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ABSTRACT

Most current state-of-the-art automatic speaker recognition
systems extract speaker-dependent features by looking at short-
term spectral information. This approach ignores long-term
information that can convey supra-segmental information, such as
prosodics and speaking style. We propose two approaches that
use the fundamental frequency and energy trajectories to capture
long-term information. The first approach uses bigram models to
model the dynamics of the fundamental frequency and energy
trajectories for each speaker. The second approach uses the
fundamental frequency trajectories of a pre-defined set of words
as the speaker templates and then, using dynamic time warping,
computes the distance between the templates and the words from
the test message. The results presented in this work are on
Switchboard I using the NIST Extended Data evaluation design.
We show that these approaches can achieve an equal error rate of
3.7%, which is a 77% relative improvement over a system based
on short-term pitch and energy features alone.

1. INTRODUCTION

Current speaker recognition systems are based primarily on
modeling the distributions of short-term spectral features [1].
While these systems produce very good performance, they ignore
many other aspects of the speech signal that convey speaker
information, such as prosodic information from pitch and energy
contours. However, it is clear from results in several published
studies (e.g., [2, 3, 4, 5] and their references) that prosodic
information can be used to effectively improve performance of
and add robustness to speaker recognition systems.

Prosodic information has been applied in two main ways. In
the first approach, global statistics of some prosodic-based
feature are estimated and compared between two utterances. The
most common example is comparing the mean and standard
deviation of the fundamental frequency between enrollment and
test utterances [3]. Alternatively, the prosodic feature may be
appended to standard spectral-based features and used in
traditional distribution modeling systems. One potential problem
with this global statistics approach is that it does not adequately
capture the temporal dynamic information of the prosodic feature
sequence. This has been addressed in part by using statistics of
feature time derivatives and dynamic features derived from
segments [2]. The second approach is aimed at explicitly
representing and comparing the temporal trajectory of the
prosodic contours. The classic example of this approach is
applying dynamic time warping (DTW) to compare the pitch
contours between two utterances of the same text [6]. This
approach has the advantage of potentially being able to capture
idiosyncratic speaker-specific temporal dynamic events, but
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generally requires comparison of the same spoken text to be
effective. Due to the lack of control of the spoken text, text-
independent applications have generally been limited to using
global statistical approaches.

In this paper, we present two new approaches that
demonstrate effective ways to model and apply prosodic contours
for text-independent speaker verification tasks. The first approach
uses the relation between dynamics of the fundamental frequency
(f0) and energy trajectories to characterize the speaker’s identity.
The motivation is that the dynamics of both trajectories can
jointly represent certain prosodic gestures that are characteristic
of a particular speaker. In addition, the dynamics can also capture
the speaking style (for example, excited or monotone) of the
speaker. The second approach capitalizes on the increasing
accuracy of speech recognition systems on conversational speech
to allow explicit template matching of the f0 contours of a
predefined set of words and phrases. The motivation is to capture
speaker characteristic accent and intonation information from a
known set of frequently and naturally occurring words found in
conversational speech. For the rest of the paper, we are going to
refer to both approaches as prosodic systems.

This paper is organized as follows. In Section 2, we describe
the NIST Extended Data Task and the prosodic feature database
used in this paper. We then describe systems and performance for
a baseline system using simple f0 and energy distributions
followed by descriptions of the new approaches using f0 and
energy contour dynamics and the text-constrained f0 contour
matching. In Section 6, we present some fusion results that
demonstrate that these new approaches are producing
complementary and beneficial information to the speaker
recognition task.

2. NIST EXTENDED DATA TASK

The work presented in this paper was developed as part of the
SuperSID project [7] in the 2002 JHU Summer Workshop. For
this project, the development focus was on the Extended Data
Task from the 2001 NIST Speaker Recognition Evaluation'. This
task was introduced to allow exploration and development of
techniques that can exploit significantly more training data than
traditionally used in NIST evaluations. For this task, speaker
models were trained using 1,2,4,8, and 16 complete conversation
halves (where a conversation half is nominally 2.5 minutes long,
as opposed to only 2 minutes of training speech. A complete
conversation half was used for testing. The 2001 Extended Data
Task used the entire Switchboard I conversational, telephone
speech corpus in a cross-validation procedure to obtain a large

" The 2001 NIST Speaker Recognition Evaluation
website:http://www.nist.gov/speech/tests/spk/2001
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number target and nontarget trials for the different training
conditions.

One reason for focusing on this task was the availability of
the SRI prosody database [8]. The SRI database provides time-
aligned word and phone transcripts in addition to a wealth of
standard and unique prosodic features (0, pauses, duration, etc.)
for the Switchboard I corpus. The f0 and energy features used in
this paper were obtained from the SRI prosody database.

The performance measure used to evaluate the described
systems is the equal error rate (EER). It represents the system
performance when the false acceptance rate (accepting an
impostor) is equal to the missed detection rate (rejecting a true
speaker). The system results are compared using the target
models with 8 conversation halves.

3. BASELINE F0 AND ENERGY DISTRIBUTIONS

A baseline system was developed that used global distributions of
energy and fO0 features. For each voiced frame, a four-
dimensional feature vector consisting of log f0, log energy, and
their first-order derivatives estimated over a 5-frame context was
created. The first two frames and the last two frames of a voiced
segment are discarded to avoid discontinuities in the derivative
computations. These features were used to train a likelihood ratio
detector consisting of a speaker-independent universal
background model (UBM) and a speaker-dependent target
speaker model [1]. The UBM is a 512-component Gaussian
Mixture Model trained with gender-balanced speech from cross-
validation partitions not under test". The target speaker models
are derived by adapting the UBM with the speaker’s data. In the
testing phase, a likelihood ratio score is obtained as the ratio
between the target speaker model and the UBM likelihood scores
given a test message. The EER of the baseline for the 8-
conversation training condition is 16.3%.

4. MODELING F0 AND ENERGY CONTOUR DYNAMICS

With prosody, as with other aspects of spoken language, speaker
information may be found in both static and dynamic forms and
may originate from anatomical, physiological, or behavioral
differences among individuals. The baseline system experiment
described in Section 3 shows that even static and short-term
dynamic features, like the statistics of each talker’s dynamic
range of fundamental frequency and intensity, can be effective to
a certain extent. But what we set out to model, if only in a
general way, were the dynamics of common local prosodic events
called “pitch accents” in English.

Typically, a pitch accent is associated with a lexically
stressed syllable, has a time scale in the 100-500 msec range, and
is realized as a (usually upward) obtrusion of f0, which then
returns toward a global and slowly descending value. Major
differences in the shape of these humps in the pitch contour may
be associated with, among other things, the amount of emphasis
on a word or phrase or its position in an utterance. For example,
greater emphasis increases the height and duration of the f0
obtrusion, while a prepausal accent typically has a shorter rise but
a longer and deeper fall of fO and of energy, as well. A full
description of pitch accents is beyond our scope here; we simply

T Two UBMs were used. A UBM trained on partitions 4-6 was used for
testing partitions 1-3 and a UBM from partitions 1-3 was used for testing
partitions 4-6.

note that they are likely sources of interspeaker information
because they vary greatly in details of execution [9,10,11].
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Figure 1 — Example of state symbol sequence estimation for f0
and energy contours.

For example, f0 may be raised by increasing vocal fold
tension, by increasing subglottal pressure, or by a combination of
the two. The pattern of combination, in turn, may be consistent
for a speaker, but different across speakers. The exact shape of
pitch accents also varies widely, notably the ratio of rise and fall
durations, especially when viewed as a function of phonetic
context. The role of duration in accented syllables resembles that
of pitch and/or energy and can either combine with or
complement them. To emphasize a word, one speaker may use
lengthening more, another less; one may use the increased
duration to carry out a larger rise in f0 and another not.

We, therefore, decided to systematically explore individual
variation in the use of duration, f0 and acoustic intensity (as a
proxy for subglottal pressure) to accomplish common prosodic
gestures, in the hope that it might be consistent enough to aid in
recognizing speakers.

For determining the rising/falling state of a contour, we used
the piecewise linear model of the f0 contour supplied as part of
the SRI prosody database [2]. This stylized f0 track is a series of
linear components fit to the f0 trajectory in a voiced region. An
example of this stylized f0 track is shown as the thin dashed-line
in the upper plot of Figure 1, where we see a voiced region has
multiple segments with boundaries defined by each linear
segment. The sign of the line’s slope is used as the state of the f0
contour over that segment (+ -> rising, - > falling). The
corresponding energy contour slopes are estimated for each
segment found for the fO0 contour (vertical thick dotted lines in
Figure 1). We calculate the slope by fitting a line to each energy
contour segment, as shown by the dotted lines in the lower plot in
Figure 1.

For each segment, we can then combine the sign of the f0
and energy slopes into a symbol reflecting their joint state (i.e.
++, +—, —, —). Unvoiced regions are given a single ‘uv’
symbol. Thus in Figure 1, the resultant symbol sequence for these
contours is: +— —— uv ++ —— +— ——

The state symbol estimates are performed only for the
speech regions as indicated in the ASR transcript. Nonspeech
regions, like noise and breaths, are discarded. To avoid the
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modeling of slope dynamics across speaker turns, we place
<start> and <end> symbols around each turn as indicated in the
SRI database.

For modeling, we use a simple bigram model of the symbol
sequence, similar to the one used in [12]. A likelihood ratio
detector is built using a speaker-dependent target bigram model
and a speaker-independent UBM bigram model.

The EER for this system is 19.2%. This result is very
promising when compared to the baseline since it only uses five
joint contour states (‘++’, ‘+=’, ‘—+’, ‘==, and ‘uv’) with no
absolute f0 or energy values.

4.1. Dynamics Duration

Besides the direction of the contour, the duration of the segment
can be also integrated in the symbol sequence. The duration can
provide a better characterization of the speaking style of the
speaker; i.e., for how long the speaker maintains a certain
dynamic configuration.

Since we are using n-grams to model the sequence, we
quantized the segment durations into 3 levels: Short, Medium,
and Long. These quantization levels are set as the 33™ and 67"
percentiles of the cumulative distribution of segment durations
from held-out data. The quantization boundaries used are 4 and 8
frames. Thus, each segment symbol is now augmented with an
additional duration tag (e.g., +L ——L uvM ++M — -M +M
-=S).

Using duration tags reduces the EER to 14.1%, a relative
improvement of 26% over the system that only uses f0 and
energy contour slopes. This shows that the duration of the
dynamics is useful for characterizing speaking style.

4.2. Phone Context

Additional information may be added to the contour dynamic by
conditioning them on the phone context in which they occur. This
is easily done in our system by simply augmenting the f0/energy
state symbol with the label of the phone in which they occur
(aligned phone labels are available in the SRI database;
experiments in this paper used those from truth transcript
alignments). State symbols that span more than one phone are
broken into 2 or more symbols. To add duration information,
phone-dependent duration quantization levels are estimated and
applied.

With both phone context and duration used, the EER further
decreases to 5.2%. Note that phone sequence modeling by itself is
a known technique for speaker recognition [13]. However, the
EER when only using the phone information is 10.8%, indicating
that the extra f0/energy contour information is, indeed, adding
new information.

4.3. Training Data Requirement

Speaker recognition systems that use prosodic features are known
for requiring large amounts of data for training [2,4,12]. Table 1
shows the performance for the baseline (GMM-Pitch), slope and
duration, and slope with phone context systems when training
with 1, 2, 4, and 8 conversations. It is clear that the slope-duration
system requires more than 1 conversation half (~2 minutes) for
training to outperform the baseline system. It also shows that,
when the phone context is added to the dynamics, the prosodic

system performs better than the baseline no matter the number of
training conversations.

Table 1 — Systems performance (EER) per number of
training conversations

# Training Baseline Slope- Slope-Phone-
conversations Duration Duration
1 20.3% 22.2% 18.9%
2 18.3% 16.9% 10.8%
4 16.8% 15.1% 7.4%
8 16.3% 14.1% 5.2%

5. DYNAMIC TIME WARPING ON WORD F0
CONTOURS

In the second approach for comparing prosodic dynamics, we use
the output of a speech recognition system to allow application of
classic text-dependent fO contour template matching to text-
independent speech. In text-dependent f0 contour matching, the
fO0 contour from an enrollment phrase is used as the reference
template for a speaker that is matched, using dynamic time
warping, to the fO contour of the same phrase from an unknown
speaker. To apply DTW, it is important that the same phrase be
used for both the template and the reference contours. For this
text-independent application, the time-aligned text transcription
from the SRI speech recognition system is used to provide the
needed word knowledge for selecting and comparing common
words or phrases. A similar approach was used for text-
constrained Gaussian mixture modeling [14].

The selection of words to use was driven by two criteria.
First, we wanted to select words that occur frequently enough so
that they are likely to appear in conversational speech used for
training or testing. But, we did not want to have too many
occurrences, since this will increase the number of DTW matches
required for testing, thus increasing the computational cost.
Second, we wanted to select words that were likely to have very
low dependency on context or topic and, thus, contain
information with low intraspeaker variability. Based on these
criteria, we looked for words and phrases among the frequent
back-channel words and discourse markers. The following set of
15 words and phrases was selected: {right, okay, well, uhhuh,
true, really, like, sure, yeah, absolutely, I mean, I know, you
know, I think, I see}. In the Switchboard I corpus, these words
account for roughly 5% of all word tokens and collectively
accounted for roughly 30 words per conversation half.

The speaker model consists of the f0 contours from each
occurrence of each word in the list found in the speaker’s training
data, supplying multiple templates per word. We used the
median-filtered f0 values from the SRI database, since they were
found to work better than the raw f0 values. A set of 20 male and
20 female models obtained from held-out data are used for cohort
background scoring. The DTW algorithm employed used the
absolute difference between f0 values of aligned frames, as the
distance function, subject to constraints on the number of frames
that can be aligned to the same frame. Matches that failed the
path constraints were discarded. Unvoiced frames were given a f0
value of 0, which helped bias against voiced to unvoiced matches
in the DTW. The final raw score from the DTW is the log of the
sum of the frame-wise distances normalized by the number of
frames in the reference and test sequences.
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In verification, the male or female cohort set is first selected
as the set with the lowest average distance to the test words. For
each occurrence of a word/phrase in the test utterance, the
average of the best 15% DTW match distances to a model’s
corresponding word templates is computed. The speaker’s score
is then normalized by subtracting the mean and dividing by the
standard deviation of the cohort models’ scores. The final test
score is computed as the average, weighted by the number of
occurrences, of the normalized scores over all test utterance
words.

On the Extended Data Task for the 8-conversation condition,
this system produces an EER of 13.3%. This result is quite
encouraging given the small number of words used. With further
tuning of system parameters, we believe the EER should reduce
even further.

6. SYSTEM FUSION

Since the baseline system is modeling the absolute f0 and energy
values while the slope system is modeling the relative f0 and
energy contour dynamics, it is expected that a fusion of these
systems should produce better performance than the individual
systems. In Table 2, we show the results of fusing the various
systems using a single layer perceptron.

Table 2 — Performance of the fused systems

Fused Systems (individual EER) EER

1 Baseline GMM f0/energy (16.3%) + 11.4%
FO Contour-DTW (13.3%) )

5 Baseline GMM f0/energy (16.3%) + 929
Slope-Duration (14.1%) )

3 Baseline GMM f0/energy (16.3%) + 41%
Slope-Phone-Duration (5.2%) )
Baseline GMM f0/energy (16.3%) +

4 | FO Contour-DTW (13.3%) + 3.7%
Slope-Phone-Duration (5.2%)

Rows 1, 2 and 3 in Table 2 show that fusion of the global
distribution baseline system with the dynamic modeling systems
provides improvements. The template matching system appears
to have less complementary information than the slope dynamics
since it too uses the static f0 values in contour matching. The
fusion between all systems (row 4) further decreases the EER to
3.7%.

The best performance achieved on this database is 0.7%
EER using a GMM/UBM approach on mel-cepstrum coefficients
[7]. The performance of fusing the prosodic approaches with the
GMM/UBM over mel-cepstra is 0.3% EER (55% relative
improvement over the GMM/UBM approach). This result
additionally indicates that the prosodic approaches have
complementary information to standard spectral information.

7. CONCLUSIONS

The proposed approaches are shown to capture speaker
characteristics through the modeling of the f0 and energy
contours dynamics. Moreover, the modeling of such dynamics
works better than their global static distributions. Another
advantage of these prosodic features is that, because of the
dynamics quantization, these features are expected to be more
robust to errors in the f0 and energy estimation. However, the

sparsity of these prosodic features requires a considerable amount
of training data. In our experiments, we observed that the
f0/energy slope system requires more than 1 conversation half to
outperform the baseline system.

We also showed that the prosodic approaches improve the
performance of systems that use short-term information. The
fusion of the prosodic systems with a system based on short-term
f0 and energy features improved the performance by 43%
(relative). The addition of context information to the prosodic
features improves the performance by 75% (relative). In addition,
when all systems (prosodic and short-term) are fused with a
system based on mel-cepstrum coefficients prosodic, the
performance of the mel-cepstrum system is improved by 55%
(relative).

For future work, we plan to look into different streams, like
formants, that can carry more speaker characteristics. We also
intend to find and study a larger set of words and phrases that
carry speaker information.
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