The SuperSID Project: Exploiting High-level Information for High-accuracy
Speaker Recognition™

Douglas Reynoldsl, Walter Andrewsz, Joseph Campbelll, Jiri Navmtilj, Barbara Peskin4, Andre Adamij, Qin Jinﬁ, David Klusacek7,
Joy Abramson®, Radu Mihaescy’, Jack Godfrey’, Doug Jones', Bing Xiang"

(1) MIT LL (2) DoD (3) IBM (4) ICSI (5) OGI (6) CMU (7) Charles Univ. (8) York Univ. (9) Princeton Univ. (10) Cornell Univ.

ABSTRACT

The area of automatic speaker recognition has been dominated
by systems using only short-term, low-level acoustic
information, such as cepstral features. While these systems have
indeed produced very low error rates, they ignore other levels of
information beyond low-level acoustics that convey speaker
information. Recently published work has shown examples that
such high-level information can be used successfully in
automatic speaker recognition systems and has the potential to
improve accuracy and add robustness. For the 2002 JHU CLSP
summer workshop, the SuperSID project
(http://www.clsp.jhu.edu/ws2002/groups/supersid/) was
undertaken to exploit these high-level information sources and
dramatically increase speaker recognition accuracy on a defined
NIST evaluation corpus and task. This paper provides an
overview of the structure, data, task, tools, and accomplishments
of this project. Wide ranging approaches using pronunciation
models, prosodic dynamics, pitch and duration features, phone
streams, and conversational interactions were explored and
developed. In this paper we show how these novel features and
classifiers indeed provide complementary information and can be
fused together to drive down the equal error rate on the 2001
NIST extended data task to 0.2% — a 71% relative reduction in
error over the previous state of the art.

1. INTRODUCTION

What is it in the speech signal that conveys speaker identity?
This is one of the central questions addressed by automatic
speaker recognition research.  From self-observation and
experience, it is pretty clear that we (humans) rely on several
different types or levels of information in the speech signal to
recognize others from voice alone. These can be the deep bass
and timber of a voice, a friend’s unique laugh, or the particular
repeated word usage of a colleague. Roughly we can categorize
these into a hierarchy running from low-level information, such
as the sound of a person’s voice, related to physical traits of the
vocal apparatus, to high-level information, such as particular
word usage (idiolect), related to learned habits and style. While
all of these levels appear to convey useful speaker information,
automatic speaker recognition systems have relied almost
exclusively on low-level information via short-term features
related to the speech spectrum. With the continual advancement
of tools, such as phone and speech recognition systems, to
reliably extract features for high-level characterization, the

increase in applications (like audio mining) allowing for
relatively large amounts of speech from a speaker to learn
speaking habits, the availability of large development corpora
and plentiful computational resources, the time is right for a
deeper exploration into using these underutilized high-level
information sources. These new sources of information hold the
promise not only for improvement in basic recognition accuracy
by adding complementary knowledge, but also the possibility for
robustness to acoustic degradations from channel and noise
effects, to which low-level features are highly susceptible.
Furthermore, previous work examining certain high-level
information sources has provided strong indications that potential
gains are possible (for example see recent papers [1,2,3,4]).

Inspired by these factors, the SuperSID project for the
exploitation of high-level information for high-performance
speaker recognition was undertaken as part of the 2002 JHU
Summer Workshop on Human Language Technology [5]. The
JHU WS2002 is one in a series of 6-week workshops hosted by
the CLSP group at JHU with the aim of bringing together
researchers to focus on challenging projects in the areas of
speech and language engineering. The authors of this paper
constituted the team members for the SuperSID project
representing a diverse group of senior researchers from
academia, commercial, independent and Government research
centers, as well as graduate and undergraduate students. The aim
of the SuperSID project was to analyze, characterize, extract, and
apply high-level information to the speaker recognition task. The
goals were to develop new features and classifiers exploiting
high-level information, show performance improvements relative
to baselines on an established evaluation data and task, and
demonstrate that new features and classifiers provide
complementary information.

This paper provides an overview of the framework and overall
accomplishments of the SuperSID project. Details of the various
approaches undertaken in the project can be found in the
companion papers related to the SuperSID project [6,7,8,9,10] as
well as on the SuperSID website [11].

2. TASK, DATA AND TOOLS

The focus for the SuperSID project was on text-independent
speaker detection using the extended data task from the 2001
NIST Speaker Recognition Evaluation [12]. This task was
introduced to allow exploration and development of techniques
that can exploit significantly more training data than is
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traditionally used in NIST evaluations. Speaker models are
trained using 1,2,4,8, and 16 complete conversation sides (where
a conversation side is nominally 2.5 minutes long) as opposed to
the normal 2 minutes of training speech used in other NIST
evaluations. A complete conversation side was used for testing.
The 2001 extended data task used the entire Switchboard-I
conversational telephone speech corpus. To supply a large
number of target and non-target trials and speaker models trained
with up to 16 conversations of training speech (~40 minutes), the
evaluation used a cross-validation processing of the entire
corpus. The corpus was divided into 6 partitions of ~80 speakers
each. All trials within a partition involved models and test
segments from within that partition only; data from the other 5
partitions were available for background model building,
normalization, etc. The task consists of ~500 speakers with
~4100 target models (a speaker had multiple models for different
amounts of training data) and ~57,000 trials for the testing phase,
containing matched and mismatched handset trials and some
cross-sex trials. The cross-validation experiments were driven by
NIST’s speaker model training lists and index files indicating
which models were to be scored against which conversation sides
for each partition.

Scores from each partition are pooled and a detection error
tradeoff (DET) curve is plotted to show system results at all
operating points. The equal error rate (EER), where the false
acceptance rate equals the missed detection rate, is used as a
summary performance measure for comparing systems'.

The 2001 extended data task was selected for the project because
of the availability of several Switchboard-I annotated resources
providing features and measures related to high-level speaker
information.

*  SRI prosody database [13]: The SRI database provides
frame-level pitch and energy tracks (in raw and stylized forms)
as well as a wealth of word-level prosodic features derived both
for "truth" transcripts and for speech recognizer output, time-
aligned to the speech stream at the phone level. Features include
pause and segmental durations, voicing and stress information,
pitch statistics, and much more.

e Four word transcriptions of varying word error rates
(WER): Manual transcripts from ISIP, automatic transcripts from
Dragon Systems (~20% WER), automatic transcripts from SRI’s
Decipher (~30% WER), and automatic transcripts from BBN’s
real-time Byblos (~50% WER)".

e Two sets of open-loop (i.e., no language models in decoder)
phone transcripts in various languages: From MIT’s PPRLM
system, we had phone transcripts in English, German, Japanese,
Mandarin, and Spanish. From CMU’s GlobalPhone system, we
had phone transcripts in Chinese, Arabic, French, Japanese,
Korean, Russian, German, Croatian, Portuguese, Spanish,
Swedish, and Turkish.

! Due to the limited number of speakers/models, the results for the 16-
conversation training condition were found to have high statistical
variation so we will generally cite results only up to the 8-conversation
training condition.

¥ These automatic transcripts were selected to provide a range of WERs
and do not reflect fundamental differences in the supplier's technology.

e Articulatory feature transcripts [14]: (pseudo-)articulatory
classes automatically extracted from the speech signal and
designed to capture characteristics of speech production such as
consonantal place of articulation, manner of articulation, voicing,
etc.

We also assembled a suite of models to apply to features we
extracted from the above data sets. These included standard n-
gram tools found in the CMU-CU language modeling toolkit™ as
well as a “bag-of-n-grams” classifier as described in [2], a
discrete token binary tree classifier [7], a discrete HMM
classifier”, a continuous GMM classifier’, and a MLP fusion
tool™.

These models were used to form likelihood ratio detectors by
creating a speaker model using training data and a single
speaker-independent background model using data from the
held-out splits. For some systems a set of individual background
speaker models from the held-out set were used as cohort
models. During recognition, a test utterance is scored against the
speaker and background model(s) and the ratio (or in the log
domain, difference) is reported as the detection score for sorting.

3. APPROACHES

In this section we survey some of the highlights of approaches
developed to exploit high-level speaker information. The reader
should consult the referenced papers for more details.

3.1 Acoustic Features

Although this project purposely avoided using standard acoustic
frame-level signal processing features such as cepstra, we wanted
to establish a baseline of standard approaches on the extended
data set. The acoustic system was a standard GMM-UBM system
using short-term cepstral-based features [15] with a 2048 mixture
UBM built using data from the Switchboard-II corpus. This
system produces an EER ranging from 3.3% for 1-conversation
training to 0.7% for 8-conversation training.

3.2 Prosodic Features

e Pitch and Energy Distributions [10]: As a baseline a simple
GMM classifier using a feature vector consisting of per-frame
log pitch, log energy and their first derivatives was developed
which produced an EER of 16.3% for 8-conversation training.

. Pitch and Energy Track Dynamics [10]: The aim was to
learn pitch and energy gestures by modeling the joint slope
dynamics of pitch and energy contours. A sequence of symbols
describing the pitch and energy slope states (rising, falling),
segment duration and phone or word context is used to train an
n-gram classifier. Using only slope and duration produced an
EER of 14.1% for 8-conversation training, which dropped to
9.2% when fused with the absolute pitch and energy
distributions, indicating it is capturing new information about the
pitch and energy features. Although not purely a prosodic
system, adding phone context to duration and contour dynamics
produces an EER of 5.2%. Examining pitch dynamics by

il http://svr-www.eng.cam.ac.uk/~prc14/toolkit html

¥ http://www.cfar.umd.edu/~kanungo/software/software.html
¥ From MITLL’s GMM-UBM speaker recognition system

Y http://www.ll.mit.edu/IST/Inknet/
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dynamic time warp matching of word-dependent pitch tracks
using 15 words or short phrases produced an EER of 13.3%.

e Prosodic Statistics [9]: Using the various measurements
from the SRI prosody database, 19 statistics from duration and
pitch related features, such as mean and variance of pause
durations and FO values per word, were extracted from each
conversation side. Using these feature vectors in a K nearest
neighbor classifier on 8-conversation training produced an EER
of 15.2% for the 11 duration related statistics, 14.8% for the 8
pitch related statistics and 8.1% for all 19 features combined.

3.3 Phone Features

e Phone N-grams [4]: In this approach the time sequence of
phones coming from a bank of open-loop phone recognizers is
used to capture some information about speaker-dependent
pronunciations. Multiple phone streams are scored independently
and fused at the score level. Using the 5 PPRLM phone streams
and the “bag-of-n-grams” classifier an EER of 4.8% was
obtained for 8-conversation training.

»  Phone Binary Trees [7]: This approach also aims to model
the time sequence of phone tokens, but instead of an n-gram
model a binary tree model is used. With a binary tree, it is
possible to use large context without exponential memory
expansion and the structure lends itself to some adaptation and
recursive smoothing techniques important for sparse data sets.
Using a 3 token history (equivalent to 4-grams) and adaptation
from a speaker-independent tree, an EER of 3.3% is obtained for
8-conversation training. The main improvement with this
approach is robustness for limited training conditions. For
example, it obtains an EER of 11% for 1-conversation training
compared to 33% for the n-gram classifier.

*  Cross-stream Phone Modeling [6]: While the above phone
approaches attempt to model phone sequences in the temporal
dimension, this approach examines capturing cross-stream
information from the multiple phone streams. The phone streams
are first aligned and then co-occurrence of the different language
phones are modeled via n-grams. This produces an EER of 4.0%
for 8-conversation training. Cross-stream and temporal systems
can be fused together to produce an EER of 3.6%. In general this
technique can be expanded using graphical models to
simultaneously capture both cross-stream and temporal sequence
information.

e Pronunciation Modeling [8]: The aim here is to learn
speaker-dependent pronunciations by comparing constrained
word-level automatic speech recognition (ASR) phone streams
with open-loop phone streams. The phones from the SRI ASR
word transcripts are aligned on a per frame level with the
PPRLM open-loop phones and conditional probabilities for each
open-loop phone given an ASR phone are computed per speaker
and for a background model. For 8-conversation training this
simple technique produces an amazing 2.3% EER.

3.4 Lexical Features

Although not an active focus in the project, an n-gram idiolect
system like that described in [2] was implemented and used to
examine the effects of using errorful word transcripts. The 8-
conversation training EERs for the different transcripts are as

follows: Manual 9%, Dragon 11%, SRI 12%, BBN 16%. So the
approach appears to be relatively robust even as WER increases
to 50%.

3.5 Conversational Features

In this approach, we examined whether there was speaker
information in turn-taking patterns and conversational style. The
motivation of this work is from results in the 2002 NIST
evaluation where n-grams of speaker turn durations and word
density were able to produce an EER of 26% for 8-conversation
training. A system was developed using feature vectors
containing turn-based information about pitch, duration and rates
derived from the SRI prosody database. These feature vectors
were converted into a sequence of turn-based tokens from which
n-gram models were created to capture turn characteristics [9].
On split 1 for 8-conversation training the best system EER was
15.2%. We also examined conditional word usage in speaker
turns with the idea that a speaker may adapt his/her word usages
based on his/her conversational partner, but found this produced
>26% EER.

4. FUSION

Given the pallet of new features and approaches outlined above
we next set out to examine fusion of the different levels of
information to see if they are indeed providing complementary
information to improve performance. For the workshop we used
a simple single layer perceptron with sigmoid outputs for fusing
system scores. A fuser was trained for each split using the five
held out splits. There are no doubt better fusion approaches for
combining information sources, but the aim here was merely a
proof of concept. For the fusion experiment we selected the 9
best performing individual systems covering acoustic, prosodic,
phonetic and lexical approaches. The EERs for the individual
systems are shown in Table 1. After the GMM cepstra system the
best performing system is the one based on pronunciation
modeling.

Table 1 The nine component systems to be fused. EERs
are from the 8-conversation training condition.

System EER (%)

1. Acoustic baseline (GMM-UBM cepstral 0.7
features) '
2. Pitch and energy distributions 16.3
3. Pitch and energy slopes + durations + phone 59
context ’
4. Prosodic statistics 8.1
5. Phones n-grams (5 PPRLM phone sets) 4.8
6. Phone binary trees (5 PPRLM phone sets) 33
7. Phone cross-stream + temporal (5 PPRLM 36
phone sets) ’
8. Pronunciation modeling (SRI prons + 5 73
PPRLM phone sets) ’
9. Word n-grams (Dragon transcripts) 11.0

IV -786




In Figure 1 we show a DET plot with three curves from the
fusion experiment. The top two, with EER=0.7%, are for the
GMM cepstra system alone and from fusing all but the GMM
cepstra system (fuse 8). The fusion of all 9 systems produces the
bottom curve with EER=0.2% — a 71% relative reduction.
Based on the number of trials, this is a statistically significant
improvement. These results clearly show that the new features
and classifiers are supplying complementary information to the
baseline acoustic system.
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Figure 1 DET plot showing three curves. Using only
GMM-cepstra (EER=0.7%), fusing 8 systems without
GMM-cepstra (EER=0.7%), and fusing all 9 systems
(EER=0.2%).

We also conducted experiments examining fusing subsets of the
systems. The single best system to fuse with the GMM cepstral
system (system 1 in table) is the pitch/energy slope system
(system 3), yielding an EER of 0.3%. It is intuitively appealing
to see that a system that covers both prosodic and phone
information was the best one to fuse with the standard acoustics.
The best two non-GMM-cepstral systems to fuse, with an EER of
1.2%, were the pronunciation (system 8) and pitch/energy slopes
(system 3). The best three non-GMM-cepstral system
combinations gave an EER of 0.9%. There were three
combinations that produced this EER: Systems (8, 4, 3), (8, 4, 9)
and (8, 3, 9). In each case the pronunciation system (8) is
included with addition of the pitch/energy slope (3), the prosodic
statistics (4), and/or the word n-gram (9) systems. The sampling
of different levels of information in these combinations is also
intuitively appealing and again confirms that the systems are
indeed providing complementary information.

5. CONCLUSIONS AND FUTURE
DIRECTIONS

From the results presented in this paper and in the companion
papers, it is clear that the SuperSID project achieved the aim of
exploiting high-level information to improve speaker recognition
performance. Even at extremely low error rates, it was shown
that there is still significant benefit in combining complementary
types of information.

However, this is just the beginning of truly exploiting these
sources of speaker information, with many open avenues to
explore. First, the results need to be validated on a different
corpus to show they indeed generalize. Current work is
underway to implement these approaches on the Switchboard-II
corpus, which has a higher acoustic error rate. Second, we need
to expand our error analysis to understand which errors are left
and what features can address them. Third, we need to examine
better ways of feature selection and combinations perhaps
incorporating confidence measures to know when different types
of features/systems are reliable. Finally, we need to examine the
relative robustness of the knowledge sources to factors like
noise, channel variability, speaking partners, topics and
language.
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