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ABSTRACT 

 
Most modern computers or game consoles are equipped with 
powerful graphics processing units (GPUs) to accelerate 
graphics operations. There is a trend that the power of GPU 
outgrows that of CPU (central processing unit). However, the 
GPU engines are specially designed for graphics operations.  
Can we take advantage of the powerful GPU engines for more 
general operations other than pure graphics operations? The 
answer is positive. In this study, we present schemes that map 
other non-graphics operations into graphics engines with an 
example application of accelerating video decoding with the 
assistance of GPU. Our results show that significant speed-up 
can be achieved by leveraging the GPU power. Specifically, we 
have achieved real-time playback of high definition video on a 
PC with an Intel Pentium III 667 MHz CPU and an nVidia 
GeForce3 GPU. 
 

1. INTRODUCTION 
 
With the advance of silicon and computer graphics technologies, 
more and more inexpensive yet powerful graphics processing 
units (GPUs) can be found in mainstream personal computers 
and game consoles.  GPUs are equipped with specialized 
processors designed just for 2D and 3D graphics operations and 
they indeed do an excellent job [1]. On the other hand, 
multimedia is the core of digital entertainment and it usually 
requires very high processing power especially for real-time 
applications. When real-time multimedia applications are 
implemented with a general purpose computer, CPU is usually 
heavily loaded and in many cases that CPU alone can not meet 
the real time requirement at all. For example, currently CPUs in 
most household PCs alone are not powerful enough to decode 
high definition (HD) video in real-time.  

However, for non-graphics oriented applications, the GPU 
is usually idle while CPU is heavily loaded.  A question comes 
along naturally: can we leverage the power of GPU to off-load 
the CPU for some tasks, especially when the GPU is idle? In this 
study, we will present schemes to map non-graphics operations 
onto graphics engines with an example application of 
accelerating digital video decoding with the assistance of GPU. 
We should note that, some today’s graphic cards have a special 
hardware unit that can accelerate the video decoding process, 

thanks to the well established international video coding 
standards such as MPEG-1/2/4 [2] and the widely endorsed 
DirectX video accelerator (DXVA) specification [3]. However, 
such a hardware video decoding accelerator is only limited to 
certain standard video coding formats. They can not handle 
video that may be coded with other proprietary yet very popular 
video coding formats, such as Windows Media Video (WMV) 
[4] and RealVideo [5]. Moreover, even though almost all GPUs 
can help on video rendering (through overlay), they can only 
provide very limited flexibility in manipulating the video 
decoded.  

In order to support more flexible and wider application 
scenarios, we can not rely on these non-standard specialized 
hardware accelerators.  In this study, we investigate how the 
common DirectX-8 compatible graphics engines can be 
exploited to assist the CPU in video decoding. We choose 
DirectX-8 is because of its predominance and rich APIs as an 
industrial standard. Our study confirms that the GPU power can 
indeed be leveraged for non-graphics applications. Furthermore, 
since the video is handled by the graphics engine directly, it 
provides a more efficient way to incorporate video into computer 
graphics, which is of wide interest in today’s gaming industry. 

The rest of the paper is organized as follows. In Section 2, 
we briefly review the architecture of a modern GPU. Section 3 
highlights the general procedure of video decoding and analyzes 
the complexity of the building blocks. We then present a 
solution of exploiting GPU to accelerate video decoding in 
Section 4. Some experimental results are given in Section 5 and 
Section 6 concludes the paper.  
 

2. GRAPHICS ENGINE ARCHITECTURE 
 
Recent years have witnessed dramatic increases in the GPU 
processing power at a speed even faster than Moore’s law to 
CPU due to breakthroughs in computer graphics field, 
innovations in silicon design and advances in semiconductor 
technologies. One most significant step forward is the 
introduction of user-programmable geometry engine [6] and the 
pixel pipeline. The principal 3D APIs (DirectX and OpenGL) 
have evolved alongside graphics hardware. One of the most 
important new features in DirectX graphics is the addition of a 
programmable pipeline that provides an assembly language 
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interface to the transformation and lighting hardware (vertex 
shader) and the pixel pipeline (pixel shader).  

Vertex shaders are small programs describing a procedure 
to be applied to polygon vertices in the scene. Pixel shaders are 
small programs describing operations to be applied to pixels in 
the frame buffer. Pixel shaders’ function is similar to vertex 
shaders’, except that they perform operations manipulating 
colors and textures, rather than geometry. Note that the vertex 
shader calculates effects on a per-vertex basis (i.e., polygon 
based rendering) while the pixel shader operates on a per-pixel 
basis. For legacy performance, most GPUs still keep the old 
fixed-function pipeline (the standard Transform & Lighting 
pipeline where the functionality is essentially fixed). A greatly 
simplified graphics pipeline is shown in Figure 1 [7].  

 

Figure 1. A greatly simplified graphics pipeline [7] 

Modern mainstream GPUs are indeed very powerful, thanks 
to the complete fine-grained SIMD parallelism and pipelining. In 
Table 1, we list some performance metrics of nVidia GeForce3 
[8]. 

 

Graphics Core 256-bit 

Memory Interface 128-bit DDR 

Fill Rate 3.2 Billion AA Samples/Sec. 

Operations per Second 800 Billion 

Memory Bandwidth 7.36GB/Sec. 

Table 1. Performance of nVidia GeForce3 [8] 

In summary, the programmable pipeline of GPU gives 
developers a lot more freedom to achieve special effects. The 
power of GPU ensures these special effects can be made into real 
time graphics applications.  

 
3. TYPICAL VIDEO DECODER ARCHITECTURE 

 
A typical video decoder consists of several building blocks, 
namely variable length decoding (VLD), de-quantization (IQ), 
inverse DCT (IDCT), motion compensation (MC), and color 
space conversion (CSC), as shown in Figure 2. Motion 
compensation is an efficient technology that exploits the 
temporal correlation between neighboring frames of a video 
sequence. Color space conversion module converts YUV to 
RGB for the display purpose. 

Note that there is a feedback loop in a video decoder. 
Because of this feedback loop, the motion compensated signal 
has to exactly match that in the encoder. Any error introduced, 
albeit small, will be accumulated and propagated to future 
frames. This is called drifting. Drifting usually leads to quick 
video quality degradation and therefore must be prevented. 

 

Figure 2. Block diagram of a typical decoder 

The most computationally intensive parts, in a decreasing 
order, are CSC, MC, IDCT, IQ and VLD. Figure 3-(a) shows the 
load profiling result for a typical video decoder (for a proprietary 
MPEG-like video format) on Pentium III 667 MHz CPU when 
decoding an HD (1280×720) video sequence. Evidently, the 
CSC and MC consume most of the overall computation power 
(more than 60%). Since the CSC module can usually be handled 
by the GPU, we also performed the profiling that excludes the 
CSC module, as shown in Figure 3-(b). Clearly, the MC still 
occupies a significant portion of the whole computation load. 
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Figure 3. Load profiling of building blocks in video decoding. 
(a) all modules, and (b) all modules except color space 

conversion. 

According to the profiling results, it is very desirable that 
the color space conversion and motion compensation can be 
handled more efficiently. Ideally, they should be handled by 
some other processing units or hardware accelerator. As 
discussed in next section, this can be achieved by moving these 
two modules into the GPU. 
 

4. GPU-ASSISTED VIDEO DECODING 
 
4.1. Feasibility 
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Since the GPU is specially designed for faster graphics 
operations and better graphics effects instead of for assisting 
decoding video, there is no direct mapping of video decoding 
algorithms to the 2-D or 3-D graphics engines. On the other 
hand, the per-vertex and per-pixel operations of GPU may still 
be utilized to handle partial of the video decoding task. That is, 
we can use the GPU to take over some video decoding stages 
that involve only per-vertex and per-pixel operations in nature.  

We analyze the nature of each building block of a typical 
video decoder as shown in Table 2. In this table, block-wise 
means that the operations are performed on a block by block 
basis. A block is a simple polygon and therefore their vertices 
can be handled by the vertex shader. Clearly, the most 
computationally complex MC and CSC modules are intrinsically 
suitable for the GPU to process. Since IQ and IDCT are not per-
pixel operations and VLD is a purely sequential operation, they 
have to be handled by the host CPU. 

 

Module Block-wise Per-pixel 

VLD x x 

IQ √ x 

IDCT √ x 

MC √ √ 

CSC √ √ 

Table 2. Nature of each module of a video decoder 

Read-back from GPU memory to that of CPU is very 
expensive, due the asymmetric design of AGP bus. As a result, 
such read-back must be avoided in a practical design. This is 
achievable by moving the whole feedback loop to GPU. In other 
words, the CPU will not access the data after submitted to the 
GPU. 

 
4.2. Constraints 
 
Even though GPU is very powerful, it still has many constraints. 
These constraints are more visible when exploiting GPU for non-
graphics oriented applications. Some main constraints are as 
follows:  

•  The memory bandwidth between CPU and GPU is limited.  

•  The internal precision of pixel shader is limited. For 
example, the nVidia GeForce3 GPU’s internal precision is 
only up to 8 bits. 

•  The instruction set is small. Most instructions are specially 
designed for graphics operations. 

•  The code line count for pixel shader programming is 
limited. Only up to 8 arithmetic instructions are allowed in 
any rendering pass. 

 
4.3. Proposed solution 
 

Based on the analysis above, our solution is to move the whole 
feedback loop that consists of motion compensation (including a 
padding process which is used to handle motion vectors that 
point outside the reference picture) and color space conversion 
to the GPU.  

For motion compensation, we use the vertex shader to 
handle the motion vectors. That is, vertex shader is used to 
compute the target block positions and the source (reference) 
texture addresses for the macroblocks to be motion-
compensated. Motion compensation can be performed at 
different precisions for INTER blocks such as integer pixel level 
and sub-pixel level (e.g., half-pel and quarter-pel). For sub-pixel 
level MC, some interpolation processes are generally involved. 
There is a special type of macroblocks called INTRA block. No 
motion compensation is needed for these blocks. We adopted a 
divide-and-conquer approach to handle different MC types and 
precisions, as shown in Figure 4. Note that there are two ways to 
handle INTRA blocks. One way is to handle them via a separate 
rendering pass, the other way is to treat them as integer-pel 
INTER blocks with pseudo motion vectors that point to some 
zero area. We adopted the second method. 

 

Figure 4. Divide-and-conquer approach for MV handling. 

Now let’s briefly go through the working flow of MC and 
CSC inside the GPU.  The motion vector is first transferred from 
CPU to GPU and processed by vertex shader. The vertex shader 
generates the target block positions for triangle setup and the 
texture addresses for sampling the textures. The pixel shader will 
then use the texture addresses generated by the vertex shader to 
sample the texture, perform necessary arithmetic operations to 
obtain the motion compensated result, and render the result to 
the target positions. After the motion compensation is done, the 
CPU will transfer the difference data to GPU. The GPU will then 
reconstruct a new picture by adding the difference to the motion 
compensated reference. The picture will go through color space 
conversion and be sent for display. The picture will also be used 
as the reference of the next frame.  

Because the geometric operations of MC and CSC are 
extremely simple, the main tasks are at the pixel shaders. There 
are totally five main steps that involve pixel shaders. Among 
them, four are mandatory and one is optional, see Figure 5. In 
this figure, a round-cornered rectangle represents a pixel shader. 
The first pixel shader restores the difference picture by 
unpacking the packed difference data. This is an optional step 
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though to reduce the bandwidth of transferring difference picture 
from CPU memory to GPU memory. The second pixel shader 
prepares a padded reference for the subsequent motion 
compensation process that is to be handled by the third pixel 
shader. The fourth pixel shader then adds the difference data to 
the motion compensated reference to form the final reconstructed 
picture. The fifth pixel shader converts the YUV format of the 
reconstructed picture to RGB format. Note that this pixel shader 
directly renders to the back buffer, and there are no extra steps 
needed to display the final decoded picture. 

 

Figure 5. Flow chart of MC and CSC in GPU 

All the steps mentioned above are relatively straightforward 
since MC is basically a translation operation of textures. The 
difficulty lies in the drifting prevention considering the limited 
internal precision of a GPU. It is just such a drifting effect that 
essentially distinguishes the video decoding from normal 
graphics operations. Extra care is needed to avoid the potential 
drifting problem especially for sub-pixel motion compensation. 

According to DirectX-8 specifications, the only render 
target format that suits for the video decoding application is the 
32-bit D3DFMT_A8R8G8B8 format. However, the dynamic 
range of the difference data is usually from -255 to 255, which 
only needs 9 bits to represent. Therefore, it would be very 
beneficial if we could pack three 9-bit difference values with one 
32-bit pixel because this effectively reduces the memory 
bandwidth requirement by two thirds. To further reduce memory 
bandwidth, the CPU transfers only non-zero difference blocks to 
GPU.  
 

5. EXPERIMENTAL RESULTS 
 
We have proposed and implemented a solution to decode the 
proprietary MPEG-like video. We also performed extensive tests 
on a PC with an Intel Pentium III 667 MHz CPU and an nVidia 
GeForce3Ti200 GPU. The test sequences used are Football, 
Total, and Trap. The Football sequence is a standard MPEG test 
sequence in SIF format (320x240) with very high motion. The 
Total sequence is a concatenation of several standard MPEG test 
sequences (such as Carphone, Stephan, Silence, Akiyo, etc.) in 
CIF format (352x288). The Trap sequence is a high definition 

version (1280x720) of the movie trailer of “The Parent Trap” 
(Disney, 1998). We encoded the SIF and CIF sequences at 2 
Mbps and the HD sequence at 5 Mbps, respectively.  

We compare the video decoding speed achieved using CPU 
only against that achieved using CPU and GPU, as shown in 
Table 3. Clearly, the speed is significantly improved by 
leveraging the power of GPU. It is interesting to observe that the 
speed-up of the Total sequence is much higher than Football, 
while the speed-up of the Trap is by large the most significant 
one. The reason mainly lies in the bandwidth requirement. For 
the same bit rate, due to its high motion nature, Football 
produces a lot more non-zero difference blocks than the Total 
does. On the other hand, the Trap sequence at 5 Mbps leads to a 
high percentage of zero difference blocks. As a result, the 
memory bandwidth requirement is greatly reduced since we do 
not transfer any zero block.  

 

  Decoder 
Sequence 

CPU 
CPU 

+GPU 

Football 
SIF 

(320x240) 
2 Mbps 81.0 fps 135.4 fps 

Total 
CIF 

(352x288) 
2 Mbps 84.7 fps 186.7 fps 

Trap 
HD 

(1280x720) 
5 Mbps 9.9 fps 31.3 fps 

Table 3. Experimental results of GPU assisted video 
decoding on PC with an Intel Pentium III 667 MHz CPU 
and an nVidia GeForce3Ti200 GPU. 

 
6. CONCLUSION 

 
In this paper, we proved that GPU can indeed do more than just 
graphics. We have demonstrated that GPU can help CPU to 
accelerate video decoding. We achieved real-time decoding of 
high definition video on PC with a slow CPU and a powerful 
GPU, which is definitely impossible otherwise. It is definitely 
worthwhile to further investigate how a GPU can accelerate 
other non-graphics oriented operations.  
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