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ABSTRACT

Recent work in phonetic speaker recognition has shown
that modeling phone sequences using n-grams is a viable
and effective approach to speaker recognition, primarily
aiming at capturing speaker-dependent pronunciation and
also word usage. This paper describes a method involving
binary-tree-structured statistical models for extending the
phonetic context beyond that of standard n-grams (particu-
larly bigrams) by exploiting statistical dependencies within
a longer sequence window without exponentially increasing
the model complexity, as is the case with n-grams. Two
ways of dealing with data sparsity are also studied; namely,
model adaptation and a recursive bottom-up smoothing
of symbol distributions. Results obtained under a variety
of experimental conditions using the NIST 2001 Speaker
Recognition Extended Data Task indicate consistent im-
provements in equal-error rate performance as compared to
standard bigram models. The described approach confirms
the relevance of long phonetic context in phonetic speaker
recognition and represents an intermediate stage between
short phone context and word-level modeling without the
need for any lexical knowledge, which suggests its language
independence.

1. INTRODUCTION

In recent years, the research area of automatic speaker
recognition has seen an increased interest in utilizing
sources of high-level speaker discriminative information in
order to complement widely and successfully used frame-
by-frame approaches exploiting only short-time acoustic in-
formation from the speech signal. Motivated by the work
of Doddington [3] on modeling idiolectal differences among
speakers by means of word n-grams, Andrews et al. [1] in-
vestigated n-gram modeling of phonetic units in sequences
automatically obtained from multiple phone recognizers for
speaker verification. The results of this work indicate that
such models effectively capture speaker characteristics com-
plementary to the short-time acoustic information that re-
late particularly to speaker-specific pronunciation of words
as well as word idiolect. Due to the fact that the phone rec-
ognizers do not apply any constraints on the search space
during decoding (such as grammars or pronunciation base-
forms), pronunciation differences propagate through the de-
coder and are reflected in variations of phones and their or-
dering. Viewed statistically, for example in terms of n-gram
probabilities, these variations can be observed as varying
statistical dependencies between phone tokens in the se-
quence and offer themselves for speaker-dependent model-
ing. Performance presented in [1] suggest that the depen-
dencies indeed carry a substantial speaker-dependent com-
ponent.

Phonetic speaker modeling using n-grams, however,

0-7803-7663-3/03/$17.00 ©2003 IEEE

IV -796

comes with a burden: in order to capture dependencies
within a reasonably long time window, the model order
needs to be chosen correspondingly high, incurring an ex-
ponential growth in the number of parameters. This leaves
three solutions: 1) provide sufficiently large amounts of
training data for each speaker, 2) decrease the model or-
der, or 3) use smoothing techniques. Smoothing techniques
have been extensively used in n-gram modeling; however,
the model order in practice is still limited to 2 (i.e., tri-
grams) or 1 (bigrams). Another weakness of the n-gram
model is its rigid structure, i.e., the way contexts (or histo-
ries) of the modeled tokens are partitioned. For example,
while certain phones preceding a token may belong to a
common category and hence would ideally be members of
the same (history) partition, the n-gram assigns separate
partitions for these alone because of their different labeling.

In this paper, we introduce a binary-tree modeling ap-
proach applied to phonetic speaker recognition that allows
for exploiting dependencies from longer contexts than that
of typical n-grams while keeping the number of free pa-
rameters under control. This binary-decision tree structure
is optimized using a maximum-likelihood training criterion
and provides flexible context clustering. Tree structured
models were successfully applied in language and speech
recognition previously [6, 2]. To deal with limited training
data and robustness issues, we also introduce an adapta-
tion step in creating the tree models as well as a recursive
smoothing technique.

2. BASELINE SYSTEM

N-grams are a standard language modeling technique
that approximates the probability of occurrence of a spo-
ken utterance A represented by a sequence of tokens (in
our case decoded phones) ai,...,ar up to the (N — 1)-th
order. Thus, bigram models (N = 2) imply the assumption
that the probability occurrence of a token depends solely
on the immediately preceding word. Due to the fact that
the n-gram model complexity increases exponentially with
the order, we restrict our considerations to bigrams and
trigrams for both the speaker and the background models.

The baseline system is a basic log-likelihood ratio detec-
tor. Five language- and gender-dependent open-loop pho-
netic recognizers are used to generate multiple language
phone sequences that represent multiple views of the in-
put speech signal [1]. Phonetic speaker recognition is per-
formed in three steps. First, the five phone recognizers
process the test speech utterance to produce multiple pho-
netic sequences. Then, the test sequence from each phone
recognizer is compared to the hypothesized speaker model
and a speaker-independent Universal Background Phone
Model (UBPM), corresponding to the appropriate phone
recognizer [1, 4. Finally, the scores from the hypothesized
speaker models and the UBPM are combined to form log-
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likelihood ratio (LLR) scores, again corresponding to each
phone recognizer. The five LLR scores are then fused to-
gether producing a single weighted score. The LLR score
of A, given a hypothesized speaker model M and a single
phone recognizer, is calculated as

LLR(A|M)

= log P(A|M) —log P(A|UBPM) (1)

3. BINARY-DECISION TREE MODELING

Let us consider a token sequence ay, ..., ar representing a
decoded utterance of a speaker and a particular token a; in
that sequence. The quality of a model with respect to a; is
measured by its power in predicting a; from a certain con-
text — represented by a set of predictor variables X. These
may be chosen according to some prior knowledge and are
typically selected to be the IV time slots preceding ay; i.e.,
At—N, .-, t—1. We now seek a model with a good overall
quality in predicting individual tokens from their respec-
tive contexts. For this purpose, we apply binary-decision
trees (BT) which provide a versatile and flexible structure.
Figure 1 illustrates the function of such a model consist-
ing of nonterminal nodes associated with a binary ques-
tion leading to either of two child nodes and terminal nodes
(leaves) that contain symbol distributions. Certain selected
N time-slots of the phone sequence are denoted predictors,
Xi,..., X~ and are taken into account in the binary ques-
tions. The probability of a token a; given its context can be
obtained from the BT model by successively using appropri-
ate predictor values to answer the binary questions at each
node until a leaf node with a symbol distribution is reached,
as exemplified in Figure 1. Obviously, for a given sequence
the predictor values determine the path through the tree
structure and thus effectively determine the distribution to
be used for a;. Hereby a wvariable context clustering is eas-
ily achieved by including multiple predictor values into the
subsets at each node.

To determine the tree structure and parameters, some
applications, such as acoustic context modeling in speech
recognition [7], are motivated by linguistically based
schemes designed by an expert. Because the BT struc-
ture can vary from speaker to speaker and no straightfor-
ward rules can be determined for phone sequences a priori
for speaker modeling, a fully data-driven BT building algo-
rithm appears necessary. We seek to create a speaker model
with the objective of attaining a high average prediction
power which is expressed by means of average prediction
entropy of the BT leaf distributions. Here, low entropy,

e.g. predicting unique symbols, corresponds to the desir-
able prediction property and vice versa (e.g. predicting all
symbols with same probability). Defining the entropy for a
distribution of a symbol set A at a leaf | as

= z Py(si)log, Pi(s:) (2)

8;EA

the average BT prediction entropy is then
H=Y P-H 3)
1

with P; denoting the prior probability of visiting the leaf [,
and P;(s) the probability of observing a symbol s at that
leaf. The measure (3) is to be minimized in the course of
building the BT model. During this process the probabil-
ities P;(s;) and P, are not known and have to be replaced

by estimates, P;(s;) and P;, obtained from a training sam-
ple ai,...,ar. Assuming a BT model structure with certain
parameters leads to partitioning of the training data into L
leaves, each containing a data partition «;, then the sample
distribution estimates are calculated from counts as follows:

Bis) = #00 @
A=l ©)

3y lel

with #(s;|a;) being the a; count at leaf I, and |a;| the
total symbol count at I. On the other hand, the average
training data likelihood given a BT model can be computed
as follows:

L = TZogz (at| BT) (6)
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Thus, by replacing P;(s;) with the estimate (4), the measure
(3) and (7) are in a relationship

L=—H (8)

Hence, building the BT model so as to minimize the overall
prediction entropy identically maximizes the likelihood of
the training data.

The remaining problem of finding an optimum tree struc-
ture and the corresponding node questions is solved by ap-
plying a greedy search algorithm at each node, combined
with a recursive procedure for creating tree nodes. To limit
the otherwise extensive search space, we restrict the binary
questions to be elementary expressions involving a single
predictor, rather than allowing for composite expressions.
Stated in principal steps the tree building algorithm is as
follows:

1. Let ¢ be the current node of the tree. Initially ¢ is the

root.

2. For each predictor variable X;(7 = 1, ..., N) find the sub-
set S{ which minimizes the average conditional entropy
of the symbol distribution Y at node ¢

H(Y | “X; € S¢7)

=-P(X;€S7|c) Y P(s; | c,X; €8§) x
sjEA
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x log, P(Sj | ¢, X; € SZC)
—P(Xi ¢S7]c) Y P(sj|ec,Xi ¢SF) x

s;EA
X logy P(5; | ¢, X; ¢ S5). ©)

where S§ denotes a subset of phones at node c.

3. Determine which of the N questions derived in Step 2
leads to the lowest entropy. Let this be question k, i.e.,

k=argmin H.(Y | “X; € S{7)
2

4. The reduction in entropy at node ¢ due to question & is
Re(k) = H.(Y) — Hc(Y | “Xx € S7?),

where

H(Y) ==Y P(sj|c)logs P(s; | c).
SjEA

If this reduction is “significant,” store question k, cre-
ate two descendant nodes, ¢ and ¢z, pass the data cor-
responding to the conditions X}, € S{ and X, ¢ S5, and
repeat Steps 2-4 for each of the new nodes separately.

Simply stated, the algorithm seeks a data split at each
node such that the average entropy of the two data subsets
due to that split significantly reduces the entropy of total
data before the split. The entropy reduction is considered
significant relative to some threshold effectively determining
the size of the tree model to be grown.

In order to determine the phone subset S in Step 2 the
following greedy algorithm was applied:

1. Let S be empty.

2. Insert into S the phone a € A (A being the phonetic
set) which leads to the greatest reduction in the av-
erage conditional entropy (9). If no a € A leads to a
reduction, make no insertion.

3. Delete from S any member a, if so doing leads to a
reduction in the average conditional entropy.

4. If any insertions or deletions were made to S, return to
Step 2.

In addition to the significance criterion in Step 4 of the
tree building we implement an occupancy constraint. Sys-
tematic data sparseness may occur with too low significance
thresholds due to the recursive partitioning, thus leading to
poor entropy estimates and consequently to overtraining.
The occupancy constraint is applied in evaluating each po-
tential split during the search, discarding split hypotheses
not fitting this constraint. Furthermore, in order to pre-
vent overtraining by modeling training data particularities,
we apply cross-evaluation in Step 4 of the tree growing us-
ing a separate held-out set when computing the reduction

C

3.1. Data Sparseness Issues

Applying the leaf occupancy constraint causes the BT mod-
els to grow adaptively with respect to not only the intrinsic
data properties, but also the data set size. The latter may
become a problem with small training data amounts for
which the growing process may terminate with only a few
leaf nodes, resulting in extremely coarse models.

Furthermore, even in sufficiently large training sets,
sparseness of symbols in certain contexts may exist. In
the following, we describe two approaches to mitigate these
problems.

8.1.1. Leaf Adaptation

In case of sparse training data for an individual speaker,
a speaker-independent (SI) BT model built from sufficient
amounts of data can provide a robust tree structure (i.e., the
nonterminal nodes) as a fixed basis for creating the speaker
model by adaptation. Herein, the speaker training set is
partitioned according to the fixed structure and the leaf
distributions are updated using the new partitions. Let

Yo = {151(3]')}3].6,4 denote a leaf distribution estimate of

the SI model, #(s;|a;) the count of s; tokens in the leaf
partition g, and |og| the leaf token count of the speaker

data. The updated leaf distribution Y; = {If’l(sj)’}s].eA is
then calculated as a linear interpolation

ﬁmn=wﬂ%?+a—wa/D (10)

with .
C__ #(sjlou
"= Flole +7 o

where D normalizes the adapted values to probabilities, and
r is an empirical value controling the strength of the update.
Such a BT model retains the context resolution of the SI
model, while describing the speaker-specific statistics. This
training scheme is particularly effective when the SI model
is used at the same time as the background model during
the likelihood ratio test in which symbols with too low an
observation count in certain contexts nearly cancel out due
to the identical tree structure.

3.1.2. Bottom-Up Recursive Smoothing

Despite sufficient token counts in a leaf overall, individual
symbols with unreliable estimates may still exist. A sym-
bolwise back-off or smoothing scheme with one or several
reliable estimates may be beneficial. The BT framework
offers a simple way of finding such estimates, namely by
backing-off to the parent distribution of a leaf. Each parent
distribution is a pool of both child distributions and there-
fore is more likely to contain more observations of a given
symbol. The back-off process can be repeated recursively
bottom up until either enough observation mass is collected
or the root node is reached. We suggest the following re-
cursive smoothing algorithm for calculating the probability
of a symbol a; = s; given its context X = {a¢t—n,...,at—1}:

1. Find the leaf [ using X. Set a node variable ¢ = [.
2. Calculate symbol probability Pameotn(s;) = bj Pu(s;) +

1 - bj)ﬁpa,(c)(Sj) where P,,.(c)(s;) is obtained by
repeating Step 2 with ¢ := par(c) recursively until
¢ =root.

Again, alinear interpolation scheme is used, whereby par(c)
denotes the parent node of ¢, and 7 is as in (11).

4. EXPERIMENTS

4.1. Database

The Extended Data Paradigm used in the framework of the
NIST 2001 Speaker Recognition Evaluation was adopted
in our experimental setup. As described in [8], the Ex-
tended Data Task comprises of the complete Switchboard-I
telephone-speech corpus partitioned into six splits to evalu-
ate the performance in a fashion similar to cross-validation.
Furthermore, five different training conditions with data
amounts consisting of 1, 2, 4, 8 and 16 conversation sides
(each of nominal length of 2.5 minutes) were considered.
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# Training Conversations
16 | 8 | 4]2| 1
[Avg # ofleaves [ 50 [ 29 [ 4 [ 1] 1 |

Table 1. Average speaker tree size for variable
training amounts (no adaptation)

4.2. Baseline Performance

The baseline bigram system was implemented using the
CMU Statistical Language Modeling toolkit (CMU-SLM).
A smoothing scheme by Katz [5], which combines Good-
Turing discounting with back-off, was used with a discount-
ing threshold of 7. Two UBPMs were created from splits 1-3
and 4-6, each used in evaluation of the respective excluded
partition sets. Furthermore, we include trigram baseline re-
sults obtained using a joint-probability system with pruning
described in [1]. In this system, all trigrams with an obser-
vation count lower than 500 were excluded from the scoring.
The final performance results of both systems were obtained
by pooling all six splits and combining the five decoder-
dependent streams with uniform weights as described in
Section 2.

4.3. Binary Trees System

The speaker BT models were examined in three configu-
rations: 1) Models with no smoothing, 2) with Bottom-
Up Recursive Smoothing (BURS), and 3) Adapted from a
background (BG) model with BURS. The BG BT model
was created in the same fashion as for n-grams described in
Section 4.2. The significance threshold was set such that the
BG BT possessed on the order of 200-400 leaves. The same
threshold along with an occupancy constraint of 5-|.4| = 250
produced unadapted BT models with an average ot 30 leaves
for 8-conversations training. In unadapted speaker models,
the occupancy constraint appeared to be active in almost
all split decisions, as opposed to the redundancy reduction
which tended to be more active in building the BG model
with large data amounts. Table 1 shows the average model
size (leaf count) for the five training conditions with no
adaptation. Lack of context resolution becomes obvious
for 4 or fewer training conversations due to the occupancy
constraint, compared to, for example, a bigram context res-
olution of 45 (for |A| = 45). The value of the adaptation
constant r in (11) seemed not critical in the range (0.5, 16)
and was set to 4 in all experiments, based on a small data
subset.

The maximum number of predictors NV considered in the
training was set to four. Most of the BT models tended to
use up to three preceding predictors, namely X1, Xo, X3 in
such a way that X; (i.e. immediately preceding) tended to
be chosen in splits earlier in the treee growing procedure
to split the data set, followed by X> and then X3 chosen
deeper for more detailed split decisions.

Figure 2 compares the performance of BT models with
and without adaptation and the bigram and trigram base-
lines in terms of the equal-error rate (EER) across training
conditions. A considerable improvement in BT performance
with adaptation can be seen for training conditions 4, 2, and
1, in which the resolution of unadapted models is insufficient
(see Table 1). With 8 and 16 conversations, the BT models
are able to further improve upon the trigrams due to their
extended context length and more flexible structure.

5. CONCLUSION

Binary-tree models represent a step towards flexible context
structuring and extension in phonetic speaker recognition,
consistently outperforming standard smoothed bigrams as
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Figure 2. The EER performance of the 5-tokenizer
system using BT models with and without adapta-
tion and n-grams

well as trigrams. Owur experiments show that the prob-
lems of data sparseness in speaker model training can be
addressed effectively by applying principles of adaptation
and smoothing for which the BT models offer a suitable
basis. Using smoothing and adaptation, a relative reduc-
tion in EER ranging between 10-60% compared to the best
n-gram system was achieved across the different training
conditions.
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