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ABSTRACT

In this paper, we present a conditional pronunciation mod-
eling method for the speaker detection task that does not
rely on acoustic vectors. Aiming at exploiting higher-
level information carried by the speech signal, it uses time-
aligned streams of phones and phonemes to model a spe-
aker’s specific pronunciation. Our system uses phonemes
drawn from a lexicon of pronunciations of words recognized
by an automatic speech recognition system to generate the
phoneme stream and an open-loop phone recognizer to gen-
erate a phone stream. The phoneme and phone streams are
aligned at the frame level and conditional probabilities of a
phone, given a phoneme, are estimated using co-occurrence
counts. A likelihood detector is then applied to these prob-
abilities.

Performance is measured using the NIST Extended Data
paradigm and the Switchboard-I corpus. Using 8 training
conversations for enrollment, a 2.1% equal error rate was
achieved. Extensions and alternatives, as well as fusion
experiments, are presented and discussed.

1. INTRODUCTION

For automatic speaker recognition systems, it is not what
you say but how you say it that is important. The par-
ticular content being conveyed is not as important as how
the words sound (i.e., pronunciations) or even the selec-
tion and combination of words used (i.e., idiolect). In
most automatic speaker recognition systems, however, only
the general underlying sounds of a person’s voice are mod-
eled and represented via Gaussian Mixture Models (GMM)
and short-term acoustic features [4], providing only indi-
rect and implicit modeling of pronunciations. For text-
dependent applications with fixed phrases or limited vocab-
ularies, such as digits, more explicit pronunciation mod-
eling can be obtained by modeling and comparing acous-
tic feature sequences over common words or phrases. For
text-independent applications, modeling all possible words
is not feasible and explicit pronunciation modeling is more
difficult. In [1, 2], a system using acoustically adapted
automatic speech recognition (ASR) systems for speaker-
dependent subword pronunciation modeling was success-
fully applied to a text-independent task.

In this paper, we present a new technique to explicitly
model a speaker’s pronunciations by learning a relation be-
tween the phonemes the speaker intends to produce and
the phones he actually produces. This new approach re-
lies only on the token outputs from a speaker-independent
ASR system and open-loop (i.e., no language model) phone
recognizers and, thus, is removed from directly using the
low-level acoustic signal, which may make it more resistant
to signal distortions. When applied to the NIST 2001 Ex-
tended Data Task, an equal error rate (EER) of 2.1% was
obtained, which further reduces to 0.5% when fused with a
GMM acoustic-based system.

2. SYSTEM DESCRIPTION

This section provides an overview of the conditional pronun-
ciation modeling (CPM) system. The aim of this approach
is to model speaker-specific pronunciations by learning the
relation between what has been said (phonemes) versus how
it has been pronounced (phones). For example, a person
with a Southern U.S. accent may intend to say ’you’ but
actually pronounce it as ’yew’. To learn this relation, we
rely on the output from an ASR system with its lexical
constraints and an unconstrained phone recognizer.

Since we do not know a speaker’s intended utterance,
we use an ASR system to provide the sequence of intended
phonemes. After decoding a spoken word, the possible pho-
nemes for the word from the lexicon (a word can have multi-
ple lexical pronunciations) are force-aligned with the audio
and the one with the highest likelihood match score is se-
lected as the phonemic transcription for the word. This
provides a time-aligned phoneme stream for all words. For
this work, the phoneme sequences from the SRI Prosody
Database were used [5].

The phones actually pronounced are taken from an open-
loop (i.e., null-grammar language model) phone recognizer.
We used phone sequences from five languages: English
(EG), German, (GE), Spanish (SP), Japanese (JA), and
Mandarin (MA). The phone recognizer is from the Lin-
coln PPRLM LID system and uses gender-dependent phone
models. This output, too, provides a time-aligned phone
stream.

For a given utterance, the phoneme and phone sequences
are then time aligned at the frame level. An example of
these streams and their alignment for the utterance frag-
ment “to you” is shown in the following table:

FRAME ASR EG GE SP JA MA WORD
24964 t n n n sh N TO
24965 t s h s sh N
24966 t s h s sh N
24967 t s h s sh S
24968 t s h s sh S
24969 t s h s sh S
24970 t s h s rx S
24971 ax I h s rx i:
24972 ax I h iy rx i:
24973 ax I h iy y i:
24974 y j h iy y i: YOU
24975 y j i: iy y i:
24976 y j i: iy y i:
24977 uw j i: iy y i:
24978 uw u i: iy y i:
24979 uw u E iy y i:
24980 uw u E iy uw i:
24981 uw u E sil uw i:
24982 uw silx E sil uw i:
24983 uw silx E sil sil i:
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In this table, FRAME is a frame number (at 100 frames
per second), WORD is a recognized word, ASR is the pho-
neme stream, and EG, GE, SP, JA, MA are the language-
dependent phone streams.

For a phone stream, EG for instance, we then estimate
the conditional probability of EG given ASR (that is, the
realization given the intention) on a per-frame basis. Sub-
sequently, these conditional probability models are used to
form a likelihood ratio detector, as described in the follow-
ing two subsections.

2.1. Training

Since we are using a likelihood ratio detector, we have
two models: the background model and the speaker model.
Both consist of conditional probabilities of EG given ASR
and are trained in the same way:

P (EG = e|ASR = a) =
#((e, a) appears in the INPUT)

#((∗ , a) appears in the INPUT)

Where ∗ means any EG phone. INPUT is a stream of (EG,
ASR) time-aligned pairs, as explained earlier. When train-
ing the speaker model, INPUT is from the speaker’s enroll-
ment speech. For the background model training, INPUT
is from a large amount of speech coming from a speaker set
not containing the target speaker. We further assume that
INPUT (both in training and testing) has been filtered by
removing frames the ASR marks as silence (sil phoneme)
and frames containing cross-talk (silx phone).

In contrast to other phonetic-based speaker recognition
systems [6, 8, 7], this approach relies on both the open-loop
phone sequences and the constrained phoneme sequences
from an ASR system. The conditioning on the phonemes
is important because phones alone are quite ambiguous in
the sense that a given phone may be caused by many dif-
ferent phonemes (depending on the context, speaker, etc.).
Conditioning phones on phonemes aims at avoiding this am-
biguity. It provides a distribution that carries information
about individual pronunciation of phones, as well as some
coarticulation habits.

2.2. Testing

The score of a test utterance is computed as follows.

score =
X

(e, a) from INPUT s.t.
both PSP(e|a) and
PBG(e|a) are defined

(log(PSP(e|a)) − log(PBG(e|a)))

This means that only those pairs (e, a) that have been seen
during the training of both the speaker and the background
model are counted. PSP represents the speaker model, while
PBG is for the background model. Also, we treat INPUT
as an array, so, unlike with sets, if there is a pair (e, a) in
the INPUT occurring N times, it will be counted N times
in the sum.

A conditional probability model and a detector are built
for each phone stream and the stream scores are summed
to obtain the final system score.

3. EXPERIMENTS

All experiments were conducted on the Switchboard-I
(SWB1) corpus according to the NIST Extended Data
paradigm [9]. In the NIST Extended Data paradigm, there
are 5 training conditions consisting on 1, 2, 4, 8 and 16 en-
rollment conversation sides, where a side is nominally 2.5

minutes in duration. Testing is done on a entire conversa-
tion side. The evaluation consists of a 6-split jack-knife over
the entire Switchboard-I corpus. Two background models
were used for testing. One model was trained using data
from splits 1-3 and applied when testing on splits 4-6; an-
other was trained using splits 4-6 and used for testing on
splits 1-3.

The goal of the these experiments was to test whether and
how much the conditioning helps the system performance,
as well as whether the ASR plays a crucial role or may be
replaced by a less computationally expensive step.

The aim of the first experiment was to examine the effect
of phoneme conditioning. We constructed two systems. The
first uses the conditional probability models as described
above. In the second system, we compute the unconditional
probability models of the phone streams. To avoid differ-
ences due to speech/silence detection, the second system
computed counts only over frames where the ASR phoneme
stream indicated speech phonemes. We call this uncondi-
tioned approach ASR triggered, since the ASR was used to
select frames with speech information.

Using combined ASR-triggered scores from streams GE,
SP, JA, and MA produced a 7.0% EER on 8 training conver-
sations, whereas GE, SP, JA, and MA, given ASR, achieved
a 2.7% EER. The raw (nontriggered) unconditional ap-
proach (using all frames) achieved a 13% EER. This means
that the performance of a recognizer not using ASR should
be somewhere between a 7.0 and 13% EER, depending on
the quality of its speech activity detector (here, we assume
that ASR is the perfect speech activity detector and that
nonspeech sounds always make the recognition worse, which
is likely).

The goal of the second experiment was to test the ef-
fect of replacing the ASR stream with a computationally
less expensive phone stream. For this, we used the EG
stream. In the ASR-triggered setup (where only non-sil
frames as marked by ASR are used), combined modeling
of GE, SP, JA, and MA, given EG, achieved a 4.3% EER
with 8 training conversations. The raw setup (all frames
counted, except crosstalk) achieved a 7.6% EER. This com-
pares to the 2.7% EER of the original system, indicating
the phoneme stream is providing information not found in
the phone stream.

This result is twofold. First, it shows that the ASR may
be replaced by something computationally less expensive
than a full-fledged ASR without a dramatic loss of perfor-
mance. Second, it helps gain insight into the actual work-
ing principle of the CPM approach. Along with the idea
of modeling purely the speaker-specific phoneme-to-phone
mapping, one also has to consider an alternative and not
entirely independent view that the phone sequences on a
per-frame basis can be seen as vectors of acoustic features
with discretized values (in our case, five-dimensional). Since
we model these vectors using probabilistic distributions, a
similarity to classic GMM-based frame-by-frame modeling
offers itself, acknowledging 1) the differences in the feature
and function type (discrete nonparametric vs. continuous
parametric modeling) and 2) the ASR information is not
utilized in a typical GMM text-independent system. The
relatively moderate degradation observed in the second ex-
periment may be a supporting factor for the alternative
view of the CPM method.

4. ENHANCING THE BASIC SCHEME

Instead of conditioning on the ASR phoneme stream, it
would seem more appropriate to condition on some sub-
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Figure 1. Enhanced system, all streams (2.1% EER
for 8-conversation training)

phonemic units; for example, those determined by states
of a phoneme Hidden Markov Model. However, we
were using a precomputed database with forced align-
ments not containing such fine segmentation information.
Instead, we used an ad hoc solution: assigning states
(short/head/body/tail) to the frames of each phoneme ac-
cording to its length and a frame number counted relative
to its beginning. States were assigned in this way: A pho-
neme shorter than 7 frames is marked as short . For phone-
mes longer than 6 and shorter than 14, the first half of it
is marked as head and the last half of it is marked as tail.
For phonemes longer than 13, the 2/7 at the beginning and
2/7 at the end are marked as head and tail , respectively,
leaving the rest as body. These marks are then used to de-
fine a new phoneme alphabet as a Cartesian product of the
original alphabet and the set {short, head, body, tail }. The
algorithm from section 2. was applied using this enriched
alphabet.

On 8-conversation training, this refined modeling gave
an improvement to a 2.3% EER (in combined GE, SP, JA,
and MA, given the ASR setup, which should be compared
with the 2.7% EER from the basic system). When using
all five streams of open-loop phones, this approach reached
a 2.1% EER. The complete detection error tradeoff (DET)
plot of the enhanced-scheme system is shown in Figure 1.
Using only the EG stream leads to a 2.8% EER, as shown
in Figure 2. Other language-dependent streams did slightly
worse than the EG one.

Next, we addressed the question of what result can be
obtained using 100% accurate ASR (the ASR in the above
experiments had a 30% word error rate). Phoneme align-
ments obtained from manual word transcripts were avail-
able from the SRI database and used in this experiment.
All 5 streams achieved a 1.7% EER at 8 conversations, as
shown at Figure 3.

System Alone Fused with CPM
Acoustics 0.7% 0.5%
Prosodics 6.8% 1.2%
Bintree 3.3% 2.2%
Word n-grams 11% 1.4%

Table 1. Equal-error-rates for fusion of the CPM
with other techniques [3]

5. FUSION WITH OTHER SYSTEMS

Fusion experiments were conducted using the enhanced
CPM system combined with other systems via a single-layer
perceptron, as described in [3]. The CPM system used in
the fusion had a 2.3% EER (instead of a 2.1% EER, because
it lacked crosstalk (silx ) filtering). Table 1 summarizes
the performance of various fusion configurations (trained
on 8 conversations, evaluated on all splits). Performance
gains can be seen in all configurations, the strongest rela-
tive improvements being achieved by combinations with the
prosodics and word n-grams. The latter are also intuitively
the least related to the CPM in terms of the information
type contained in the features. The least gain is observed
with a phonetic modeling technique (Bintree) [8] that ex-
ploits statistical dependencies in phone sequences.

6. CONCLUSIONS

The enhanced scheme achieves a relatively high accuracy in
comparison with other phonetic methods. It also seems that
pronunciation modeling contributes complementary infor-
mation to both the GMM and other nonphonetic high-level
systems. On the other hand, this is at the cost of running
the ASR, which makes the method slower than the GMM
baseline. But, considering the relatively minor loss in per-
formance when replacing ASR with a phone stream, there
may exist other fast predictors to replace the ASR with no
performance loss.

Although the results seem to be quite positive, there are a
few things that should be mentioned, even though we hope
that their effect is negligible. First, the phone recognizers
were supplied with (true) external information about the
speaker’s gender. Second, since the ASR is considered to
be a part of our system, the fact that we ran all experi-
ments on Switchboard-I (the same corpus used for training
the ASR) means that we mixed training and testing data.
Fortunately, the experiment using the EG stream as a pre-
dictor suggests that the performance drop should not be too
large when the ASR is not trained on test data, even if the
ASR worked poorly on data different from Switchboard-I.

7. FUTURE WORK

We observed sensitivity to limited training data. This
exhibits itself as poor performance on the 1- and 2-
conversation training where there is not enough data to
estimate the probabilities properly by raw counting. We
plan to use Good-Turing estimates to compute probabil-
ities, which would also make the computation for unseen
data less ad hoc than just discarding the data we have not
seen during the training.

Second, we would like to investigate the robustness of this
method to noise contamination and signal distortions. To
enhance it, we want to quantize vectors of phones (coming
out of the multiple streams) into a new alphabet on the
basis of their noise resistance. If we are really modeling
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Figure 2. Enhanced system, EG stream only (2.8%
EER for 8-conversation training)

pronunciation, there should be a level of noise or distor-
tion that hides the “color of the voice” recognized by GMM
systems, but still leaves pronunciation information in the
signal.

Third, since it shows that the ASR may not be neces-
sarily required for the method, we want to investigate the
possibility of other predictors; for example, phone recog-
nizers with bigram language models and a suitable speech
activity detector.

All of the mentioned modifications should then be vali-
dated on new data, particularly on the Switchboard-II tele-
phone speech corpus.
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