheassumednodelfor H,, ,
(iid complex Gaussian).Thusselectionturnsout to be an
importantaspecin the analysis.In fact,if the selectional-
gorithmturnsoutto forcethetermin thesecondine of (18)
to be positive (aswe will shav next) thenwe seethat (18)
is alwaysnegative which impliesthe bestsolutionemploys
~ = 0 sinceary increasdn v awvay from v = 0 causes
decreasén .

Considemmatrix A andlet A; (A), ... ,A,(A) denote
theeigervaluesof A. For sufficiently weakSNR p; we can
approximatén[det(I+ p;A)] = In[[T", (14 piXi(A))] =
Yica In[1 + pAi(A)] = p; 30, Ai(A) = pytrace(A).
Now consider¥ itself for the setof covariancematricesin
(15) andassumeselectionis employed. Thuswe consider

theresulting® asafunctionof v andwesee¥(S,,... ,Sz) =

-~ ln sz {trace[ il In,, +(1— 7)On5t]Hﬁ~] } (19) Q;l%Qi R (pzﬁmszﬁﬁ),

Notethattheng x ng matrix canbe explicitly written as

[ryInst + (1 _V)Onst] =
1 1—7v 1—y 1—v 1—v
1—v 1 1—7v 1—vy 1—v
11—y 1-—v 1 1—v 1—v . (20)

l—v 1-% l—v 1-—4 1

Using (20)in (19)gives¥(S,... ,S1) =
sr Mst B e
ntln Z/’P {;;Wp,p)z,ﬂ +

Nsr Nst Nst

YD Y (o)

i=1 j=1 j'=1,j'#j
Thusit is clearfrom (21) that optimum selectionwill at-
temptto makethesecondermin theexpectedsalueaslarge
positive aspossiblefor ary 0 < v < 1. Giventhis we see
(18) is non-positve (note it hasthe sametermsin it) and
thusy = 0 is bestfor weak SNR caseswith small p;V i.
Thusthebestsignalinguses

= = 1
(S1,...,SL) = n—gt(Ons“...,

Dueto limited spacevejustoutlineajustificationshav-
ing thattheoptimumapproactwill useantennaselectiorto
Nsr Nst Nst N
HYY 3 oo

make
ih(D,p)i,j }
i=1 j=1 j'=1,j'#j

positive. Firstconsidetheantennaelectiorapproachwhich
maximizegheergodicmutualinformationin (21)wheny =

1. Thusthe selectionapproachwill maximizethe quantity
in (21) with v = 1 by selectingantennagor eachsetof in-

stantaneoushannelmatricesto make the termsinsidethe
expectedvaluein (21) with v = 1 aslargeaspossible.lt is

importantto notethe choice(if v = 1) depend®nly onthe
squarednagnitudeof element®f thechannematrices.

If we usethis selectionapproachwhen~y # 1 thenthe
termsmultiplying 1 — « in (21) will beaveragedo zerodue
to the symmetryin the selectioncriterion. Dueto the cross
termsin (21) in the term multiplying (1 — +) we canuse
selectionto do betterby modifying the selectionapproach.
The basicideais to selectantennaso getanadditionalnet
positive contrikbution from the crosstermsto increasg21).
A moredetailedjustificationis givenin [5].

Strong SNR

b, )iy } (21)

On..). (22

Now considerthe caseof strongSNR.To simplify mat-
ters,herewe assumer,; = n,;. Thenusing(8) we find

H; STHZ

7,10
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sothat 2 (Sy,...,St) = ﬁx
E{tmce [(’yInst +(1- y)on“)*l (In,, — Onst)] }

_ ngL(nsg — 1)(y—1)
7((nst - 1)’7 — Tbst) In (2)

>0 (23)

whichis positivefor 0 < v < 1 since(ng — 1)y < ng and
zeroif v = 1. In (23) we usedtrace[CD] = trace[DC]
[3]. Thusfor thestrongSNR casep; — oo V i whenthe
interferencas veryweak(andng; = n,;) thebestsignaling
useg(15)with v = 1. Thus

_ - 1
. G

st

In,.) (24)

is thebestsignalingin this case.

4. OPTIMUM SIGNALING FOR STRONG
INTERFERENCE

Now consideithe otherextremeof dominatinginterference
wheren; ;,i = 1,...,L,j = 1,...,L is large (compared
top1,...,pr). Provideds; ; >> 1 wecanapproximat&9)
asQ; = IL,,.. After applyingthisto (12) andusing(13) for
-1

largen; ; sothatQ; ! ~ (EJL 1,ji mi,;H; ;S; H

we find the first term inside the tracein (12) dependsin—
verselyon 7; ; while the secondterm inside the tracein
(12) dependsnverselyon 77;-2,]- so that the first term dom-
inatesfor large n; ;. Further we caninterchangethe ex-
pectedvalueandthetracein (12) sowe areconcernedvith
the expectedvalueof (13). Now notethatthefirst termin
(13) consistof the productof aterm A = HMSQH{{I. and
anotherterm dependingon I:Ii,j for j # i. Now consider
the expectedvalue of (13) computedfirst as an expected
value conditionedon H; ; andthenthis expectedvalueis
averagedver H; ;. Now notethatthe conditionalexpected
valueof A becomeshe zeromatrix. Thusthe contrikbution
from the first term in (13) averagesto zero and the sim-
plified result ;’tg ¥ (S4,...,Sz) canbeshavn to be non-
negative usingsimilar manipulationsasfor (14). Now us-
ing the samepermutationargumentas usedfor the weak
interferencecasewe canarguethatthe worst performance
is obtainedoy (S1,...,Sr) =« ., )+ (11—
N Onais- -, Onyy,).

Next we attemptto find the exact~y giving worst per
formance. Towardsthis goal we first considerthe form of
¥(Sy,...,Sy)for(Sy,...,Sr) ontheline(Sy,...,S.) =
’yant(Insu s ’Inst) + (1 _v)t(onst’ et 7Onst) which

L (L,

is (from (2)) ¥(Sy,...,Sz) =

> B {log ot (1, + i SR )}

i=1
L -~ -~
= szE {trace I:Hz’zssz’Isz_l] }

Nsr MNst
E > > Ih(p,p
= tln Pp { |h(p,p)i,;I”
i=1 j=1
Nsr MNst Nst

NI D D Jﬁ@;)/} (25)

i=1 j=1j'=1,j'#j

where the first simplification follows from large n; ; and
the samesimplificationsusedin (19). The secondsimpli-
fication follows from thosein (21) but now h(p, p);; de-

notesthe (4, j)* entry of the matrix R;%ﬂp,p. Now note
thatantennaelectiorwill attemptto maketheseconderm,
which multipliesthe positive constantl — +, aslarge pos-
itive asit possiblycan. Thuswe seethatbestperformance
ontheline (Si,...,S.) = vi-(Tn,es -+, Iny) + (1 =
7)72=(0n,,;- - - , On,,) mustbeobtainedor v = 0 andthe

theworstperformancenustoccuraty = 1 or(Sy,...,Sz) =
(I, .-+ In,,). Thustheoverallworstsignalingin this
caseuses(Sy,...,St) = n—i(Inst,... ,In.,). Sothebest

signalingfor casesmthoutmterferenceandselectioris the
worstfor stronginterferenceandselection.
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