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ABSTRACT

Recent studies show that phonetic sequences from multiple
languages can provide effective features for speaker recognition.
So far, only pronunciation dynamics in the time dimension, i.e.,
n-gram modeling on each of the phone sequences, have been
examined. In the JHU 2002 Summer Workshop, we explored
modeling the statistical pronunciation dynamics across streams in
multiple languages (cross-stream dimension) as an additional
component to the time dimension. We found that bigram
modeling in the cross-stream dimension achieves improved
performance over that in the time dimension on the NIST 2001
Speaker Recognition Evaluation Extended Data Task. Moreover,
a linear combination of information from both dimensions at the
score level further improves the performance, showing that the
two dimensions contain complementary information.

1. INTRODUCTION

Previous speaker recognition techniques rely almost exclusively
on features representing short-term acoustic information
extracted from speech signals, such as spectral energy-based
features [1]. These features convey information about the
physical traits of the speaker’s vocal apparatus, but are known to
have a relatively high sensitivity to noise and channel mismatch.
In contrast, humans recognize speakers using not only low-level
features, but also high-level features, such as word usage
(idiolect), pronunciation, prosody, laughter, and other
idiosyncratic supra-segmental information. These high-level
features often represent learned traits of a speaker related to the
speaker’s socio-economic status, personality type, education, etc.
Higher-level features are expected to be less affected by noise or
channel mismatch. For example, people are unlikely to change
their idiolectal word usage, their pronunciation idiosyncrasies
and their accent when the channel or background noise changes.
Furthermore, high-level features should supply complementary
information to the low-level features and potentially improve
overall recognition accuracy. However, these high-level features
are not effectively being exploited in current automatic speaker
recognition systems.

Recently published research in [2] described using speaker’s
idiolectal word usage for speaker recognition. Phonetic speaker
recognition approaches explored how to model a speaker’s
pronunciation patterns using n-grams on phone sequences [3, 4].
In these approaches, pronunciation dynamics were modeled
using n-grams on each of the phone streams emitted by each
language-specific phone recognizer, which means that these
approaches work principally in the time dimension. However,
there may be speaker information in the patterns of phone co-
occurrences across the multiple phone streams from various
languages. In this paper we present an approach and results
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aimed at modeling the statistical pronunciation patterns across
multiple phone streams, which we refer to as phonetic
information in the cross-stream (cross-language) dimension.

2. PHONETIC SPEAKER RECOGNITION IN
THE TIME DIMENSION

Generally phonetic speaker detection in the time dimension using
a single-language phone recognizer is performed in three steps:
Firstly, the phone recognizer processes the test speech utterance
to produce a phone sequence. Secondly, the test phone sequence
is compared to a previously trained hypothesized Speaker
Phonetic Model (SPM) and a Universal Background Phonetic
Model (UBPM) to compute likelihood scores. Finally, the log of
the ratio of the two likelihood scores is computed as the
detection score. This process can be expanded to use multiple
phone sequences from a parallel bank of phone recognizers
trained on different languages. In this case, each phone stream is
independently scored and the scores are combined together
forming a single weighted detection score.

In all experiments shown in this paper, the phone sequences
are produced by open-loop phone recognizers created by
Zissman for language identification via Parallel Phone
Recognition with Language Modeling (PPRLM) [5]. We used
gender-dependent phone streams processed by Kohler in five
languages: English (EG), German (GE), Japanese (JA),
Mandarin (MA), and Spanish (SP) [3]. All experiments in this
paper are conducted on the corpus used for the NIST 2001
Speaker Recognition Evaluation Extended Data Task. Leave-
one-out cross-validation is used on a pool of six splits, which are
different partitions of the entire Switchboard-I corpus to ensure
an adequate number of tests. The detailed description of the
experimental setup can be found in [6].

2.1 Speaker Phonetic Model (SPM)

A speaker’s language-dependent phonetic model (SPM) is
generated using a n-gram language modeling technique. The
SPMs used here are bi-gram models created using the CMU-
Cambridge Statistical Language Modeling Toolkit (CMU-SLM)
[7]. Unlike typical Gaussian Mixture Model-Universal
Background Model (GMM-UBM) systems, the n-gram speaker
phonetic models are not adapted from the universal background
phonetic model, but instead are estimated directly from the
speaker’s available training data.

2.2 Universal-Background Phonetic Model (UBPM)

The Universal Background Phonetic Model (UBPM) is generated
using the NIST control file, which provides a list of hypothesized
and test speakers for exclusion from the UBPM training [6]. All
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the phone sequences decoded from all of the conversations for
the non-excluded speakers were used to build the UBPM using
n-gram modeling. Five language-dependent UBPMs trained on
the corresponding phone stream are used. The SPMs and UBPMs
used in all experiments in this paper, if not mentioned, are
bigram models.

2.3 Speaker Detection

Detection is performed using log-likelihood ratios (LLR).
Formula (1) defines the LLR detector for a single-language
phonetic speaker recognition system, where LSI. is the

likelihood score of test sequence X for speaker i’s phonetic
language model SPM; and Ly is the likelihood score of test

sequence X for the universal background model UBPM . The
recognition/detection score is the log of the ratio of these two
likelihood scores.
Ls, = Px|spm;) Ly = Plx|uBPM) (1)
Plx|spu;)

Score; = log(—(—)}) X|UBPM

} =logLg, —logLy

For a multilingual phonetic speaker recognition system, the
scores from each of the languages are fused using a linear
combination, such as in formula (2), where k is used to index
multiple languages.

13 k
Score; = s > Score; 2)

Scorel-k = longg, —log L/f]
: k=1

2.4 Experimental Results in the Time Dimension

Figure 1 shows the phonetic speaker recognition performance in
the time dimension for different training conditions (1, 2, 4, 8, or
16 training conversations [6]). The Equal Error Rate (EER) is
8.4% for the 8-conversation training condition. The 8-
conversation training condition is the most representative and
statically significant condition in the extended task [6]. The
comparison of performance from different approaches will
mainly focus on this training condition in following sections
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Figure 1: Experimental Results of Phonetic Speaker Recognition
in the Time Dimension

3. PHONETIC SPEAKER RECOGNITION IN
THE CROSS-STREAM DIMENSION

Since we use multiple tokenizers (phone recognizers) to tokenize
the same speech utterance, for the same speaker-specific sound,
ideally there should be some fixed set of tokens from each of the
multiple languages to represent it, which means that there should
exist token dependencies across multiple languages at a given
time instance. If we assume that these token dependencies are
related to how different speakers realize phonemes, then we can
code speaker-dependent pronunciation dynamics across multiple-
language phone sequences. Similar to the time dimension, the
SPM and the UBPM are created in the cross-stream dimension
and detection is done based on the log likelihood ratio. The
detailed procedure of phonetic speaker recognition in the cross-
stream dimension is described in the following sections.

3.1 Cross-stream Alignment

To discover the underlying dependencies of phones from
multiple languages, we need first to align the multiple phone
sequences. This alignment is done simply by aggregating all time
boundaries from all phone sequences. As illustrated in Figure 2,
the phones are duplicated to the smallest time slot in each
language in order to unify the boundaries across languages.
According to the smallest time overlap across the three
languages, the EG phone S originally in [¢/, £3] is duplicated two
times into time slots [z, ¢2] and [¢2, 3] and the JA phone B
originally in time slot [¢/, #4] is duplicated three times into time
slots [t1, ¢2], [¢2, t3] and [¢3, t4]. Similarly, other phones are
duplicated into their smallest time slots across the three
languages.
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Figure 2: Temporal Alignment of Multiple Phone Sequences
3.2 N-gram Modeling in the Cross-stream Dimension

A straightforward way to model the pronunciation dynamics in
the cross-stream dimension is to model the statistical
dependencies across streams. For this, as in the time dimension,
we use n-grams by treating the aligned phones at each time slot
as one input “sentence” for the n-gram modeling. In the above
example, we will have five “sentences” to train the n-gram
model: “SBP,” “SBQ,” “ABQ,” “ADQ”and “ADM.”
Since we want to model the bigram dependencies across all
streams, it would be better to model all possible pair
dependencies. From the above alignment, however, bigrams can
only model the dependencies of EG-JA pairs and of JA-SP pairs,
but not of EG-SP pairs. Therefore, we simply permute the
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aligned phones at each time slot, thus modeling all possible pairs
from all languages at a given time.

Figure 3 shows the phonetic speaker recognition performance
in the cross-stream dimension with different training conditions.
Figure 4 compares the performance in the cross-stream vs. time
dimension with the 8-conversation training condition. In the
cross-stream dimension, experimental results with and without
permutation after alignment are shown. For the 8-conversation
training condition, the cross-stream system achieves 4.0% EER
with permutation and 5.1% EER without permutation; both
significantly outperformed the time dimension system, where the
EER was 8.4%.
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Figure 3: Experimental Results of Phonetic Speaker
Recognition in the Cross-stream Dimension
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Figure 4: Comparison of Cross-stream vs. Time dimension

3.3 Binary-Tree Cross-stream

Dimension

Modeling in the

To further explore the cross-stream dependencies, a comparative
experiment was carried out using an alternative to the bigram,
namely statistical binary-decision tree (BT) models. The BT
models were successfully applied to other tasks such as speech
recognition [8], language identification [9], and speaker
recognition in the time dimension [10]. The training objective is
to find a tree structure and a set of binary questions that
maximize the training likelihood (or equivalently, minimize the
average model prediction entropy). Each binary question
involves a predictor; i.e., a context variable from a selected set of
variables pre-determined by the wuser. In time-dimension
modeling, the predictors are typically chosen to be the phones

preceding the modeled token. When modeling cross-stream
dependencies of a particular phone, however, we choose the
predictor set to cover the aligned phone tokens from other
languages. At each tree node, the BT training algorithm selects
from this set the predictor that minimizes the prediction entropy
[10]. Preliminary experiments were conducted on the same task
and data as with the bigram system to investigate possible future
avenues for a more flexible cross-stream information extraction.
The number of predictors was varied from two to six and the
predictor set was varied to include predictors from all other
streams, and alternatively the time slots of the same, one
preceding, and one subsequent. Preliminary experimental
observations indicate more or less strong degradation in
performance of these configurations compared to the bigrams.
The degradation seems stronger with purely cross-stream
predictor sets and with their maximum number 4.

This finding is in sharp contrast with results obtained with BT
models applied in the time dimension where they seem to
consistently outperform the bigram performance due to a wider
context modeled and the advantage of structural flexibility [10].
To gain insight, we compared average entropy values of token
distributions in the permuted bigrams and the BT models on the
same training data. The comparison reveals a stark difference:
While the standard bigrams provide token distributions with
entropy averaging between 2 bits to 4 bits, the purely-cross-
stream BT models tend to be significantly “sharper” in
predictions with entropy values between 0.5 bits to 1 bit.
Obviously, the BT structures adapt to dependencies inherent
across the stream in such a way that observing certain contexts
causes very accurate prediction in the modeled stream, which
indeed is the objective of these models. General dependencies
across the phonetic streams, however, may not necessarily imply
strong speaker characteristics. In fact, if we could assume that
the five tokenizers’ outputs are completely correlated, then the
BT will describe these correlations for all speakers identically,
i.e., the models will lose speaker discriminancy despite strong
dependencies and thus high data likelihood. This leads to an
interesting conclusion regarding the cross-stream modeling: The
tokenizer-specific phone errors (i.e., substitutions, insertions, and
deletions), reflecting each speaker in a different and partially de-
correlated way, seem to be the contributing factor in the system.
Due to the fixed structure of n-grams and the fact that the
bigrams model only pairs of streams, these models do not adapt
to the actual (and in this case noisy) data dependencies and hence
are not as sensitive to the problem mentioned. This observation
further suggests that the original maximum likelihood objective
of the BT models, or any adaptive-structure model for that
matter, needs to be customized appropriately to reflect the fact
that speaker-specific phone dependencies may be contaminated
by dominant components carrying irrelevant tokenizer
correlations.

4. COMBINATION OF CROSS-STREAM AND
TIME DIMENSIONS

Modeling pronunciation dynamics in the cross-stream dimension
is expected to carry complementary information to that in the
time dimension and, hence, potentially can improve performance
when combined. A simple linear combination was used to fuse
the recognition scores from both systems. Figure 5 compares the
performance of the time dimension system, cross-stream
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dimension system, and combination systems for the 8-
conversation training condition. Bigrams were used in both
systems. The EER of the combination is reduced to 3.6%,
compared to 8.4% in the time dimension alone and 4.0% in the
cross-stream dimension alone. Figure 6 shows the performance
of the system using the BT models in the time dimension alone
[10], the performance of the system using bigrams in cross-
stream dimension alone, and the performance of combining both
systems for the §-conversation training condition. The EER of
the combination is further reduced to 3.0%, compared to 3.4% in
the time dimension and 4.0% in the cross-stream dimension.
Both experimental results indicate that the two dimensions do
contain complementary information.
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Figure 5: Combination of the Cross-stream Dimension (bigram)
with the Time Dimension (bigram)
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Figure 6: Combination of the Cross-stream Dimension (bigram)
with Time Dimension (BT)

As described in previous sections, we modeled the speakers’
pronunciation patterns in the time and cross-stream dimensions
independently under the assumption that token dependencies are
related to how a speaker pronounces specific sounds. However,
there may exist token or phone dependencies across both the
time and the cross-stream dimensions, such as the EG phone at
time t+1 strongly dependent on the JA phone at time t-1.
Moreover, our linear combination experiments showed that both
dimensions contain complementary knowledge. Therefore, an
appropriate modeling approach is desired to more efficiently
capture a speaker’s distinguishing pronunciation dynamics in
both dimensions simultaneously. Graphical models provide a

general framework for capturing information from both
dimensions simultaneously. Future investigations will apply
graphical models for learning the pronunciation dynamics in both
dimensions and discovering what underlying dependencies
graphical models capture.

5. CONCLUSIONS

In this paper we introduced the concept of phonetic speaker
recognition in the cross-stream dimension. Bigram modeling of
the phone dependencies across tokenizers in multiple languages
achieves 4% EER, a significant improvement over 8.4% EER in
the time dimension on the NIST 2001 Speaker Recognition
Evaluation Extended Data Task. A linear combination of systems
in both dimensions at the score level reduces the EER to 3%,
which indicates that the information captured in the cross-stream
dimension is complementary to that in the time dimension.
Therefore, using graphical models, among others, there is
potential for improving the performance further by modeling the
information in both dimensions simultaneously. Our preliminary
experiments involving binary tree models with adaptive
structures applied to the cross-stream dimension indicate the
need for a modified training objective as an alternative to the
standard maximum likelihood criterion to focus on the speaker
discriminative information in this dimension.
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