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ABSTRACT

While there has been a long tradition of research seeking to use
prosodic features, especially pitch, in speaker recognition
systems, results have generally been disappointing when such
features are used in isolation and only modest improvements
have been seen when used in conjunction with traditional
cepstral GMM systems. In contrast, we report here on work
from the JHU 2002 Summer Workshop exploring a range of
prosodic features, using as testbed NIST’s 2001 Extended Data
task. We examined a variety of modeling techniques, such as n-
gram models of turn-level prosodic features and simple vectors
of summary statistics per conversation side scored by k™ nearest-
neighbor classifiers. We found that purely prosodic models were
able to achieve equal error rates of under 10%, and yielded
significant gains when combined with more traditional systems.
We also report on exploratory work on “conversational”
features, capturing properties of the interaction across
conversation sides, such as turn-taking patterns.

1. INTRODUCTION

State-of-the-art text-independent speaker recognition systems
have traditionally used short-term low-level acoustic features,
such as cepstra, with modeling via gaussian mixture models
(GMMs) for the speakers [1]. Such systems perform very well,
especially given limited training and test data. However, they
fail to model information about the speaker at many levels that
might contribute to speaker recognition, such as word usage,
prosodic characteristics, etc. While there is a long tradition of
exploring higher-level features for speaker recognition —
especially the use of pitch and other prosodic markers (see, e.g.,
[2,3,4,5]) — systems incorporating them generally require
significantly more data for adequate training (or impose other
constraints, such as text-dependency). Consequently, their
effectiveness has been limited in evaluations such as NIST's
annual series of speaker recognition tests, where systems have
only 2 minutes of training data and 3-30 seconds of test.

In 2001, in response to growing interest in the use of
higher-level features, NIST introduced the Extended Data task
[6] based on the Switchboard-I corpus of conversational
telephone speech. Unlike the traditional speaker recognition
tasks, the Extended Data task provided multiple whole
conversation sides for speaker training (for up to about 45
minutes of speech) and tested on whole conversation sides, thus
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enabling research on larger-scale features. As described in the
overview paper [7], a working group at the Johns Hopkins 2002
Summer Workshops — the SuperSID team — assembled to
systematically explore a wide range of features for Speaker ID
using the Extended Data task as its testbed.

This paper and the companion paper [8] describe the
group's explorations of prosodic features. Here we focus on
investigations of a diverse collection of prosodic features
spanning many types of pitch, energy, and duration predictors.
We also include a look at modeling conversational patterns. The
companion paper [8] describes experiments specifically
exploring the modeling of pitch dynamics.

Our work on prosodic features was made possible in large
part through the availability of SRI’s Prosodic Feature Database.
This rich resource, originally designed for work on prosodic
predictors for topic and sentence segmentation [9], includes
frame-level pitch information for the full Switchboard-I corpus
(raw pitch values, as well as SRI’s piecewise linear stylization of
pitch contours and their lognormal tied-mixture (LTM) models
for pitch — see [10]). In addition, it provides parallel arrays
giving per-word values for a wide range of prosodic features,
based on “truth” transcriptions force-aligned to the speech
stream and on automatic speech recognition (ASR) output.

2. PROSODIC SUMMARY STATISTICS

To explore the value of various prosodic indicators to the
speaker recognition task, we conducted a simple experiment
using statistics collected on a per-conversation-side basis.

The main idea was, for each conversation side in the
Switchboard-I corpus, to obtain a vector of N features capturing
various prosodic characteristics. Each such vector — i.e. each
conversation side’s statistics — can then be viewed as a point in
an N-dimensional feature space, and the T training conversations
per target speaker form a “cloud” of 7 such points. Given a test
conversation, we then compute the distance of its corresponding
point to this target cloud and employ a kM nearest-neighbor
classifier, comparing the distance to the target speaker cloud vs.
the average distance to the data clouds for a collection of cohort
(impostor) speakers. The test/trial score is then the log
likelihood ratio of target and average cohort distances.

2.1. Prosodic Features

We examined a total of 19 prosodic features, some directly
provided in the SRI database (designed for speaker
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normalization, but consequently providing good summary
statistics for speakers' prosodic baselines) and others derived
from the word-level data provided. The features fell into three
main groups:

6 related to word, phone, and segmental durations:

* log(#frames/word) averaged over all words

* log(#phones/word) averaged over all words

* log(#frames/phone) averaged over non-silence phones

e (#frames/phone)/(corpus average for that phone), averaged
over non-silence phones

* average length of word-internal voiced segments

e average length of word-internal unvoiced segments

5 related to pause durations and frequency:

* relative frequency of “medium” (7-15 frame) pauses

* relative frequency of “long” (16-99 frame) pauses

¢ log(pause duration) averaged over “long” pauses

¢ relative frequency of “turn-size” (>= 100 frame) pauses
* log(pause duration) averaged over “turn-size” pauses

8 related to pitch:

¢ log(mean_F,) averaged over all words with (good, i.e. not
halved or doubled) voiced frames

* log(max_F) averaged as for log(mean_F)

¢ log(min_F,) averaged as above

¢ log(range F,) averaged as above

e pitch “pseudo-slope”: (last_F; - first_F) / (#frames in word),
averaged as above

e average (per word) slope over all segments of piecewise
linear stylization of Fy

¢ model mean for log(F,) in the LTM model for pitch

 the triple of weights (prob halving, prob whole, prob
doubling) in the LTM pitch model.

For those features described as “averages”, we computed both
mean and standard deviation. The distance metric used in the
nearest-neighbor calculation was then a symmetrized Kullback-
Leibler distance computed from these statistics.

2.2. Experimental Results

We first explored the value of the various features in isolation,
using only splits 1-3 of the Extended Data task (with splits 4-6
used to provide the background/cohort speakers) and using only
k=1 in the nearest-neighbor calculation. The results are provided
in Table 1, giving equal error rates (EER) for each of the features
for the 8-training-side condition.

We then examined various combinations of features. Table 2
gives EER’s for various groupings of features using all 6 splits
combined. For the results in the table, fusion of individual
features was performed at the score level for each split, using a
single-layer perceptron with weights trained from the 5 held-out
splits. The table shows the merged result for the 6 splits for the
8-training-side condition, using k=3 in the nearest-neighbor
computation, which improved slightly over the k=1 result.
(Splits 1-3 used speakers in splits 4-6 for their cohort set and
vice versa.)

feature EER (%)
log(#frames/word) 30.7
log(#phones/word) 40.4
log(#frames/phone) 24.1
normalized #frames/phone 29.7
voiced segment length 30.7
unvoiced segment length 33.9
medium pause rate 43.3
long pause rate 36.1
log(long pause duration) 38.9
turn-size pause rate 39.7
log(turn pause duration) 40.5
log(mean_Fy) 19.4
log(max_F) 20.2
log(min_F,) 19.6
log(range F) 31.5
pitch “pseudo-slope” 31.8
PWL slope average 32.0
mean of LTM pitch model 21.7
half/whole/double weights 30.8

Table 1. EER’s for individual prosodic features,
8-conv training (splits 1-3, 1* nearest-neighbor)

feature set EER (%)
6 word, phone, segment durations 18.9
5 pause durations and rates 25.2
8 pitch features 14.8
11 duration features (6 speech + 5 silence) 15.2
all 19 features 8.1

Table 2. EER’s for prosodic feature combinations,
8-conv training (splits 1-6, 3 nearest-neighbors)

We examined several different forms of fusion (the single-
layer perceptron used above, simple linear average of scores with
various weightings, feature vector concatenation, etc.) and
different values of k in the nearest-neighbor computation. While
the actual EER values varied somewhat with the configuration,
the general patterns held firm.

The results provided above used features drawn from the
version of the SRI database based on truth transcripts and forced
alignments. For completeness, we also ran the analogous
experiments for the ASR version of the database. Not
surprisingly, there was very little change in most results, since
these features are largely independent of the actual word
identities, using words primarily to chop up the data into units
over which pitch and duration features were averaged. Most
EER’s based on ASR output fell within a point of those from
truth transcripts. Overall the EER from the entire 19-feature
ensemble went from 8.1% for the truth transcripts to 8.9% for
the ASR-based features.

2.3. Discussion

Although the value of individual features, as presented in
Table 1, varies a great deal (with pitch features generally doing

IV -793




best and pause features worst), taken together the set of pitch
features and the set of duration features (including word, phone,
segment, and pause) performed about the same: roughly 15%
EER for each class. Further, the information provided by the
pitch and duration ensembles was highly complementary; when
the two sets were combined the error was nearly halved,
achieving about 8% EER altogether. Clearly, even features that
on their own are not strong predictors may contribute to what is
in aggregate a powerful speaker discrimination system.

While these results are not as strong as those of more
traditional systems using cepstral features or phone decodings,
the use of prosodic features clearly adds new and useful
information for the speaker recognition task. Indeed, as
described in the overview paper [7], this system was often a
contributor to the most profitable fusion systems, adding novel
information not captured in more traditional acoustic approaches.

3. CONVERSATIONAL PATTERNS

We were also interested in the question of whether the system
could learn a speaker’s “conversational style” —how he interacts
with his conversational partners, through turn-taking patterns,
prosodic features within a turn, etc. — rather than using a simple
flat vector of summary statistics accumulated over the full
conversation side.

3.1. Motivation: A Turn-Taking Model

Our explorations in this area were motivated by work of Douglas
Jones of MIT/LincolnLab, reported at NIST’s 2002 Speaker
Recognition Workshop. Jones modeled duration of speaker
turns, alternating target talker with nontarget speaking partner
(inferring turn-length for nontarget by the length of silence
between target turns).

These turn durations were quantized using a log scale and
then the conversation as a whole was encoded as a sequence of
tokens of the form T-D; N-D, T-D; N-D;, ..., alternating target
and nontarget durations, labeled by side. The target model was
trained as a simple bigram model on such tokens, collected over
the target's training conversations, and the speaker recognition
system employed a log likelihood ratio of the target bigram score
vs. the score for a background model trained from the merged
data from a collection of “background” speakers.

This basic model could be enhanced by expanding the
target tokens to include a tag for the (log-scaled, quantized)
number of words (W) and/or number of characters (C) in the
target turn transcripts. (Such information is unavailable for the
nontarget partner under the rules of the evaluation.) This yields
an enriched sequence of the form: T-D;W,C,, N-D,, T-D;W;C5
N-Dy, T-DsW;Cs, ...

This simple turn-taking model was able to achieve an EER
of 26% on the Extended Data task, using a bigram token model
with 8-conversation training. (The EER was 3-4% higher if using
only the duration without the text content expansion.)

3.2. Technical Approach

For the Summer Workshop, we examined a much larger range of
features under a somewhat expanded technical plan. As in the

turn-taking model above, we continued to focus on turn-level
values and on n-gram modeling.
We examined a set of 33 features extracted on a per-turn
basis, including features characterizing
e turn-length: number of words, phones, frames, non-silence
frames, and voiced frames

* speaking rate: phones per second, both for the whole turn
and excluding silences

* durations: average and standard deviation of word and
silence lengths in frames, number of phones per word

e pitch and energy values: average and standard deviation for
all frames, and for rising or for falling frames

e pitch and energy dynamics: number of frames where pitch
(or energy) is rising, number of segments in the piecewise
linear stylization, etc.

Feature values were smoothed using linear interpolation between

turn value and conversation-side average.

This 33-dimensional feature vector was then reduced to a
lower-dimensional one. We first examined an approach using
linear discriminant analysis, but found that we were better served
by a naive search of various feature combinations.

Next, the resulting vectors were quantized. Again, we
examined different approaches: using deciles in the feature
distributions for each component to quantize the data, or
clustering feature vectors using a GMM trained from held-out
data and then assigning each vector the index of its maximum
likelihood component. We explored GMMs ranging from 4 to
128 components in order to study the trade-off between feature-
space resolution and n-gram model size.

The resulting quantized token sequences were then used to
create n-gram models. We examined unigrams, bigrams, and
trigrams, and looked at sequences only involving target turns and
at target-nontarget alternations. (For the latter — unlike in formal
evaluations — we allowed ourselves to look at the wavefile for
the nontarget side of the conversation.)

3.3. Experimental Results

Table 3 shows the features we found (through heuristic search)
to perform best, alone and in various combinations. The results
are provided for the decile-quantized data, and unigram target-
only models.

feature EER (%)
phones/sec (excluding silence) 26.9
average log energy 28.6
average log pitch 30.2
average word length 34.2
average number of words 35.6
log pitch + log energy 21.0
log pitch + log energy + phone rate 16.7
log pitch + log energy + word length 18.0
all 5 features above 18.3

Table 3. EER’s for best-performing turn-level features,
8-conv training (test on split 1, with 4-6 for background)

Table 4 compares unigram, bigram, and trigram results, as well
as the cost of decreasing the amount of training data, for the best
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feature combination seen above: the pitch + energy + phone rate
combination. The results are again for target-side n-grams only
and here use a 128-component GMM for vector quantization.

n-gram 2-conv 4-conv 8-conv
unigram 20.9 17.3 15.2
bigram 20.7 16.2 15.7
trigram --- 18.0 16.3

Table 4. EER’s for turn-level n-grams, as n and amount of
training vary (test on split 1, with 4-6 as background)

We also explored various ways of using information from the
nontarget side, both through alternating n-grams as in Jones’
work and by building models for target features conditioned on
features from the nontarget side. However, in the experiments
during the Workshop we were unable to improve on the pure-
target results: models incorporating nontarget features generally
performed several percentage points worse than pure-target
models.

3.4. Discussion

The above provides only a sampling of the many experiments
performed over the course of the JHU Workshop. Other
experiments included an investigation of word usage models
conditioned on the conversational partner's usage and
experiments with higher-order n-grams and with nontarget
conditioning using binary-tree models, but none thus far have
improved on these results.

This work provides a better turn-level feature baseline, but
not yet a benefit from incorporating turn-taking patterns relative
to that baseline. This may be due in part to the insufficient
sampling of the “conversational space” available in Switchboard
— too few speaking partners, or conversations too short or
artificial to elicit natural speaking partner influences. It may also
suffer from the automatic turn labeling provided in the SRI
database, which did not conform to the turn units as labeled by
human transcribers. In this respect, Jones' use of silences may be
a more promising mechanism for automatic turn delimiting.
Nonetheless, we find the area of style-related features an
intriguing area for research and believe that it offers significant
promise both for the speaker recognition task and for the finer-
grained task of identifying particular conversations or
conversational segments of interest.

4. CONCLUSIONS

The work of the SuperSID team on prosodic and conversational
features surveyed a variety of prosodic predictors and of speaker
modeling techniques. We were able to achieve equal error rates
in the single digits on NIST's Extended Data task using purely
prosodic models involving simple vectors of conversation-level
summary statistics.

The experiments reported here represent a preliminary look
at prosodic modeling using easily extracted (or already surfaced)
features from the SRI database. However, that database was
designed for applications to sentence and topic segmentation and
so is primarily focused on word-level (actually, “between word”)

phenomena rather than on characterizing speakers’ overall
patterns. Despite this limitation, we found the database a wealth
of useful information and were able to demonstrate significant
progress by incorporating prosodic features into the speaker
recognition task. But we believe there are many more features
that may be of interest and that should hold greater value for
speaker recognition.

Our exploration of turn-taking patterns and conversational
“style” is still very much a work in progress. While we were
able to markedly reduce the error rate from Jones' initial study by
enriching the set of turn-level prosodic features, we have not yet
demonstrated any improvement from incorporating knowledge
based on interaction with the conversational partner. However,
we believe that this is fertile ground for future work. We look
forward to continued work in this area and to the collection of
new speaker recognition corpora geared toward speaking style
that might better support this type of research.
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