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ABSTRACT capacity achieving transmit covariances can be computed by the
determinant maximization technique proposed in [9].

We consider the problem of maximizing the throughput (sumrate)  However, this approach does not make use of the special ana-
of the Gaussian MIMO broadcast channel under a sum power con-ytical structure of the sum rate optimization problem. Given the
straint. Assuming that decision feedback precoding is used at thegptimal power allocation, the covariances can be found by the iter-
transmitter, this is a concave optimization problem. In [1], a com- ative waterfilling technique proposed in [10]. This was exploited
putationally efficient algorithm was proposed, which successively in [1], where a dedicated algorithm was proposed that maximizes
performs iterative waterfilling and power control. This strategy is the sum rate by successively performing power allocation and iter-
based on uplink/downlink duality. In this paper we expand these ative waterfilling under a sum power constraint. Having found the
results, by providing necessary and sufficient conditions for when optimal uplink covariances matrices, the capacity achieving down-
this dedicated strategy achieves the optimal sum capacity. For thgink covariances are found with the transformation law proposed
low SNR regime, it is shown that the capacity achieving strategy is i [7].
single user transmission over the channel with the largest maximal |, this paper we extend these results by providing a neces-
eigenvalue. Furthermore, we illustrate the properties of the sumsary and sufficient condition for the optimality of this dedicated
capacity without precoding by numerical simulations. strategy. We also characterize the capacity achieving transmission
strategy for the low-SNR regime. It turns out that only the user
with the largest maximal eigenvalue of the channel covariance ma-
trix is supported. Finally, we discuss the practically relevant case
that no Dirty-Paper precoding is performed. In this case the sum
rate function does not need to be concave. We illustrate this be-
havior by numerical simulations.

1. INTRODUCTION

Consider a Gaussian broadcast channel (BC) withnon-
cooperating receivers, each equipped wittantennas. The trans-
mitter hasn; antennas. Perfect channel side information is avail-
able at the transmitting base station. The total transmission power

(sum power) is upper bounded. Such a channel belongs to the class 2. SUM CAPACITY OF THE DUAL MAC
of non-degraded broadcast channels for which the general capacity ] ) ] ) . ‘
region is not yet known. ConsiderK interfering MIMO links. Each link hasi transmit

A partial solution was found by Caire and Shamai [2] for antennas andr receive antennas. Thih user transmits with a

the special case of two users, two transmit antennas and one reSPatial transmit covariance matr@; € C"7*"7. We assume

ceive antenna per user. The result shows that throughput-wise!ncorrelated noise with covarianeg I,,,. The channel matrix

optimal transmission is possible by using a combination of linear for useri is denoted by; € C"#*"7. Then, the sum rate of the

pre-filtering and coding for non-causally known interference at the Gaussian MAC with successive decoding of any order is given by

transmitter (‘Dirty Paper’ Precoding) [3,4]. In [5], the throughput- K

wise optlmallty_of this approach was shown for arbitrary numb_ers F(Qu,...,0x) = logs det{Inr + 4 Z HkaHZ} N

of antennas. Dirty Paper Precoding decomposes the channel into a T =

series of sub-channels, each interfering with only subsequent sub-

channels. No further power enhancement is caused as long as idealhe transmission powers of the dual MAC are constrained in the

precoding with perfect channel side information is assumed. same way as the BC. That is, the sum of all powers must be less

A duality between the downlink broadcast channel and the than a threshold,,... The maximal sum capacity is given by

uplink multiple access channel (MAC) was recently observed in

[6-8]. This duality says that the same rates can be achieved in Csun(Prmaz) = P ear f(Q1,--+,Cx) @)

uplink and downlink under the same power constraint. Hence, 1%

the problem of finding the optimal multiuser MIMO transmission st Q. =0 and Z Tr{Q4} < Prnaa ,

strategy in the downlink is equivalent to finding the optimal trans-

mit strategy for the dual uplink problem, which is more tractable.

In particular, the MAC sum rate function is concave, thus the sum where= 0 means positive semidefinite.

By solving problem (2) and applying the transformation law
*This work has been supported (in part) by Biendesministeriuniif proposed in [7], the capacity achieving BC input covariances can
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solving problem (2) which is easier to handle than direct BC sum With 0£:/0Q; = 0 the necessary and sufficient KKT conditions
rate optimization. are

The Lagrangian of problem (2) is given by
K

K ~ T / * 2 / opt *71—1
il —¥;, =P H;|o,I+ P.HQ""Hy, H;,
c(g,\lau):—f(Ql,...,QK)—u(Pmaz—ngk}) [ k; ¢ Hi
X k=1 1<i<K (10)
=) Tr{QrWi}, TH{QP ¥} =0, 1<i<K (11)
k=1 ~
. - o e ¥, -0, 1<i<K 12
where the Lagrangian multiplie®,, are positive semidefinite and oot == (12)
1 is non-negative real. The sum rate objective (1) is concave with Q" =0, 1<i<K (13)
respect to the transmit covariance matri@s, thus the Karush- f:i >0, 1<i<K (14)
Kuhn-Tucker (KKT) conditions [11, 12] are necessary and suf- opt .
ficient for optimality of certain solution®”* ... Q%*. With 1-Tr{Q"} 20, 1<i<K. (15)

0L/90Q,; = 0, the KKT conditions are
K 3.2. Power Allocation
pl - W = Hi[onI +Y HvQ"'H;| 'Hi,

— Now, Q' is kept fixed and optimization is performed with respect

. toP; ... Pk:
1<i<K, (3
T{Q"'W,} =0, 1<i<K @ AP P} = arg max f(Q,P) (16)
¥, =0, 1<i<K (5) K
Q;?Pt - 0’ 1<4i< K (6) S.t. Z Py < Phiax and P, > 0.
pw>0, (7) =
K The Lagrangian is given by
Pm,a..?: - Z Tr(gzpt) Z 0 . (8)
k=1 K K
Lo(P A1) = —f(Q,P) = i(Praz — Y Px) = Y Peli .
3. SUCCESSIVE POWER CONTROL AND ITERATIVE k=1 k=1

WATERFILLING ) N
With 9L, /0P; = 0, the KKT conditions are:
Now, we provide necessary and sufficient conditions for when the
dedicated algorithm proposed in [1] solves the sum rate maximiza- . ) il opt T .
tion problem (2). The algorithm consists of two steps, which are fi = Ai = Tr{ [on + Z PP HQH| HiQ H; }v
repeated until convergence: k=1

1. For fixed transmission powers, find the optimal covariances I<i< K. an
by iterative waterfilling [10]. K <
2. For fixed covariances, find the optimal power allocation by Z PP A =0 (18)
the interior point technique proposed in [9]. k=1 .
Ai>20, 1<:<K 19)
3.1. lterative Waterfilling i>0 (20)
DefineQ, ¥ P,Q,, whereP; is the transmission power of the P?' >0, 1<i<K (21)
ith user. Thus, the covariance mattk is normalized such that K
Tr{Q;} = 1. We define the functiorf(Q, P) using (1) as 0< Praz — »_ PP (22)

f(Q,P) ¥ f(PIQ,, -, PkQy) .

For fixed transmission powerg ... Pj, optimization is per- 3.3. Optimality of the Iterative Approach
formed with respect t@):
The following theorem provides a necessary and sufficient condi-

{Q,....Q%'} = arg méle(Q, P) ©) tion for the optimality of the proposed iterative strategy with re-
st T{Q,} =1, and Q, = 0, Vk. spect to the original problem (2). We define the set of active users

as
This is done by the iterative waterfilling technique proposed in
[10]. The Lagrangian is given by I={ke[l,K]: P, >0}

£1(Q, ¥, 1) = —f(Q, P
e (1= Tr{Q,}) — > Tr{Q, ¥y} .

1 k=1

Theorem 1. Suppose that the set of covariance matri¢€y, }
solves (9) for gived P/} and { P} } solves (16) for give{Q’}.
The covariance matriceQ, = P;Q), solve problem (2) if and

] =

B
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only if there exists @& > 0 such that

g A ket 23)
K
il —Hi[o) 1+ PiHwQLH}) 'Hi =0, (24)
k=1
i€, K\T.

Proof. Suppose that (23) and (24) are fulfilled. With (10) this im-
plies

K
H:[onI+> HyQ.Hj] 5,

k=1

il -8, ieT,

(25)

where®¥; = ¥, / P} is positive semidefinite. With (11) we have
Tr{Q}¥;} = 0. Fori € [1, K]\Z we can choos€; = 0. There-
fore Tr{Q/¥,} = 0 for any positive semidefinit®;. Since¥; is
positive semidefinite, (25) will also be fulfilled fare [1, K]\Z.
This is an immediate consequence of (24). Hence, the KKT con-
ditions (3) and (4) are fulfilled for alt, which implies optimality
with respect to problem (2).

To prove the reverse direction, assume t@a[t is optimal.
Then, there exists a decompositi@h) = P;Q’. The quantities
P/ and @/ solve the partial problems (16) and (9), respectively.

Otherwise, it would be possible to achieve a sum rate larger than

the optimum of the objectivé(Q, ..., Qx), which is a contra-
diction. From the KKT conditions (3) and (4) immediately follows
(23) and (24). |

4. CHARACTERIZATION OF THE LOW-SNR OPTIMUM

Now, we characterize the capacity achieving transmit strategy in
the low SNR regime.
It can be shown that for low SNR, only one user is active, i.e,

This is the slope of the capacity function. Clearly, the active
user is the one that maximizes (29). The optimal transmit co-
variance of the active user is obtained by the waterfilling solution
Q,(0) = V,%,V;. The matrix®; = diag{o",...,0""}

fulfills Tr{X;} = 1. The unitary matrixy/; is found from singu-

lar value decompositiofil; = U,;A}/*V%. Hence,

nr
Te{H:Q,(0)H;} = Ti{A;:} =Y o"A" | (30)

=1
where)\i.1> > e 2> )\E"T) are the eigenvalues of the channel
covariance matrix.
In the low SNR regime withP,,,, — 0, only the maximal
eigenvalue is supported by waterfilling. Now, consider two users
¢ andj. For user; assume a maximal eigenvalue with algebraic

multiplicity 7 > 1, i.e, A = ... = A" > o> A7) the
waterfilling solution is
0 1/r, 1<I<r
o’ = .
‘ 0, otherwise

And for userj assume a maximal eigenvalue with algebraic mul-
; 1 _ N D) (nr) i
tiplicity f > 1,i.e. A} = = A0 > o 2 AT with
waterfilling solutiono(l) The term in (30) for usetis greater or

equal to the term for user if and only if A{"Y > A{". Hence,
expressions (30) and (29) only depend on the maX|maI eigenvalue
of the channel covariance matrix.

Theorem 2. For small SNR values, only the user with the largest
maximum eigenvalue is supported.

Remark:The potential received power transmitted over the chan-

one user achieves the optimal sum capacity by transmitting at full ne| corresponds with the Frobenius norm, thus one might expect
power Pr.q,. The SNR range in which single-user transmission that this would be the relevant channel parameter which deter-
achieves capacity depends on the channel parameters. Now, afines the choice of the active user. However, Theorem 2 shows
interesting question is: which one is the active user and how canthat the choice of the active user depends only on the maximum

this choice be related to the channel state?
The active user (denoted by indgxdransmits at a capacity

Csum(Praz) = logz det{I + H;Q,(Pna:)H;} (26)
—’I‘I‘lOgQ{I"‘ H Q ( maz)H } (27)

as discussed in [13]. The covariance matfx(Pmq) denotes
the single user waterfilling solution fd?,,... Decomposing the
log function in a Taylor series, we have

Csum( maa") - TI‘{H Q( maar‘)H } R

WIthR—aZ

where the factorx = 1/loge(2) accounts for the fact that this
series expansion is defined for the natural logarithm.

The first derivative of the capacity functi@®um(Prmaz) for
Praz — 0is given by

CsuTn(Pmax) -
Pmaz

Prnam

Pmm:

O‘Pma'p

(28)

P7YL(11‘

TI"{H Q ( ma:r)H:}n ’

Csum (O) _

lim

Pmaxz—0

= TY{H.Q,(0)H]} .
(29)

eigenvalue of the channel matrices, which is associated witfthe
norm.

5. SUM CAPACITY WITHOUT PRECODING

So far it was shown that the concavity of the sum rate function (1)
allows for an efficient algorithmic solution. However, concavity

is only guaranteed as long as decision feedback precoding is used.
Otherwise, the sum rate function becomes

K
onI+ Y P.HQ, H;
o

K
onl+Y P.HiQ.Hj,

(02 ).

Observe that this is the sum of a concave and a convex function.
The result does not need not be convex neither concave, as illus-
trated in Fig. 1.b).

f(Q,P) = Klogy det{

K
- Z logz det

i=1
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a) with ‘Dirty Paper’
precoding: e

b) without precoding: P

max. sum

capaci
[Hall2 =1 N iz : 4 i \ty: [ H1ll2 =1 %
| Halz = 2 ? 18 : | Hall2 = 2 E
o = o 6 on=1 g
nr = § 4 nr =2 -
ny =1 é ny =1

Fig. 1. Sum rate of the dual MAC vs. transmission powBysand P». The optimal sum capacity is given as the maximum sum rate under
a sum power constraif®; + P> < P,.q.. @) With ‘Dirty Paper’ precoding [3, 4], the capacity function is always concave. b) Without
precoding, however, concavity is not guaranteed.
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