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ABSTRACT

We consider the problem of maximizing the throughput (sum rate)
of the Gaussian MIMO broadcast channel under a sum power con-
straint. Assuming that decision feedback precoding is used at the
transmitter, this is a concave optimization problem. In [1], a com-
putationally efficient algorithm was proposed, which successively
performs iterative waterfilling and power control. This strategy is
based on uplink/downlink duality. In this paper we expand these
results, by providing necessary and sufficient conditions for when
this dedicated strategy achieves the optimal sum capacity. For the
low SNR regime, it is shown that the capacity achieving strategy is
single user transmission over the channel with the largest maximal
eigenvalue. Furthermore, we illustrate the properties of the sum
capacity without precoding by numerical simulations.

1. INTRODUCTION

Consider a Gaussian broadcast channel (BC) withK non-
cooperating receivers, each equipped withnr antennas. The trans-
mitter hasnt antennas. Perfect channel side information is avail-
able at the transmitting base station. The total transmission power
(sum power) is upper bounded. Such a channel belongs to the class
of non-degraded broadcast channels for which the general capacity
region is not yet known.

A partial solution was found by Caire and Shamai [2] for
the special case of two users, two transmit antennas and one re-
ceive antenna per user. The result shows that throughput-wise
optimal transmission is possible by using a combination of linear
pre-filtering and coding for non-causally known interference at the
transmitter (‘Dirty Paper’ Precoding) [3,4]. In [5], the throughput-
wise optimality of this approach was shown for arbitrary numbers
of antennas. Dirty Paper Precoding decomposes the channel into a
series of sub-channels, each interfering with only subsequent sub-
channels. No further power enhancement is caused as long as ideal
precoding with perfect channel side information is assumed.

A duality between the downlink broadcast channel and the
uplink multiple access channel (MAC) was recently observed in
[6–8]. This duality says that the same rates can be achieved in
uplink and downlink under the same power constraint. Hence,
the problem of finding the optimal multiuser MIMO transmission
strategy in the downlink is equivalent to finding the optimal trans-
mit strategy for the dual uplink problem, which is more tractable.
In particular, the MAC sum rate function is concave, thus the sum

∗This work has been supported (in part) by theBundesministerium für
Bildung und Forschung (BMBF)under grant 01BU150.

capacity achieving transmit covariances can be computed by the
determinant maximization technique proposed in [9].

However, this approach does not make use of the special ana-
lytical structure of the sum rate optimization problem. Given the
optimal power allocation, the covariances can be found by the iter-
ative waterfilling technique proposed in [10]. This was exploited
in [1], where a dedicated algorithm was proposed that maximizes
the sum rate by successively performing power allocation and iter-
ative waterfilling under a sum power constraint. Having found the
optimal uplink covariances matrices, the capacity achieving down-
link covariances are found with the transformation law proposed
in [7].

In this paper we extend these results by providing a neces-
sary and sufficient condition for the optimality of this dedicated
strategy. We also characterize the capacity achieving transmission
strategy for the low-SNR regime. It turns out that only the user
with the largest maximal eigenvalue of the channel covariance ma-
trix is supported. Finally, we discuss the practically relevant case
that no Dirty-Paper precoding is performed. In this case the sum
rate function does not need to be concave. We illustrate this be-
havior by numerical simulations.

2. SUM CAPACITY OF THE DUAL MAC

ConsiderK interfering MIMO links. Each link hasnT transmit
antennas andnR receive antennas. Theith user transmits with a
spatial transmit covariance matrixQi ∈ C

nT×nT . We assume
uncorrelated noise with covarianceσ2

nInR . The channel matrix
for useri is denoted byHi ∈ C

nR×nT . Then, the sum rate of the
Gaussian MAC with successive decoding of any order is given by

f(Q1, . . . ,QK) = log2 det
{
Inr + 1

σ2
n

K∑
k=1

HkQkH
∗
k

}
. (1)

The transmission powers of the dual MAC are constrained in the
same way as the BC. That is, the sum of all powers must be less
than a thresholdPmax. The maximal sum capacity is given by

Csum(Pmax) = max
Q1...QK

f(Q1, . . . ,QK) (2)

s.t. Qk � 0 and
K∑
k=1

Tr{Qk} ≤ Pmax ,

where� 0 means positive semidefinite.
By solving problem (2) and applying the transformation law

proposed in [7], the capacity achieving BC input covariances can
be found. Hence, in the remainder of this paper we can focus on
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solving problem (2) which is easier to handle than direct BC sum
rate optimization.

The Lagrangian of problem (2) is given by

L(Q,Ψ, µ) = −f(Q1, . . . ,QK)− µ
(
Pmax −

K∑
k=1

Tr{Qk}
)

−
K∑
k=1

Tr{QkΨk} ,

where the Lagrangian multipliersΨk are positive semidefinite and
µ is non-negative real. The sum rate objective (1) is concave with
respect to the transmit covariance matricesQi, thus the Karush-
Kuhn-Tucker (KKT) conditions [11, 12] are necessary and suf-
ficient for optimality of certain solutionsQopt

1 . . .Qopt
K . With

∂L/∂Qi = 0, the KKT conditions are

µI −Ψi = H∗i
[
σ2
nI +

K∑
k=1

HkQopt
k H∗k

]−1
Hi,

1 ≤ i ≤ K, (3)

Tr{Qopt
i Ψi} = 0, 1 ≤ i ≤ K (4)

Ψi � 0, 1 ≤ i ≤ K (5)

Qopt
i � 0, 1 ≤ i ≤ K (6)

µ ≥ 0, (7)

Pmax −
K∑
k=1

Tr(Qopt
k ) ≥ 0 . (8)

3. SUCCESSIVE POWER CONTROL AND ITERATIVE
WATERFILLING

Now, we provide necessary and sufficient conditions for when the
dedicated algorithm proposed in [1] solves the sum rate maximiza-
tion problem (2). The algorithm consists of two steps, which are
repeated until convergence:

1. For fixed transmission powers, find the optimal covariances
by iterative waterfilling [10].

2. For fixed covariances, find the optimal power allocation by
the interior point technique proposed in [9].

3.1. Iterative Waterfilling

DefineQi
def
= PiQi, wherePi is the transmission power of the

ith user. Thus, the covariance matrixQi is normalized such that
Tr{Qi} = 1. We define the functionf(Q, P ) using (1) as

f(Q, P )
def
= f(P ′1Q1, · · · , P

′
KQK) .

For fixed transmission powersP ′1 . . . P
′
K , optimization is per-

formed with respect toQ:

{Qopt
1 , . . . ,Qopt

K } = arg max
Q

f(Q, P ′) (9)

s.t. Tr{Qk} = 1, and Qk � 0, ∀k.

This is done by the iterative waterfilling technique proposed in
[10]. The Lagrangian is given by

L1(Q, Ψ̃, µ̃) = −f(Q, P ′)

−
K∑
k=1

µ̃k
(
1− Tr{Qk}

)
−

K∑
k=1

Tr{QkΨk} .

With ∂L1/∂Qi = 0 the necessary and sufficient KKT conditions
are

µ̃iI − Ψ̃i = P ′iH
∗
i

[
σ2
nI +

K∑
k=1

P ′kHkQ
opt
k H∗k

]−1
Hi,

1 ≤ i ≤ K (10)

Tr{Qopt
i Ψ̃i} = 0, 1 ≤ i ≤ K (11)

Ψ̃i � 0, 1 ≤ i ≤ K (12)

Qopt
i � 0, 1 ≤ i ≤ K (13)

µ̃i ≥ 0, 1 ≤ i ≤ K (14)

1− Tr{Qopt
i } ≥ 0, 1 ≤ i ≤ K . (15)

3.2. Power Allocation

Now, Q′ is kept fixed and optimization is performed with respect
toP1 . . . PK :

{P opt1 , . . . , P optK } = arg max
P1...PK

f(Q′, P ) (16)

s.t.
K∑
k=1

Pk ≤ Pmax and Pk ≥ 0.

The Lagrangian is given by

L2(P, λ̂, µ̂) = −f(Q′, P )− µ̂
(
Pmax −

K∑
k=1

Pk
)
−

K∑
k=1

Pkλ̂k .

With ∂L2/∂Pi = 0, the KKT conditions are:

µ̂− λ̂i = Tr
{[
σ2
nI +

K∑
k=1

P optk HkQ
′
kH
∗
k

]−1
HiQkH

∗
i

}
,

1 ≤ i ≤ K . (17)
K∑
k=1

P optk λ̂k = 0 (18)

λ̂i ≥ 0, 1 ≤ i ≤ K (19)

µ̂ ≥ 0 (20)

P opti ≥ 0, 1 ≤ i ≤ K (21)

0 ≤ Pmax −
K∑
k=1

P optk . (22)

3.3. Optimality of the Iterative Approach

The following theorem provides a necessary and sufficient condi-
tion for the optimality of the proposed iterative strategy with re-
spect to the original problem (2). We define the set of active users
as

I = {k ∈ [1,K] : P ′k > 0}.

Theorem 1. Suppose that the set of covariance matrices{Q′i}
solves (9) for given{P ′i} and {P ′i} solves (16) for given{Q′i}.
The covariance matriceŝQk = P ′kQ

′
k solve problem (2) if and
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only if there exists āµ ≥ 0 such that

µ̃k
P ′k

= µ̄, k ∈ I, (23)

µ̄I −H∗i
[
σ2
nI +

K∑
k=1

P ′kHkQ
′
kH
∗
k

]−1
Hi � 0, (24)

i ∈ [1,K]\I .

Proof. Suppose that (23) and (24) are fulfilled. With (10) this im-
plies

H∗i
[
σ2
nI +

K∑
k=1

HkQ̂kH
∗
k

]−1
Hi = µ̄I − Ψ̄i, i ∈ I ,

(25)

whereΨ̄i = Ψ̃i/P
′
i is positive semidefinite. With (11) we have

Tr{Q′iΨ̄i} = 0. Fori ∈ [1,K]\I we can chooseQ′i = 0. There-
foreTr{Q′iΨ̄i} = 0 for any positive semidefinitēΨi. SinceΨ̄i is
positive semidefinite, (25) will also be fulfilled fori ∈ [1,K]\I.
This is an immediate consequence of (24). Hence, the KKT con-
ditions (3) and (4) are fulfilled for allk, which implies optimality
with respect to problem (2).

To prove the reverse direction, assume thatQ̂i is optimal.
Then, there exists a decomposition̂Qi = P ′iQ

′
i. The quantities

P ′i andQ′i solve the partial problems (16) and (9), respectively.
Otherwise, it would be possible to achieve a sum rate larger than
the optimum of the objectivef(Q1, . . . ,QK), which is a contra-
diction. From the KKT conditions (3) and (4) immediately follows
(23) and (24). �

4. CHARACTERIZATION OF THE LOW-SNR OPTIMUM

Now, we characterize the capacity achieving transmit strategy in
the low SNR regime.

It can be shown that for low SNR, only one user is active, i.e,
one user achieves the optimal sum capacity by transmitting at full
powerPmax. The SNR range in which single-user transmission
achieves capacity depends on the channel parameters. Now, an
interesting question is: which one is the active user and how can
this choice be related to the channel state?

The active user (denoted by indexi) transmits at a capacity

Csum(Pmax) = log2 det{I + Pmax
σ2

n
HiQi(Pmax)H∗i } (26)

= Tr log2{I + Pmax
σ2

n
HiQi(Pmax)H∗i } , (27)

as discussed in [13]. The covariance matrixQi(Pmax) denotes
the single user waterfilling solution forPmax. Decomposing the
log function in a Taylor series, we have

Csum(Pmax) = αPmax
σ2

n
Tr{HiQi(Pmax)H∗i } −R (28)

with R = α
∞∑
n=2

(−1)n

n
(Pmax
σ2

n
)n Tr{HiQi(Pmax)H∗i }n ,

where the factorα = 1/ loge(2) accounts for the fact that this
series expansion is defined for the natural logarithm.

The first derivative of the capacity functionCsum(Pmax) for
Pmax → 0 is given by

lim
Pmax→0

Csum(Pmax)− Csum(0)

Pmax
= α

σ2
n

Tr{HiQi(0)H∗i } .

(29)

This is the slope of the capacity function. Clearly, the active
user is the one that maximizes (29). The optimal transmit co-
variance of the active user is obtained by the waterfilling solution
Qi(0) = V iΣiV

∗
i . The matrixΣi = diag

{
σ

(1)
i , . . . , σ

(nt)
i

}
fulfills Tr{Σi} = 1. The unitary matrixV i is found from singu-
lar value decompositionHi = U iΛ

1/2
i V ∗i . Hence,

Tr{HiQi(0)H∗i } = Tr{ΛiΣi} =

nT∑
l=1

σ
(l)
i λ

(l)
i , (30)

whereλ(1)
i ≥ · · · ≥ λ

(nT )
i are the eigenvalues of the channel

covariance matrix.
In the low SNR regime withPmax → 0, only the maximal

eigenvalue is supported by waterfilling. Now, consider two users
i andj. For useri assume a maximal eigenvalue with algebraic
multiplicity r ≥ 1, i.e.,λ(1)

i = · · · = λ
(r)
i > · · · ≥ λ

(nT )
i , the

waterfilling solution is

σ
(l)
i =

{
1/r, 1 ≤ l ≤ r
0, otherwise

.

And for userj assume a maximal eigenvalue with algebraic mul-
tiplicity f ≥ 1, i.e. λ(1)

j = · · · = λ
(f)
j > · · · ≥ λ

(nT )
j with

waterfilling solutionσ(l)
j . The term in (30) for useri is greater or

equal to the term for userj if and only if λ(1)
i ≥ λ

(1)
j . Hence,

expressions (30) and (29) only depend on the maximal eigenvalue
of the channel covariance matrix.

Theorem 2. For small SNR values, only the user with the largest
maximum eigenvalue is supported.

Remark:The potential received power transmitted over the chan-
nel corresponds with the Frobenius norm, thus one might expect
that this would be the relevant channel parameter which deter-
mines the choice of the active user. However, Theorem 2 shows
that the choice of the active user depends only on the maximum
eigenvalue of the channel matrices, which is associated with the`2
norm.

5. SUM CAPACITY WITHOUT PRECODING

So far it was shown that the concavity of the sum rate function (1)
allows for an efficient algorithmic solution. However, concavity
is only guaranteed as long as decision feedback precoding is used.
Otherwise, the sum rate function becomes

f̂(Q, P ) = K log2 det

{
σ2
nI +

K∑
k=1

PkHkQkH
∗
k

}

−
K∑
i=1

log2 det

{
σ2
nI +

K∑
k=1
k 6=i

PkHkQkH
∗
k

}
.

Observe that this is the sum of a concave and a convex function.
The result does not need not be convex neither concave, as illus-
trated in Fig. 1.b).
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Fig. 1. Sum rate of the dual MAC vs. transmission powersP1 andP2. The optimal sum capacity is given as the maximum sum rate under
a sum power constraintP1 + P2 ≤ Pmax. a) With ‘Dirty Paper’ precoding [3, 4], the capacity function is always concave. b) Without
precoding, however, concavity is not guaranteed.

6. CONCLUSIONS

In this paper we study the sum capacity of the Gaussian MIMO
broadcast channel. We make use of the duality between broadcast
and multiple access channel, which was recently described in [7].
The dual problem has a concave sum rate function and is there-
fore much easier to handle than the original problem. This was
already exploited in [1], where an algorithm was proposed that ap-
proaches the optimum sum capacity by successively performing
iterative waterfilling and power control.

In this paper we have extended these results by providing nec-
essary and sufficient conditions for optimal convergence. Numer-
ical simulations indicate that these conditions are always fulfilled,
except for the case when one user is switched off prematurely dur-
ing the iteration process. However, this can easily be avoided, e.g.
by adding an additional barrier term.

The main advantage of this dedicated algorithm is its low com-
putational complexity, as compared to direct optimization via de-
terminant maximization [9]. Complexity gains are made possible
by exploiting the specific analytical structure of the given prob-
lem, namely the characterization of the input covariances via the
iterative waterfilling solution.

While this algorithm achieves the sum capacity for any SNR,
the problem is reduced in the low SNR regime. It has been shown
that in this case the optimal sum capacity is achieved by trans-
mitting all the power in the direction of the user with the largest
maximal eigenvalue (`2 norm of the channel matrix).

Finally, we study the sum capacity without precoding. We
show that the sum capacity is neither a concave nor convex func-
tion of the transmit covariance matrices. This property is illus-
trated by numerical simulations. The sum capacity optimization
without precoding is an interesting topic for further research.
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