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ABSTRACT 

 
While there has been a long tradition of research seeking to use 
prosodic features, especially pitch, in speaker recognition 
systems, results have generally been disappointing when such 
features are used in isolation and only modest improvements 
have been seen when used in conjunction with traditional 
cepstral GMM systems.  In contrast, we report here on work 
from the JHU 2002 Summer Workshop exploring a range of 
prosodic features, using as testbed NIST’s 2001 Extended Data 
task. We examined a variety of modeling techniques, such as n-
gram models of turn-level prosodic features and simple vectors 
of summary statistics per conversation side scored by kth nearest-
neighbor classifiers. We found that purely prosodic models were 
able to achieve equal error rates of under 10%, and yielded 
significant gains when combined with more traditional systems. 
We also report on exploratory work on “conversational” 
features, capturing properties of the interaction across 
conversation sides, such as turn-taking patterns. 
 
 

1. INTRODUCTION 
 
State-of-the-art text-independent speaker recognition systems 
have traditionally used short-term low-level acoustic features, 
such as cepstra, with modeling via gaussian mixture models 
(GMMs) for the speakers [1].  Such systems perform very well, 
especially given limited training and test data.  However, they 
fail to model information about the speaker at many levels that 
might contribute to speaker recognition, such as word usage, 
prosodic characteristics, etc.  While there is a long tradition of 
exploring higher-level features for speaker recognition – 
especially the use of pitch and other prosodic markers (see, e.g., 
[2,3,4,5]) – systems incorporating them generally require 
significantly more data for adequate training (or impose other 
constraints, such as text-dependency). Consequently, their 
effectiveness has been limited in  evaluations such as NIST's 
annual series of speaker recognition tests, where systems have 
only 2 minutes of training data and 3-30 seconds of test. 
 In 2001, in response to growing interest in the use of 
higher-level features, NIST introduced the Extended Data task 
[6] based on the Switchboard-I corpus of conversational 
telephone speech.  Unlike the traditional speaker recognition 
tasks, the Extended Data task provided multiple whole 
conversation sides for speaker training (for up to about 45 
minutes of speech) and tested on whole conversation sides, thus 

enabling research on larger-scale features.  As described in the 
overview paper [7], a working group at the Johns Hopkins 2002 
Summer Workshops – the SuperSID team – assembled to 
systematically explore a wide range of features for Speaker ID 
using the Extended Data task as its testbed.  
 This paper and the companion paper [8] describe the 
group's explorations of prosodic features.  Here we focus on 
investigations of a diverse collection of prosodic features 
spanning many types of pitch, energy, and duration predictors.  
We also include a look at  modeling conversational patterns. The 
companion paper [8] describes experiments specifically 
exploring the modeling of pitch dynamics. 
 Our work on prosodic features was made possible in large 
part through the availability of SRI’s Prosodic Feature Database.  
This rich resource, originally designed for work on prosodic 
predictors for topic and sentence segmentation [9], includes 
frame-level pitch information for the full Switchboard-I corpus 
(raw pitch values, as well as SRI’s piecewise linear stylization of 
pitch contours and their lognormal tied-mixture (LTM) models 
for pitch – see [10]). In addition, it provides parallel arrays 
giving per-word values for a wide range of prosodic features, 
based on “truth” transcriptions force-aligned to the speech 
stream and on automatic speech recognition (ASR) output. 
 

2. PROSODIC SUMMARY STATISTICS 
 
To explore the value of various prosodic indicators to the 
speaker recognition task, we conducted a simple experiment 
using statistics collected on a per-conversation-side basis.   
 The main idea was, for each conversation side in the 
Switchboard-I corpus, to obtain a vector of  N features capturing 
various prosodic characteristics.  Each such vector – i.e. each 
conversation side’s statistics – can then be viewed as a point in 
an N-dimensional feature space, and the T training conversations 
per target speaker form a “cloud” of T such points.  Given a test 
conversation, we then compute the distance of its corresponding 
point to this target cloud and employ a kth nearest-neighbor 
classifier, comparing the distance to the target speaker cloud vs. 
the average distance to the data clouds for a collection of cohort 
(impostor) speakers.  The test/trial score is then the log 
likelihood ratio of target and average cohort distances. 
 
2.1. Prosodic Features 
 
We examined a total of 19 prosodic features, some directly 
provided in the SRI database (designed for speaker 
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normalization, but consequently providing good summary 
statistics for speakers' prosodic baselines) and others derived 
from the word-level data provided. The features fell into three 
main groups: 
 
6 related to word, phone, and segmental durations: 
• log(#frames/word) averaged over all words 
• log(#phones/word) averaged over all words 
• log(#frames/phone) averaged over non-silence phones 
• (#frames/phone)/(corpus average for that phone), averaged 

over non-silence phones 
• average length of word-internal voiced segments 
• average length of word-internal unvoiced segments 
 
5 related to pause durations and frequency: 
• relative frequency of “medium” (7-15 frame) pauses  
• relative frequency of “long” (16-99 frame) pauses 
• log(pause duration) averaged over “long” pauses 
• relative frequency of “turn-size” (>= 100 frame) pauses 
• log(pause duration) averaged over “turn-size” pauses 
 
8 related to pitch: 
• log(mean_F0) averaged over all words with (good, i.e. not 

halved or doubled) voiced frames 
• log(max_F0) averaged as for log(mean_F0) 
• log(min_F0) averaged as above 
• log(range_F0) averaged as above 
• pitch “pseudo-slope”: (last_F0 - first_F0) / (#frames in word), 

averaged as above 
• average (per word) slope over all segments of piecewise 

linear stylization of F0 
• model mean for log(F0) in the LTM model for pitch 
• the triple of weights (prob halving, prob whole, prob 

doubling) in the LTM pitch model. 
 
For those features described as “averages”, we computed both 
mean and standard deviation.  The distance metric used in the 
nearest-neighbor calculation was then a symmetrized Kullback-
Leibler distance computed from these statistics. 
 
2.2. Experimental Results 
 
We first explored the value of the various features in isolation, 
using only splits 1-3 of the Extended Data task (with splits 4-6 
used to provide the background/cohort speakers) and using only 
k=1 in the nearest-neighbor calculation.  The results are provided 
in Table 1, giving equal error rates (EER) for each of the features 
for the 8-training-side condition. 

We then examined various combinations of features.  Table 2 
gives EER’s for various groupings of features using all 6 splits 
combined.  For the results in the table, fusion of individual 
features was performed at the score level for each split, using a 
single-layer perceptron with weights trained from the 5 held-out 
splits.  The table shows the merged result for the 6 splits for the 
8-training-side condition, using k=3 in the nearest-neighbor 
computation, which improved slightly over the k=1 result.  
(Splits 1-3 used speakers in splits 4-6 for their cohort set and 
vice versa.) 

  
feature EER (%) 

log(#frames/word) 30.7 
log(#phones/word) 40.4 
log(#frames/phone) 24.1 
normalized #frames/phone 29.7 
voiced segment length 30.7 
unvoiced segment length 33.9 
medium pause rate 43.3 
long pause rate 36.1 
log(long pause duration) 38.9 
turn-size pause rate 39.7 
log(turn pause duration) 40.5 
log(mean_F0) 19.4 
log(max_F0) 20.2 
log(min_F0) 19.6 
log(range_F0) 31.5 
pitch “pseudo-slope” 31.8 
PWL slope average 32.0 
mean of LTM pitch model 21.7 
half/whole/double weights 30.8 

 

Table 1. EER’s for individual prosodic features, 
8-conv training (splits 1-3, 1st nearest-neighbor) 

 
feature set EER (%) 

6 word, phone, segment durations 18.9 
5 pause durations and rates 25.2 
8 pitch features 14.8 
11 duration features (6 speech + 5 silence) 15.2 
all 19 features 8.1 

 

Table 2. EER’s for prosodic feature combinations,  
8-conv training (splits 1-6, 3 nearest-neighbors) 

 
We examined several different forms of fusion (the single-

layer perceptron used above, simple linear average of scores with 
various weightings, feature vector concatenation, etc.) and 
different values of k in the nearest-neighbor computation.  While 
the actual EER values varied somewhat with the configuration, 
the general patterns held firm. 
 The results provided above used features drawn from the 
version of the SRI database based on truth transcripts and forced 
alignments.  For completeness, we also ran the analogous 
experiments for the ASR version of the database.  Not 
surprisingly, there was very little change in most results, since 
these features are largely independent of the actual word 
identities, using words primarily to chop up the data into units 
over which pitch and duration features were averaged.  Most 
EER’s based on ASR output fell within a point of those from 
truth transcripts. Overall the EER from the entire 19-feature 
ensemble went from 8.1% for the truth transcripts to 8.9% for 
the ASR-based features. 
 
2.3. Discussion 
 
Although the value of individual features, as presented in 
Table 1,  varies a great deal (with pitch features generally doing 
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best and pause features worst), taken together the set of pitch 
features and the set of duration features (including word, phone, 
segment, and pause) performed about the same: roughly 15% 
EER for each class.  Further, the information provided by the 
pitch and duration ensembles was highly complementary; when 
the two sets were combined the error was nearly halved, 
achieving about 8% EER altogether.  Clearly, even features that 
on their own are not strong predictors may contribute to what is 
in aggregate a powerful speaker discrimination system. 
 While these results are not as strong as those of more 
traditional systems using cepstral features or phone decodings, 
the use of prosodic features clearly adds new and useful 
information for the speaker recognition task. Indeed, as 
described in the overview paper [7], this system was often a 
contributor to the most profitable fusion systems, adding novel 
information not captured in more traditional acoustic approaches. 
 

3. CONVERSATIONAL PATTERNS 
 
We were also interested in the question of whether the system 
could learn a speaker’s “conversational style” – how he interacts 
with his conversational partners, through turn-taking patterns, 
prosodic features within a turn, etc. – rather than using a simple 
flat vector of summary statistics accumulated over the full 
conversation side. 
 
3.1.  Motivation: A Turn-Taking Model 
 
Our explorations in this area were motivated by work of Douglas 
Jones of MIT/LincolnLab, reported at NIST’s 2002 Speaker 
Recognition Workshop.  Jones modeled duration of speaker 
turns, alternating target talker with nontarget speaking partner 
(inferring turn-length for nontarget by the length of silence 
between target turns). 
 These turn durations were quantized using a log scale and 
then the conversation as a whole was encoded as a sequence of 
tokens of the form T-D1 N-D2 T-D3 N-D4 ...,  alternating target 
and nontarget durations, labeled by side.  The target model was 
trained as a simple bigram model on such tokens, collected over 
the target's training conversations, and the speaker recognition 
system employed a log likelihood ratio of the target bigram score 
vs. the score for a background model trained from the merged 
data from a collection of “background” speakers. 
 This basic model could be enhanced by expanding the 
target tokens to include a tag for the (log-scaled, quantized) 
number of words (W) and/or number of characters (C) in the 
target turn transcripts. (Such information is unavailable for the 
nontarget partner under the rules of the evaluation.) This yields 
an enriched sequence of the form: T-D1W1C1, N-D2, T-D3W3C3,  
N-D4, T-D5W5C5, ... 
 This simple turn-taking model was able to achieve an EER 
of 26% on the Extended Data task, using a bigram token model 
with 8-conversation training. (The EER was 3-4% higher if using 
only the duration without the text content expansion.) 
 
3.2. Technical Approach 
 
For the Summer Workshop, we examined a much larger range of 
features under a somewhat expanded technical plan. As in the 

turn-taking model above, we continued to focus on turn-level 
values and on n-gram modeling. 
 We examined a set of 33 features extracted on a per-turn 
basis, including features characterizing 
• turn-length: number of words, phones, frames, non-silence 

frames, and voiced frames 
• speaking rate: phones per second, both for the whole turn 

and excluding silences 
• durations: average and standard deviation of word and 

silence lengths in frames, number of phones per word 
• pitch and energy values: average and standard deviation for 

all frames, and for rising or for falling frames 
• pitch and energy dynamics:  number of frames where pitch 

(or energy) is rising, number of segments in the piecewise 
linear stylization, etc. 

Feature values were smoothed using linear interpolation between 
turn value and conversation-side average.  
 This  33-dimensional feature vector was then reduced to a 
lower-dimensional one. We first examined an approach using 
linear discriminant analysis, but found that we were better served 
by a naïve search of various feature combinations. 
 Next, the resulting vectors were quantized.  Again, we 
examined different approaches: using deciles in the feature 
distributions for each component to quantize the data, or 
clustering feature vectors using a GMM trained from held-out 
data and then assigning each vector the index of its maximum 
likelihood component. We explored GMMs ranging from 4 to 
128 components in order to study the trade-off between feature-
space resolution and n-gram model size. 
 The resulting quantized token sequences were then used to 
create n-gram models.  We examined unigrams, bigrams, and 
trigrams, and looked at sequences only involving target turns and 
at target-nontarget alternations.  (For the latter – unlike in formal 
evaluations – we allowed ourselves to look at the wavefile for 
the nontarget side of the conversation.)  
 
3.3. Experimental Results 
 
Table 3 shows the features we found (through heuristic search) 
to perform best, alone and in various combinations.  The results 
are provided for the decile-quantized data, and unigram target-
only models. 
 

feature EER (%) 
phones/sec (excluding silence) 26.9 
average log energy 28.6 
average log pitch 30.2 
average word length 34.2 
average number of words 35.6 
log pitch + log energy 21.0 
log pitch + log energy + phone rate 16.7 
log pitch + log energy + word length 18.0 
all 5 features above 18.3 

 

Table 3.  EER’s for best-performing turn-level features, 
8-conv training (test on split 1, with 4-6 for background)  

 
Table 4 compares unigram, bigram, and trigram results, as well 
as the cost of decreasing the amount of training data, for the best 
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feature combination seen above: the pitch + energy + phone rate 
combination.  The results are again for target-side n-grams only 
and here use a 128-component GMM for vector quantization. 
 

n-gram 2-conv 4-conv 8-conv 
unigram 20.9 17.3 15.2 
bigram 20.7 16.2 15.7 
trigram --- 18.0 16.3 

 

Table 4. EER’s for turn-level n-grams, as n and amount of 
training vary (test on split 1, with 4-6 as background) 

 
We also explored various ways of using information from the 
nontarget side, both through alternating n-grams as in Jones’ 
work and by building models for target features conditioned on 
features from the nontarget side.  However, in the experiments 
during the Workshop we were unable to improve on the pure-
target results: models incorporating nontarget features generally 
performed several percentage points worse than pure-target 
models. 
 
3.4. Discussion 
 
The above provides only a sampling of the many experiments 
performed over the course of the JHU Workshop.  Other 
experiments included an investigation of word usage models 
conditioned on the conversational partner's usage and 
experiments with higher-order n-grams and with nontarget 
conditioning using binary-tree models, but none thus far have 
improved on these results.   
 This work provides a better turn-level feature baseline, but 
not yet a benefit from incorporating turn-taking patterns relative 
to that baseline. This may be due in part to the insufficient 
sampling of the “conversational space” available in Switchboard 
– too few speaking partners, or conversations too short or 
artificial to elicit natural speaking partner influences.  It may also 
suffer from the automatic turn labeling provided in the SRI 
database, which did not conform to the turn units as labeled by 
human transcribers.  In this respect, Jones' use of silences may be 
a more promising mechanism for automatic turn delimiting.  
Nonetheless, we find the area of style-related features an 
intriguing area for research and believe that it offers significant 
promise both for the speaker recognition task and for the finer-
grained task of identifying particular conversations or 
conversational segments of interest.   
 

4. CONCLUSIONS 
 
The work of the SuperSID team on prosodic and conversational 
features surveyed a variety of prosodic predictors and of speaker 
modeling techniques.  We were able to achieve equal error rates 
in the single digits on NIST's Extended Data task using purely 
prosodic models involving simple vectors of conversation-level 
summary statistics. 
 The experiments reported here represent a preliminary look 
at prosodic modeling using easily extracted (or already surfaced) 
features from the SRI database.  However, that database was 
designed for applications to sentence and topic segmentation and 
so is primarily focused on word-level (actually, “between word”) 

phenomena rather than on characterizing speakers’ overall 
patterns. Despite this limitation, we found the database a wealth 
of useful information and were able to demonstrate significant 
progress by incorporating prosodic features into the speaker 
recognition task.  But we believe there are many more features 
that may be of interest and that should hold greater value for 
speaker recognition.   
 Our exploration of turn-taking patterns and conversational 
“style” is still very much a work in progress.  While we were 
able to markedly reduce the error rate from Jones' initial study by 
enriching the set of turn-level prosodic features, we have not yet 
demonstrated any improvement from incorporating knowledge 
based on interaction with the conversational partner. However, 
we believe that this is fertile ground for future work. We look 
forward to continued work in this area and to the collection of 
new speaker recognition corpora geared toward speaking style 
that might better support this type of research. 
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