ACCELERATING VIDEO DECODING USING GPU

Guobin Shen?, Lihua Zhu®, Shipeng Li?, Heung-Yeung Shunt® and Ya-Qin Zhang®

& Microsoft Research, Asia
® |ngtitution of Automation, Chinese Academy Science

ABSTRACT

Most modern computers or game consoles are equipped with
powerful graphics processing units (GPUs) to accelerate
graphics operations. There is a trend that the power of GPU
outgrows that of CPU (central processing unit). However, the
GPU engines are specially designed for graphics operations.
Can we take advantage of the powerful GPU engines for more
general operations other than pure graphics operations? The
answer is positive. In this study, we present schemes that map
other non-graphics operations into graphics engines with an
example application of accelerating video decoding with the
assistance of GPU. Our results show that significant speed-up
can be achieved by leveraging the GPU power. Specificaly, we
have achieved real-time playback of high definition video on a
PC with an Intel Pentium Il 667 MHz CPU and an nVidia
GeForce3 GPU.

1. INTRODUCTION

With the advance of silicon and computer graphics technologies,
more and more inexpensive yet powerful graphics processing
units (GPUS) can be found in mainstream personal computers
and game consoles. GPUs are equipped with specialized
processors designed just for 2D and 3D graphics operations and
they indeed do an excedlent job [1]. On the other hand,
multimedia is the core of digita entertainment and it usually
requires very high processing power especialy for real-time
applications. When real-time multimedia applications are
implemented with a general purpose computer, CPU is usually
heavily loaded and in many cases that CPU aone can not meet
the real time requirement at all. For example, currently CPUs in
most household PCs aone are not powerful enough to decode
high definition (HD) video in real-time.

However, for non-graphics oriented applications, the GPU
is usualy idle while CPU is heavily loaded. A question comes
along naturally: can we leverage the power of GPU to off-load
the CPU for some tasks, especialy when the GPU isidle? In this
study, we will present schemes to map non-graphics operations
onto graphics engines with an example application of
accelerating digital video decoding with the assistance of GPU.
We should note that, some today’s graphic cards have a special
hardware unit that can accelerate the video decoding process,

0-7803-7663-3/03/$17.00 ©2003 IEEE

IV -772

thanks to the well established international video coding
standards such as MPEG-1/2/4 [2] and the widely endorsed
DirectX video accelerator (DXVA) specification [3]. However,
such a hardware video decoding accelerator is only limited to
certain standard video coding formats. They can not handle
video that may be coded with other proprietary yet very popular
video coding formats, such as Windows Media Video (WMV)
[4] and RealVideo [5]. Moreover, even though amost all GPUs
can help on video rendering (through overlay), they can only
provide very limited flexibility in manipulating the video
decoded.

In order to support more flexible and wider application
scenarios, we can not rely on these non-standard specialized
hardware accelerators. In this study, we investigate how the
common DirectX-8 compatible graphics engines can be
exploited to assist the CPU in video decoding. We choose
DirectX-8 is because of its predominance and rich APIs as an
industrial standard. Our study confirms that the GPU power can
indeed be leveraged for non-graphics applications. Furthermore,
since the video is handled by the graphics engine directly, it
provides amore efficient way to incorporate video into computer
graphics, which is of wideinterest in today’ s gaming industry.

The rest of the paper is organized as follows. In Section 2,
we briefly review the architecture of a modern GPU. Section 3
highlights the general procedure of video decoding and analyzes
the complexity of the building blocks. We then present a
solution of exploiting GPU to accelerate video decoding in
Section 4. Some experimental results are given in Section 5 and
Section 6 concludes the paper.

2. GRAPHICSENGINE ARCHITECTURE

Recent years have witnessed dramatic increases in the GPU
processing power at a speed even faster than Moore's law to
CPU due to breakthroughs in computer graphics field,
innovations in silicon design and advances in semiconductor
technologies. One most significant step forward is the
introduction of user-programmable geometry engine [6] and the
pixel pipeline. The principa 3D APIs (DirectX and OpenGL)
have evolved alongside graphics hardware. One of the most
important new features in DirectX graphics is the addition of a
programmable pipeline that provides an assembly language

ICASSP 2003

interface to the transformation and lighting hardware (vertex
shader) and the pixel pipeline (pixel shader).

Vertex shaders are small programs describing a procedure
to be applied to polygon vertices in the scene. Pixel shaders are
small programs describing operations to be applied to pixels in
the frame buffer. Pixel shaders function is similar to vertex
shaders’, except that they perform operations manipulating
colors and textures, rather than geometry. Note that the vertex
shader calculates effects on a per-vertex basis (i.e, polygon
based rendering) while the pixel shader operates on a per-pixel
basis. For legacy performance, most GPUs still keep the old
fixed-function pipeline (the standard Transform & Lighting
pipeline where the functiondity is essentidly fixed). A greatly
simplified graphics pipelineis shown in Figure 1 [7].

Texturing

1 1
1 1
1 1
! Pgrmble !
: g/::::r Pgrmble :

. 1
:/ N\ Triangle %ixel B
'\ Selip Shader H
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1 "’1
1

1

1 Hardwired
' TaL

1

1

1

1

1

1

1

1

1

1

Figure 1. A greatly simplified graphics pipeline [7]

Modern mainstream GPUs are indeed very powerful, thanks
to the complete fine-grained SIMD parallelism and pipelining. In
Table 1, we list some performance metrics of nVidia GeForce3

8.

Graphics Core 256-bit

Memory Interface 128-hit DDR

Fill Rate 3.2 Billion AA Samples/Sec.
Operations per Second 800 Billion

Memory Bandwidth 7.36GB/Sec.

Table 1. Performance of nVidia GeForce3 [8]

In summary, the programmable pipeline of GPU gives
developers a lot more freedom to achieve special effects. The
power of GPU ensures these special effects can be made into real
time graphics applications.

3. TYPICAL VIDEO DECODER ARCHITECTURE

A typical video decoder consists of several building blocks,
namely variable length decoding (VLD), de-quantization (1Q),
inverse DCT (IDCT), motion compensation (MC), and color
space conversion (CSC), as shown in Figure 2. Motion
compensation is an efficient technology that exploits the
temporal correlation between neighboring frames of a video
sequence. Color space conversion module converts YUV to
RGB for the display purpose.

Note that there is a feedback loop in a video decoder.
Because of this feedback loop, the motion compensated signal
has to exactly match that in the encoder. Any error introduced,
albeit small, will be accumulated and propagated to future
frames. This is called drifting. Drifting usually leads to quick
video quality degradation and therefore must be prevented.

BSIn
I:H VLD B:% 1Q B:“\){ IDCT

Display l

'T-
Color space

conversion

Drifting

Figure 2. Block diagram of atypical decoder

The most computationally intensive parts, in a decreasing
order, are CSC, MC, IDCT, IQ and VLD. Figure 3-(a) shows the
load profiling result for atypical video decoder (for a proprietary
MPEG-like video format) on Pentium Il 667 MHz CPU when
decoding an HD (1280x720) video sequence. Evidently, the
CSC and MC consume most of the overall computation power
(more than 60%). Since the CSC module can usually be handled
by the GPU, we dso performed the profiling that excludes the
CSC module, as shown in Figure 3-(b). Clearly, the MC still
occupies asignificant portion of the whole computation load.

space
conversion
40.32%

motion
compensat
ion

20.97%

(b)

Figure 3. Load profiling of building blocks in video decoding.
(a) al modules, and (b) all modules except color space
conversion.

According to the profiling results, it is very desirable that
the color space conversion and motion compensation can be
handled more efficiently. Ideally, they should be handled by
some other processing units or hardware accelerator. As
discussed in next section, this can be achieved by moving these
two modules into the GPU.

4. GPU-ASSISTED VIDEO DECODING

4.1. Feasihility

IV -773

Since the GPU is specialy designed for faster graphics
operations and better graphics effects instead of for assisting
decoding video, there is no direct mapping of video decoding
algorithms to the 2-D or 3-D graphics engines. On the other
hand, the per-vertex and per-pixel operations of GPU may still
be utilized to handle partial of the video decoding task. That is,
we can use the GPU to take over some video decoding stages
that involve only per-vertex and per-pixel operationsin nature.

We analyze the nature of each building block of a typical
video decoder as shown in Table 2. In this table, block-wise
means that the operations are performed on a block by block
basis. A block is a smple polygon and therefore their vertices
can be handled by the vertex shader. Clearly, the most
computationally complex MC and CSC modules are intrinsically
suitable for the GPU to process. Since IQ and IDCT are not per-
pixel operations and VLD is a purely sequential operation, they
have to be handled by the host CPU.

Module Block-wise Per-pixel
VLD X X
IQ N X
IDCT N X
MC N N
CsC N N

Table 2. Nature of each module of a video decoder

Read-back from GPU memory to that of CPU is very
expensive, due the asymmetric design of AGP bus. As a result,
such read-back must be avoided in a practical design. This is
achievable by moving the whole feedback loop to GPU. In other
words, the CPU will not access the data after submitted to the
GPU.

4.2. Constraints

Even though GPU is very powerful, it still has many constraints.
These constraints are more visible when exploiting GPU for non-
graphics oriented applications. Some main constraints are as
follows:

* The memory bandwidth between CPU and GPU is limited.

e The interna precision of pixel shader is limited. For
example, the nVidia GeForce3 GPU'’s internal precision is
only up to 8 hits.

The instruction set is small. Most instructions are specialy

designed for graphics operations.

e The code line count for pixel shader programming is
limited. Only up to 8 arithmetic instructions are allowed in
any rendering pass.

4.3. Proposed solution

Based on the analysis above, our solution is to move the whole
feedback loop that consists of motion compensation (including a
padding process which is used to handle motion vectors that
point outside the reference picture) and color space conversion
to the GPU.

For motion compensation, we use the vertex shader to
handle the motion vectors. That is, vertex shader is used to
compute the target block positions and the source (reference)
texture addresses for the macroblocks to be motion-
compensated. Motion compensation can be performed at
different precisions for INTER blocks such as integer pixel level
and sub-pixel level (e.g., half-pel and quarter-pel). For sub-pixel
level MC, some interpolation processes are generally involved.
There is a specia type of macroblocks called INTRA block. No
motion compensation is needed for these blocks. We adopted a
divide-and-conquer approach to handle different MC types and
precisions, as shown in Figure 4. Note that there are two ways to
handle INTRA blocks. One way is to handle them via a separate
rendering pass, the other way is to treat them as integer-pel
INTER blocks with pseudo motion vectors that point to some
zero area. We adopted the second method.

Vertex
shader
Integer MV
MV Four Texture
stream Sub-pel MV Coordinates
from per
CPU Vertex
Intra block

Figure 4. Divide-and-conquer approach for MV handling.

Now let's briefly go through the working flow of MC and
CSC inside the GPU. The motion vector is first transferred from
CPU to GPU and processed by vertex shader. The vertex shader
generates the target block positions for triangle setup and the
texture addresses for sampling the textures. The pixel shader will
then use the texture addresses generated by the vertex shader to
sample the texture, perform necessary arithmetic operations to
obtain the motion compensated result, and render the result to
the target positions. After the motion compensation is done, the
CPU will transfer the difference datato GPU. The GPU will then
reconstruct a new picture by adding the difference to the motion
compensated reference. The picture will go through color space
conversion and be sent for display. The picture will also be used
as the reference of the next frame.

Because the geometric operations of MC and CSC are
extremely simple, the main tasks are at the pixel shaders. There
are totally five main steps that involve pixel shaders. Among
them, four are mandatory and one is optional, see Figure 5. In
this figure, a round-cornered rectangle represents a pixel shader.
The first pixel shader restores the difference picture by
unpacking the packed difference data. This is an optional step

IV -774

though to reduce the bandwidth of transferring difference picture
from CPU memory to GPU memory. The second pixel shader
prepares a padded reference for the subsequent motion
compensation process that is to be handled by the third pixel
shader. The fourth pixel shader then adds the difference data to
the motion compensated reference to form the final reconstructed
picture. The fifth pixel shader converts the YUV format of the
reconstructed picture to RGB format. Note that this pixel shader
directly renders to the back buffer, and there are no extra steps

needed to display the final decoded picture.
je

Mo?{tor

Packed l GPU
>

Figure 5. Flow chart of MC and CSC in GPU

All the steps mentioned above are relatively straightforward
since MC is basically a trandation operation of textures. The
difficulty lies in the drifting prevention considering the limited
internal precision of a GPU. It is just such a drifting effect that
essentialy distinguishes the video decoding from normal
graphics operations. Extra care is needed to avoid the potentia
drifting problem especialy for sub-pixel motion compensation.

According to DirectX-8 specifications, the only render
target format that suits for the video decoding application is the
32-bit D3DFMT_ABR8G8B8 format. However, the dynamic
range of the difference data is usually from -255 to 255, which
only needs 9 hits to represent. Therefore, it would be very
beneficial if we could pack three 9-bit difference values with one
32-bit pixel because this effectively reduces the memory
bandwidth requirement by two thirds. To further reduce memory
bandwidth, the CPU transfers only non-zero difference blocks to
GPU.

5.EXPERIMENTAL RESULTS

We have proposed and implemented a solution to decode the
proprietary MPEG-like video. We also performed extensive tests
on a PC with an Intel Pentium 11l 667 MHz CPU and an nVidia
GeForce3Ti200 GPU. The test sequences used are Football,
Total, and Trap. The Football sequence is a standard MPEG test
sequence in SIF format (320x240) with very high motion. The
Total sequence is a concatenation of several standard MPEG test
sequences (such as Carphone, Stephan, Silence, Akiyo, etc.) in
CIF format (352x288). The Trap sequence is a high definition

version (1280x720) of the movie trailler of “The Parent Trap”
(Disney, 1998). We encoded the SIF and CIF sequences at 2
Mbps and the HD sequence at 5 Mbps, respectively.

We compare the video decoding speed achieved using CPU
only against that achieved using CPU and GPU, as shown in
Table 3. Clearly, the speed is significantly improved by
leveraging the power of GPU. It is interesting to observe that the
speed-up of the Total sequence is much higher than Football,
while the speed-up of the Trap is by large the most significant
one. The reason mainly lies in the bandwidth requirement. For
the same hit rate, due to its high motion nature, Football
produces a lot more non-zero difference blocks than the Total
does. On the other hand, the Trap sequence at 5 Mbps leads to a
high percentage of zero difference blocks. As a result, the
memory bandwidth requirement is greatly reduced since we do
not transfer any zero block.

Sequence Do CcPU +%FI):[>JU
Football (32;'('; 40) 2Mbps | 81.0fps | 135.4 fps

Totd (35(2::(;88) 2 Mbps | 84.7 fps | 186.7 fps

Trap (128%)?720) 5Mbps| 9.9fps | 31.3fps

Table 3. Experimental results of GPU assisted video
decoding on PC with an Intel Pentium |11 667 MHz CPU
and an nVidia GeForce3Ti200 GPU.

6. CONCLUSION

In this paper, we proved that GPU can indeed do more than just
graphics. We have demonstrated that GPU can help CPU to
accelerate video decoding. We achieved rea-time decoding of
high definition video on PC with a sow CPU and a powerful
GPU, which is definitely impossible otherwise. It is definitely
worthwhile to further investigate how a GPU can accelerate
other non-graphics oriented operations.

7. REFERENCES

[1] http://www.sigaraph.org/s2002/conference/papers/paperss.
html

[2] http://www.mpeg.org/M PEG/video.html

[3] http://msdn.microsoft.comvlibrary/default.asp?url=/library/e
n-us/graphics/hh/graphics/dxvaguide 48x3.asp

[4] Windows MediaVideo, http://www.windowsmedia.com

[5] ReaVideo, http://www.rea networks.com

[6] Erik Lindholm, Mark J. Kilgard, Henry Moreton, “A user
programmabl e vertex engine’, ACM SIGGRAPH 2001.

[7] http://www.nvidia.com/docs/lo/67/SUPP/vertexshaders.pdf

[8] http://www.nvidia.com/view.asp?PAGE=geforce3

IV -775

