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ABSTRACT 

 
Most current state-of-the-art automatic speaker recognition 
systems extract speaker-dependent features by looking at short-
term spectral information. This approach ignores long-term 
information that can convey supra-segmental information, such as 
prosodics and speaking style. We propose two approaches that 
use the fundamental frequency and energy trajectories to capture 
long-term information. The first approach uses bigram models to 
model the dynamics of the fundamental frequency and energy 
trajectories for each speaker. The second approach uses the 
fundamental frequency trajectories of a pre-defined set of words 
as the speaker templates and then, using dynamic time warping, 
computes the distance between the templates and the words from 
the test message. The results presented in this work are on 
Switchboard I using the NIST Extended Data evaluation design. 
We show that these approaches can achieve an equal error rate of 
3.7%, which is a 77% relative improvement over a system based 
on short-term pitch and energy features alone. 
 

1. INTRODUCTION 
 
Current speaker recognition systems are based primarily on 
modeling the distributions of short-term spectral features [1]. 
While these systems produce very good performance, they ignore 
many other aspects of the speech signal that convey speaker 
information, such as prosodic information from pitch and energy 
contours. However, it is clear from results in several published 
studies (e.g., [2, 3, 4, 5] and their references) that prosodic 
information can be used to effectively improve performance of 
and add robustness to speaker recognition systems. 

Prosodic information has been applied in two main ways. In 
the first approach, global statistics of some prosodic-based 
feature are estimated and compared between two utterances. The 
most common example is comparing the mean and standard 
deviation of the fundamental frequency between enrollment and 
test utterances [3]. Alternatively, the prosodic feature may be 
appended to standard spectral-based features and used in 
traditional distribution modeling systems. One potential problem 
with this global statistics approach is that it does not adequately 
capture the temporal dynamic information of the prosodic feature 
sequence. This has been addressed in part by using statistics of 
feature time derivatives and dynamic features derived from 
segments [2]. The second approach is aimed at explicitly 
representing and comparing the temporal trajectory of the 
prosodic contours. The classic example of this approach is 
applying dynamic time warping (DTW) to compare the pitch 
contours between two utterances of the same text [6]. This 
approach has the advantage of potentially being able to capture 
idiosyncratic speaker-specific temporal dynamic events, but 

generally requires comparison of the same spoken text to be 
effective. Due to the lack of control of the spoken text, text-
independent applications have generally been limited to using 
global statistical approaches.  

In this paper, we present two new approaches that 
demonstrate effective ways to model and apply prosodic contours 
for text-independent speaker verification tasks. The first approach 
uses the relation between dynamics of the fundamental frequency 
(f0) and energy trajectories to characterize the speaker’s identity. 
The motivation is that the dynamics of both trajectories can 
jointly represent certain prosodic gestures that are characteristic 
of a particular speaker. In addition, the dynamics can also capture 
the speaking style (for example, excited or monotone) of the 
speaker. The second approach capitalizes on the increasing 
accuracy of speech recognition systems on conversational speech 
to allow explicit template matching of the f0 contours of a 
predefined set of words and phrases. The motivation is to capture 
speaker characteristic accent and intonation information from a 
known set of frequently and naturally occurring words found in 
conversational speech. For the rest of the paper, we are going to 
refer to both approaches as prosodic systems. 

This paper is organized as follows. In Section 2, we describe 
the NIST Extended Data Task and the prosodic feature database 
used in this paper. We then describe systems and performance for 
a baseline system using simple f0 and energy distributions 
followed by descriptions of the new approaches using f0 and 
energy contour dynamics and the text-constrained f0 contour 
matching. In Section 6, we present some fusion results that 
demonstrate that these new approaches are producing 
complementary and beneficial information to the speaker 
recognition task. 
 

2. NIST EXTENDED DATA TASK 
 
The work presented in this paper was developed as part of the 
SuperSID project [7] in the 2002 JHU Summer Workshop. For 
this project, the development focus was on the Extended Data 
Task from the 2001 NIST Speaker Recognition Evaluationi. This 
task was introduced to allow exploration and development of 
techniques that can exploit significantly more training data than 
traditionally used in NIST evaluations. For this task, speaker 
models were trained using 1,2,4,8, and 16 complete conversation 
halves (where a conversation half is nominally 2.5 minutes long, 
as opposed to only 2 minutes of training speech. A complete 
conversation half was used for testing. The 2001 Extended Data 
Task used the entire Switchboard I conversational, telephone 
speech corpus in a cross-validation procedure to obtain a large 

                                                 
i The 2001 NIST Speaker Recognition Evaluation 
website:http://www.nist.gov/speech/tests/spk/2001 
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number target and nontarget trials for the different training 
conditions. 

One reason for focusing on this task was the availability of 
the SRI prosody database [8]. The SRI database provides time-
aligned word and phone transcripts in addition to a wealth of 
standard and unique prosodic features (f0, pauses, duration, etc.) 
for the Switchboard I corpus. The f0 and energy features used in 
this paper were obtained from the SRI prosody database.  

The performance measure used to evaluate the described 
systems is the equal error rate (EER). It represents the system 
performance when the false acceptance rate (accepting an 
impostor) is equal to the missed detection rate (rejecting a true 
speaker). The system results are compared using the target 
models with 8 conversation halves.  

 
3. BASELINE F0 AND ENERGY DISTRIBUTIONS 

 
A baseline system was developed that used global distributions of 
energy and f0 features. For each voiced frame, a four- 
dimensional feature vector consisting of log f0, log energy, and 
their first-order derivatives estimated over a 5-frame context was 
created. The first two frames and the last two frames of a voiced 
segment are discarded to avoid discontinuities in the derivative 
computations. These features were used to train a likelihood ratio 
detector consisting of a speaker-independent universal 
background model (UBM) and a speaker-dependent target 
speaker model [1].  The UBM is a 512-component Gaussian 
Mixture Model trained with gender-balanced speech from cross-
validation partitions not under testii. The target speaker models 
are derived by adapting the UBM with the speaker’s data. In the 
testing phase, a likelihood ratio score is obtained as the ratio 
between the target speaker model and the UBM likelihood scores 
given a test message. The EER of the baseline for the 8-
conversation training condition is 16.3%. 
 
4. MODELING F0 AND ENERGY CONTOUR DYNAMICS 
 
With prosody, as with other aspects of spoken language, speaker 
information may be found in both static and dynamic forms and 
may originate from anatomical, physiological, or behavioral 
differences among individuals.  The baseline system experiment 
described in Section 3 shows that even static and short-term 
dynamic features, like the statistics of each talker’s dynamic 
range of fundamental frequency and intensity, can be effective to 
a certain extent.  But what we set out to model, if only in a 
general way, were the dynamics of common local prosodic events 
called “pitch accents” in English. 

Typically, a pitch accent is associated with a lexically 
stressed syllable, has a time scale in the 100-500 msec range, and 
is realized as a (usually upward) obtrusion of f0, which then 
returns toward a global and slowly descending value. Major 
differences in the shape of these humps in the pitch contour may 
be associated with, among other things, the amount of emphasis 
on a word or phrase or its position in an utterance.  For example, 
greater emphasis increases the height and duration of the f0 
obtrusion, while a prepausal accent typically has a shorter rise but 
a longer and deeper fall of f0 and of energy, as well.  A full 
description of pitch accents is beyond our scope here; we simply 

note that they are likely sources of interspeaker information 
because they vary greatly in details of execution [9,10,11]. 

                                                 
ii Two UBMs were used. A UBM trained on partitions 4-6 was used for 
testing partitions 1-3 and a UBM from partitions 1-3 was used for testing 
partitions 4-6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – Example of state symbol sequence estimation for f0 
and energy contours. 

For example, f0 may be raised by increasing vocal fold 
tension, by increasing subglottal pressure, or by a combination of 
the two.  The pattern of combination, in turn, may be consistent 
for a speaker, but different across speakers.  The exact shape of 
pitch accents also varies widely, notably the ratio of rise and fall 
durations, especially when viewed as a function of phonetic 
context. The role of duration in accented syllables resembles that 
of pitch and/or energy and can either combine with or 
complement them.   To emphasize a word, one speaker may use 
lengthening more, another less; one may use the increased 
duration to carry out a larger rise in f0 and another not.  

We, therefore, decided to systematically explore individual 
variation in the use of duration, f0 and acoustic intensity (as a 
proxy for subglottal pressure) to accomplish common prosodic 
gestures, in the hope that it might be consistent enough to aid in 
recognizing speakers. 

For determining the rising/falling state of a contour, we used 
the piecewise linear model of the f0 contour supplied as part of 
the SRI prosody database [2]. This stylized f0 track is a series of 
linear components fit to the f0 trajectory in a voiced region.  An 
example of this stylized f0 track is shown as the thin dashed-line 
in the upper plot of Figure 1, where we see a voiced region has 
multiple segments with boundaries defined by each linear 
segment. The sign of the line’s slope is used as the state of the f0 
contour over that segment (+  rising, -  falling). The 
corresponding energy contour slopes are estimated for each 
segment found for the f0 contour (vertical thick dotted lines in 
Figure 1). We calculate the slope by fitting a line to each energy 
contour segment, as shown by the dotted lines in the lower plot in 
Figure 1.  

For each segment, we can then combine the sign of the f0 
and energy slopes into a symbol reflecting their joint state (i.e. 
++, +−, −+, −−). Unvoiced regions are given a single ‘uv’ 
symbol. Thus in Figure 1, the resultant symbol sequence for these 
contours is: +−  −−  uv  ++  −−  +−  −−. 

The state symbol estimates are performed only for the 
speech regions as indicated in the ASR transcript. Nonspeech 
regions, like noise and breaths, are discarded. To avoid the 
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modeling of slope dynamics across speaker turns, we place 
<start> and <end> symbols around each turn as indicated in the 
SRI database.  

For modeling, we use a simple bigram model of the symbol 
sequence, similar to the one used in [12]. A likelihood ratio 
detector is built using a speaker-dependent target bigram model 
and a speaker-independent UBM bigram model.  

The EER for this system is 19.2%. This result is very 
promising when compared to the baseline since it only uses five 
joint contour states (‘++’, ‘+−’, ‘−+’, ‘−−’, and ‘uv’) with no 
absolute f0 or energy values. 

 
4.1. Dynamics Duration 
 
Besides the direction of the contour, the duration of the segment 
can be also integrated in the symbol sequence. The duration can 
provide a better characterization of the speaking style of the 
speaker; i.e., for how long the speaker maintains a certain 
dynamic configuration. 

Since we are using n-grams to model the sequence, we 
quantized the segment durations into 3 levels: Short, Medium, 
and Long.  These quantization levels are set as the 33rd and 67th 
percentiles of the cumulative distribution of segment durations 
from held-out data. The quantization boundaries used are 4 and 8 
frames. Thus, each segment symbol is now augmented with an 
additional duration tag (e.g., +–L −−L uvM ++M – –M +–M 
−−S). 

Using duration tags reduces the EER to 14.1%, a relative 
improvement of 26% over the system that only uses f0 and 
energy contour slopes. This shows that the duration of the 
dynamics is useful for characterizing speaking style. 

 
4.2. Phone Context 
 
Additional information may be added to the contour dynamic by 
conditioning them on the phone context in which they occur. This 
is easily done in our system by simply augmenting the f0/energy 
state symbol with the label of the phone in which they occur 
(aligned phone labels are available in the SRI database; 
experiments in this paper used those from truth transcript 
alignments). State symbols that span more than one phone are 
broken into 2 or more symbols. To add duration information, 
phone-dependent duration quantization levels are estimated and 
applied. 

With both phone context and duration used, the EER further 
decreases to 5.2%. Note that phone sequence modeling by itself is 
a known technique for speaker recognition [13]. However, the 
EER when only using the phone information is 10.8%, indicating 
that the extra f0/energy contour information is, indeed, adding 
new information.  

 
4.3. Training Data Requirement 

 
Speaker recognition systems that use prosodic features are known 
for requiring large amounts of data for training [2,4,12]. Table 1 
shows the performance for the baseline (GMM-Pitch), slope and 
duration, and slope with phone context systems when training 
with 1, 2, 4, and 8 conversations. It is clear that the slope-duration 
system requires more than 1 conversation half (~2 minutes) for 
training to outperform the baseline system. It also shows that, 
when the phone context is added to the dynamics, the prosodic 

system performs better than the baseline no matter the number of 
training conversations.  

 
Table 1 – Systems performance (EER) per number of 

training conversations 

# Training 
conversations Baseline Slope-

Duration 
Slope-Phone-

Duration 
1 20.3% 22.2% 18.9% 
2 18.3% 16.9% 10.8% 
4 16.8% 15.1% 7.4% 
8 16.3% 14.1% 5.2% 

 
5. DYNAMIC TIME WARPING ON WORD F0 

CONTOURS 
 
In the second approach for comparing prosodic dynamics, we use 
the output of a speech recognition system to allow application of 
classic text-dependent f0 contour template matching to text-
independent speech. In text-dependent f0 contour matching, the 
f0 contour from an enrollment phrase is used as the reference 
template for a speaker that is matched, using dynamic time 
warping, to the f0 contour of the same phrase from an unknown 
speaker. To apply DTW, it is important that the same phrase be 
used for both the template and the reference contours. For this 
text-independent application, the time-aligned text transcription 
from the SRI speech recognition system is used to provide the 
needed word knowledge for selecting and comparing common 
words or phrases. A similar approach was used for text-
constrained Gaussian mixture modeling [14]. 

The selection of words to use was driven by two criteria. 
First, we wanted to select words that occur frequently enough so 
that they are likely to appear in conversational speech used for 
training or testing. But, we did not want to have too many 
occurrences, since this will increase the number of DTW matches 
required for testing, thus increasing the computational cost. 
Second, we wanted to select words that were likely to have very 
low dependency on context or topic and, thus, contain 
information with low intraspeaker variability. Based on these 
criteria, we looked for words and phrases among the frequent 
back-channel words and discourse markers. The following set of 
15 words and phrases was selected: {right, okay, well, uhhuh, 
true, really, like, sure, yeah, absolutely, I mean, I know, you 
know, I think, I see}. In the Switchboard I corpus, these words 
account for roughly 5% of all word tokens and collectively 
accounted for roughly 30 words per conversation half. 

The speaker model consists of the f0 contours from each 
occurrence of each word in the list found in the speaker’s training 
data, supplying multiple templates per word. We used the 
median-filtered f0 values from the SRI database, since they were 
found to work better than the raw f0 values. A set of 20 male and 
20 female models obtained from held-out data are used for cohort 
background scoring. The DTW algorithm employed used the 
absolute difference between f0 values of aligned frames, as the 
distance function, subject to constraints on the number of frames 
that can be aligned to the same frame. Matches that failed the 
path constraints were discarded. Unvoiced frames were given a f0 
value of 0, which helped bias against voiced to unvoiced matches 
in the DTW. The final raw score from the DTW is the log of the 
sum of the frame-wise distances normalized by the number of 
frames in the reference and test sequences. 
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In verification, the male or female cohort set is first selected 
as the set with the lowest average distance to the test words. For 
each occurrence of a word/phrase in the test utterance, the 
average of the best 15% DTW match distances to a model’s 
corresponding word templates is computed. The speaker’s score 
is then normalized by subtracting the mean and dividing by the 
standard deviation of the cohort models’ scores. The final test 
score is computed as the average, weighted by the number of 
occurrences, of the normalized scores over all test utterance 
words. 

On the Extended Data Task for the 8-conversation condition, 
this system produces an EER of 13.3%. This result is quite 
encouraging given the small number of words used. With further 
tuning of system parameters, we believe the EER should reduce 
even further. 

 
6. SYSTEM FUSION 

 
Since the baseline system is modeling the absolute f0 and energy 
values while the slope system is modeling the relative f0 and 
energy contour dynamics, it is expected that a fusion of these 
systems should produce better performance than the individual 
systems. In Table 2, we show the results of fusing the various 
systems using a single layer perceptron.  
 

Table 2 – Performance of the fused systems  

Fused Systems (individual EER) EER 

1 Baseline GMM f0/energy (16.3%) +  
F0 Contour-DTW (13.3%) 11.4% 

2 Baseline GMM f0/energy (16.3%) + 
Slope-Duration (14.1%) 9.2% 

3 Baseline GMM f0/energy (16.3%) + 
Slope-Phone-Duration (5.2%) 4.1% 

4 
Baseline GMM f0/energy (16.3%) + 
F0 Contour-DTW (13.3%) + 
Slope-Phone-Duration (5.2%) 

3.7% 

 
Rows 1, 2 and 3 in Table 2 show that fusion of the global 

distribution baseline system with the dynamic modeling systems 
provides improvements. The template matching system appears 
to have less complementary information than the slope dynamics 
since it too uses the static f0 values in contour matching. The 
fusion between all systems  (row 4) further decreases the EER to 
3.7%.  

The best performance achieved on this database is 0.7% 
EER using a GMM/UBM approach on mel-cepstrum coefficients 
[7]. The performance of fusing the prosodic approaches with the 
GMM/UBM over mel-cepstra is 0.3% EER (55% relative 
improvement over the GMM/UBM approach).  This result 
additionally indicates that the prosodic approaches have 
complementary information to standard spectral information. 

 
7. CONCLUSIONS 

 
The proposed approaches are shown to capture speaker 
characteristics through the modeling of the f0 and energy 
contours dynamics. Moreover, the modeling of such dynamics 
works better than their global static distributions. Another 
advantage of these prosodic features is that, because of the 
dynamics quantization, these features are expected to be more 
robust to errors in the f0 and energy estimation. However, the 

sparsity of these prosodic features requires a considerable amount 
of training data. In our experiments, we observed that the 
f0/energy slope system requires more than 1 conversation half to 
outperform the baseline system. 

We also showed that the prosodic approaches improve the 
performance of systems that use short-term information. The 
fusion of the prosodic systems with a system based on short-term 
f0 and energy features improved the performance by 43% 
(relative). The addition of context information to the prosodic 
features improves the performance by 75% (relative). In addition, 
when all systems (prosodic and short-term) are fused with a 
system based on mel-cepstrum coefficients prosodic, the 
performance of the mel-cepstrum system is improved by 55% 
(relative). 

For future work, we plan to look into different streams, like 
formants, that can carry more speaker characteristics. We also 
intend to find and study a larger set of words and phrases that 
carry speaker information.   
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