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ABSTRACT 
Recent studies show that phonetic sequences from multiple 
languages can provide effective features for speaker recognition. 
So far, only pronunciation dynamics in the time dimension, i.e., 
n-gram modeling on each of the phone sequences, have been 
examined. In the JHU 2002 Summer Workshop, we explored 
modeling the statistical pronunciation dynamics across streams in 
multiple languages (cross-stream dimension) as an additional 
component to the time dimension. We found that bigram 
modeling in the cross-stream dimension achieves improved 
performance over that in the time dimension on the NIST 2001 
Speaker Recognition Evaluation Extended Data Task. Moreover, 
a linear combination of information from both dimensions at the 
score level further improves the performance, showing that the 
two dimensions contain complementary information. 

1. INTRODUCTION 

Previous speaker recognition techniques rely almost exclusively 
on features representing short-term acoustic information 
extracted from speech signals, such as spectral energy-based 
features [1]. These features convey information about the 
physical traits of the speaker’s vocal apparatus, but are known to 
have a relatively high sensitivity to noise and channel mismatch. 
In contrast, humans recognize speakers using not only low-level 
features, but also high-level features, such as word usage 
(idiolect), pronunciation, prosody, laughter, and other 
idiosyncratic supra-segmental information. These high-level 
features often represent learned traits of a speaker related to the 
speaker’s socio-economic status, personality type, education, etc. 
Higher-level features are expected to be less affected by noise or 
channel mismatch. For example, people are unlikely to change 
their idiolectal word usage, their pronunciation idiosyncrasies 
and their accent when the channel or background noise changes. 
Furthermore, high-level features should supply complementary 
information to the low-level features and potentially improve 
overall recognition accuracy. However, these high-level features 
are not effectively being exploited in current automatic speaker 
recognition systems. 

Recently published research in [2] described using speaker’s 
idiolectal word usage for speaker recognition. Phonetic speaker 
recognition approaches explored how to model a speaker’s 
pronunciation patterns using n-grams on phone sequences [3, 4]. 
In these approaches, pronunciation dynamics were modeled 
using n-grams on each of the phone streams emitted by each 
language-specific phone recognizer, which means that these 
approaches work principally in the time dimension. However, 
there may be speaker information in the patterns of phone co-
occurrences across the multiple phone streams from various 
languages. In this paper we present an approach and results 

aimed at modeling the statistical pronunciation patterns across 
multiple phone streams, which we refer to as phonetic 
information in the cross-stream (cross-language) dimension. 

2. PHONETIC SPEAKER RECOGNITION IN 
THE TIME DIMENSION 

Generally phonetic speaker detection in the time dimension using 
a single-language phone recognizer is performed in three steps: 
Firstly, the phone recognizer processes the test speech utterance 
to produce a phone sequence. Secondly, the test phone sequence 
is compared to a previously trained hypothesized Speaker 
Phonetic Model (SPM) and a Universal Background Phonetic 
Model (UBPM) to compute likelihood scores. Finally, the log of 
the ratio of the two likelihood scores is computed as the 
detection score. This process can be expanded to use multiple 
phone sequences from a parallel bank of phone recognizers 
trained on different languages. In this case, each phone stream is 
independently scored and the scores are combined together 
forming a single weighted detection score.  

In all experiments shown in this paper, the phone sequences 
are produced by open-loop phone recognizers created by 
Zissman for language identification via Parallel Phone 
Recognition with Language Modeling (PPRLM) [5]. We used 
gender-dependent phone streams processed by Kohler in five 
languages: English (EG), German (GE), Japanese (JA), 
Mandarin (MA), and Spanish (SP) [3]. All experiments in this 
paper are conducted on the corpus used for the NIST 2001 
Speaker Recognition Evaluation Extended Data Task. Leave-
one-out cross-validation is used on a pool of six splits, which are 
different partitions of the entire Switchboard-I corpus to ensure 
an adequate number of tests. The detailed description of the 
experimental setup can be found in [6]. 

2.1 Speaker Phonetic Model  (SPM) 

A speaker’s language-dependent phonetic model (SPM) is 
generated using a n-gram language modeling technique. The 
SPMs used here are bi-gram models created using the CMU-
Cambridge Statistical Language Modeling Toolkit (CMU-SLM) 
[7]. Unlike typical Gaussian Mixture Model-Universal 
Background Model (GMM-UBM) systems, the n-gram speaker 
phonetic models are not adapted from the universal background 
phonetic model, but instead are estimated directly from the 
speaker’s available training data. 

2.2 Universal-Background Phonetic Model (UBPM) 

The Universal Background Phonetic Model (UBPM) is generated 
using the NIST control file, which provides a list of hypothesized 
and test speakers for exclusion from the UBPM training [6]. All 
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the phone sequences decoded from all of the conversations for 
the non-excluded speakers were used to build the UBPM using 
n-gram modeling. Five language-dependent UBPMs trained on 
the corresponding phone stream are used. The SPMs and UBPMs 
used in all experiments in this paper, if not mentioned, are 
bigram models. 

2.3 Speaker Detection 

Detection is performed using log-likelihood ratios (LLR).  
Formula (1) defines the LLR detector for a single-language 
phonetic speaker recognition system, where  is the 

likelihood score of test sequence 
iSL

X  for speaker ’s phonetic 
language model  and  is the likelihood score of test 
sequence 

i
iSPM UL

X  for the universal background model UBPM . The 
recognition/detection score is the log of the ratio of these two 
likelihood scores. 

( ) ( UBPMXPLSPMXPL UiiS == )                            (1) 

( )
( ) UiS

i
i LL

UBPMXP
SPMXP

Score logloglog −=









=  

For a multilingual phonetic speaker recognition system, the 
scores from each of the languages are fused using a linear 
combination, such as in formula (2), where k  is used to index 
multiple languages. 
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2.4 Experimental Results in the Time Dimension 

Figure 1 shows the phonetic speaker recognition performance in 
the time dimension for different training conditions (1, 2, 4, 8, or 
16 training conversations [6]). The Equal Error Rate (EER) is 
8.4% for the 8-conversation training condition. The 8-
conversation training condition is the most representative and 
statically significant condition in the extended task [6]. The 
comparison of performance from different approaches will 
mainly focus on this training condition in following sections 
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Figure 1: Experimental Results of Phonetic Speaker Recognition 
in the Time Dimension 

3. PHONETIC SPEAKER RECOGNITION IN 
THE CROSS-STREAM DIMENSION 

Since we use multiple tokenizers (phone recognizers) to tokenize 
the same speech utterance, for the same speaker-specific sound, 
ideally there should be some fixed set of tokens from each of the 
multiple languages to represent it, which means that there should 
exist token dependencies across multiple languages at a given 
time instance. If we assume that these token dependencies are 
related to how different speakers realize phonemes, then we can 
code speaker-dependent pronunciation dynamics across multiple-
language phone sequences. Similar to the time dimension, the 
SPM and the UBPM are created in the cross-stream dimension 
and detection is done based on the log likelihood ratio. The 
detailed procedure of phonetic speaker recognition in the cross-
stream dimension is described in the following sections. 

3.1 Cross-stream Alignment 

To discover the underlying dependencies of phones from 
multiple languages, we need first to align the multiple phone 
sequences. This alignment is done simply by aggregating all time 
boundaries from all phone sequences. As illustrated in Figure 2, 
the phones are duplicated to the smallest time slot in each 
language in order to unify the boundaries across languages. 
According to the smallest time overlap across the three 
languages, the EG phone S originally in [t1, t3] is duplicated two 
times into time slots [t1, t2] and [t2, t3] and the JA phone B 
originally in time slot [t1, t4] is duplicated three times into time 
slots [t1, t2], [t2, t3] and [t3, t4]. Similarly, other phones are 
duplicated into their smallest time slots across the three 
languages.  
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Figure 2: Temporal Alignment of Multiple Phone Sequences 

3.2 N-gram Modeling in the Cross-stream Dimension 

A straightforward way to model the pronunciation dynamics in 
the cross-stream dimension is to model the statistical 
dependencies across streams. For this, as in the time dimension, 
we use n-grams by treating the aligned phones at each time slot 
as one input “sentence” for the n-gram modeling. In the above 
example, we will have five “sentences” to train the n-gram 
model: “S B P,” “S B Q,” “A B Q,” “A D Q” and “A D M.” 
Since we want to model the bigram dependencies across all 
streams, it would be better to model all possible pair 
dependencies. From the above alignment, however, bigrams can 
only model the dependencies of EG-JA pairs and of JA-SP pairs, 
but not of EG-SP pairs. Therefore, we simply permute the 
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aligned phones at each time slot, thus modeling all possible pairs 
from all languages at a given time.  

Figure 3 shows the phonetic speaker recognition performance 
in the cross-stream dimension with different training conditions. 
Figure 4 compares the performance in the cross-stream vs. time 
dimension with the 8-conversation training condition. In the 
cross-stream dimension, experimental results with and without 
permutation after alignment are shown. For the 8-conversation 
training condition, the cross-stream system achieves 4.0% EER 
with permutation and 5.1% EER without permutation; both 
significantly outperformed the time dimension system, where the 
EER was 8.4%. 
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Figure 3: Experimental Results of Phonetic Speaker 
Recognition in the Cross-stream Dimension 
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Figure 4: Comparison of Cross-stream vs. Time dimension 

3.3 Binary-Tree Modeling in the Cross-stream 
Dimension 

To further explore the cross-stream dependencies, a comparative 
experiment was carried out using an alternative to the bigram, 
namely statistical binary-decision tree (BT) models. The BT 
models were successfully applied to other tasks such as speech 
recognition [8], language identification [9], and speaker 
recognition in the time dimension [10]. The training objective is 
to find a tree structure and a set of binary questions that 
maximize the training likelihood (or equivalently, minimize the 
average model prediction entropy). Each binary question 
involves a predictor; i.e., a context variable from a selected set of 
variables pre-determined by the user. In time-dimension 
modeling, the predictors are typically chosen to be the phones 

preceding the modeled token. When modeling cross-stream 
dependencies of a particular phone, however, we choose the 
predictor set to cover the aligned phone tokens from other 
languages. At each tree node, the BT training algorithm selects 
from this set the predictor that minimizes the prediction entropy 
[10]. Preliminary experiments were conducted on the same task 
and data as with the bigram system to investigate possible future 
avenues for a more flexible cross-stream information extraction. 
The number of predictors was varied from two to six and the 
predictor set was varied to include predictors from all other 
streams, and alternatively the time slots of the same, one 
preceding, and one subsequent. Preliminary experimental 
observations indicate more or less strong degradation in 
performance of these configurations compared to the bigrams. 
The degradation seems stronger with purely cross-stream 
predictor sets and with their maximum number 4.  

This finding is in sharp contrast with results obtained with BT 
models applied in the time dimension where they seem to 
consistently outperform the bigram performance due to a wider 
context modeled and the advantage of structural flexibility [10]. 
To gain insight, we compared average entropy values of token 
distributions in the permuted bigrams and the BT models on the 
same training data. The comparison reveals a stark difference: 
While the standard bigrams provide token distributions with 
entropy averaging between 2 bits to 4 bits, the purely-cross-
stream BT models tend to be significantly “sharper” in 
predictions with entropy values between 0.5 bits to 1 bit. 
Obviously, the BT structures adapt to dependencies inherent 
across the stream in such a way that observing certain contexts 
causes very accurate prediction in the modeled stream, which 
indeed is the objective of these models. General dependencies 
across the phonetic streams, however, may not necessarily imply 
strong speaker characteristics. In fact, if we could assume that 
the five tokenizers’ outputs are completely correlated, then the 
BT will describe these correlations for all speakers identically, 
i.e., the models will lose speaker discriminancy despite strong 
dependencies and thus high data likelihood. This leads to an 
interesting conclusion regarding the cross-stream modeling: The 
tokenizer-specific phone errors (i.e., substitutions, insertions, and 
deletions), reflecting each speaker in a different and partially de-
correlated way, seem to be the contributing factor in the system. 
Due to the fixed structure of n-grams and the fact that the 
bigrams model only pairs of streams, these models do not adapt 
to the actual (and in this case noisy) data dependencies and hence 
are not as sensitive to the problem mentioned. This observation 
further suggests that the original maximum likelihood objective 
of the BT models, or any adaptive-structure model for that 
matter, needs to be customized appropriately to reflect the fact 
that speaker-specific phone dependencies may be contaminated 
by dominant components carrying irrelevant tokenizer 
correlations. 

4. COMBINATION OF CROSS-STREAM AND 
TIME DIMENSIONS 

Modeling pronunciation dynamics in the cross-stream dimension 
is expected to carry complementary information to that in the 
time dimension and, hence, potentially can improve performance 
when combined. A simple linear combination was used to fuse 
the recognition scores from both systems. Figure 5 compares the 
performance of the time dimension system, cross-stream 
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dimension system, and combination systems for the 8-
conversation training condition. Bigrams were used in both 
systems. The EER of the combination is reduced to 3.6%, 
compared to 8.4% in the time dimension alone and 4.0% in the 
cross-stream dimension alone. Figure 6 shows the performance 
of the system using the BT models in the time dimension alone 
[10], the performance of the system using bigrams in cross-
stream dimension alone, and the performance of combining both 
systems for the 8-conversation training condition. The EER of 
the combination is further reduced to 3.0%, compared to 3.4% in 
the time dimension and 4.0% in the cross-stream dimension. 
Both experimental results indicate that the two dimensions do 
contain complementary information. 
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6. REFERENCES 

Figure 5: Combination of the Cross-stream Dimension (bigram) 
with the Time Dimension (bigram) 
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Figure 6: Combination of the Cross-stream Dimension (bigram) 

with Time Dimension (BT) 
As described in previous sections, we modeled the speakers’ 

pronunciation patterns in the time and cross-stream dimensions 
independently under the assumption that token dependencies are 
related to how a speaker pronounces specific sounds. However, 
there may exist token or phone dependencies across both the 
time and the cross-stream dimensions, such as the EG phone at 
time t+1 strongly dependent on the JA phone at time t-1. 
Moreover, our linear combination experiments showed that both 
dimensions contain complementary knowledge. Therefore, an 
appropriate modeling approach is desired to more efficiently 
capture a speaker’s distinguishing pronunciation dynamics in 
both dimensions simultaneously.  Graphical models provide a 

general framework for capturing information from both 
dimensions simultaneously. Future investigations will apply 
graphical models for learning the pronunciation dynamics in both 
dimensions and discovering what underlying dependencies 
graphical models capture. 

5. CONCLUSIONS 

In this paper we introduced the concept of phonetic speaker 
recognition in the cross-stream dimension. Bigram modeling of 
the phone dependencies across tokenizers in multiple languages 
achieves 4% EER, a significant improvement over 8.4% EER in 
the time dimension on the NIST 2001 Speaker Recognition 
Evaluation Extended Data Task. A linear combination of systems 
in both dimensions at the score level reduces the EER to 3%, 
which indicates that the information captured in the cross-stream 
dimension is complementary to that in the time dimension. 
Therefore, using graphical models, among others, there is 
potential for improving the performance further by modeling the 
information in both dimensions simultaneously. Our preliminary 
experiments involving binary tree models with adaptive 
structures applied to the cross-stream dimension indicate the 
need for a modified training objective as an alternative to the 
standard maximum likelihood criterion to focus on the speaker 
discriminative information in this dimension. 
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