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ABSTRACT 
 

In this paper, we introduce surface plenoptic function (SPF) 
as a tool for the sampling analysis of image-based rendering 
(IBR). SPF is a plenoptic function defined on the object surface. 
It can be mapped onto the normal IBR representation via a coor-
dinate transform. By assuming some properties of the SPF, we 
can provide insightful analysis on the sampling of the IBR repre-
sentation, for both uniform and non-uniform methods.  
 

1. INTRODUCTION 
 

Image-based rendering (IBR) has attracted a lot of attentions 
recently. Various representations of IBR have been proposed, 
such as plenoptic modeling [1], lightfield [2], lumigraph [3], 
concentric mosaic [4], unstructured lumigraph [5] etc. IBR has 
many advantages over the traditional model-based rendering. It 
requires very little or even no geometrical information about the 
scene to realistically render it. The rendering speed of IBR is 
linearly proportional to the image size, but not the scene com-
plexity. Nevertheless, often a huge number of images have to be 
taken in order to avoid aliasing or ghosting during the rendering. 
It is therefore extremely important to know how many images 
are enough to capture a scene. When the IBR is captured uni-
formly, as in lightfield and concentric mosaics, we could solve 
the problem by analyzing the Fourier spectrum of them and ap-
plying the traditional sampling theory. If we are allowed to sam-
ple the scene non-uniformly, we need to decide along the captur-
ing path where to capture more and where to capture less, such 
that the optimal rendering results can be achieved.  

Work has been done on the spectral analysis of uniformly 
sampled IBR. In [6], Chai et al. proposed a method to study the 
frequency spectrum of lightfield. Assuming Lambertian surface 
and no occlusion, they derived that the spectral support of a 
lightfield signal is bounded by the minimum and maximum 
depths of objects in the scene only, no matter how complicated 
the scene is. Knowing the bound of the support, the maximum 
sampling density can be achieved by compacting copies of the 
spectral support in the frequency domain. Marchand-Maillet and 
Vetterli [7] extended the work for scenes with functional sur-
faces. Lin and Shum [8] performed sampling analysis on both 
lightfield and concentric mosaic with scale-space theory under 
constant-depth assumption. The bounds are derived from the 
aspect of geometry and based on the goal that no “spurious de-
tail” should be generated during the rendering (referred as the 
causality requirement). All the above work was successful in 
improving our knowledge about IBR sampling. However they 

are not easily extendable to analyzing more complex scenes, 
such as scenes with non-Lambertian surface or occlusions, not to 
say the non-uniform sampling of IBR.  

In this paper, we propose a new method to parameterize the 
plenoptic function for IBR sampling analysis. We call the new 
representation surface plenoptic function (SPF). There exists a 
unique mapping between the SPF and the IBR representation. 
We show that when this mapping is well defined, we are able to 
do the spectral analysis for generic scenes including occluded or 
non-Lambertian ones. We can also provide some insightful 
views to the problem of non-uniform sampling.  

The paper is organized as follows. Section 2 introduces the 
definition of SPF and its relationship to general IBR representa-
tions. We use SPF to analyze the Fourier spectrum of IBR in 
Section 3. Section 4 presents the usage of SPF to non-uniform 
IBR sampling. Conclusions are given in Section 5.  
 

2. THE SURFACE PLENOPTIC FUNCTION 
 
Any lightfield has its source. Light rays can be either emitted 
from some light source (e.g., the Sun), or reflected from some 
object surface. Let the entire surface of all the light sources and 
objects be S. We can always trace a light ray in the free space 
back to a point on S. In the 3D world where radiance does not 
change along a line unless blocked, the 7D plenoptic function 
can be reparameterized to 6D including time (1D), wavelength 
(1D), point on the surface S (2D), and azimuth and elevation 
angles (2D) the light ray is emitted. We name this 6D function 
as the surface plenoptic function (SPF). Notice that the reparam-
eterization does not lose any information given that radiance 
does not change along its path.  

The reason we introduce SPF, is that under the same condi-
tion, it will have the same dimensionality as commonly used 
IBR representations. For example, when time and wavelength is 
ignored, SPF is a 4D function, the same as lightfield. When 
cameras and the viewer are constrained on a plane, SPF reduces 
to 3D (eliminating the elevation angle), as in concentric mosaic. 
The property of same dimensionality provides us the possibility 
to easily map between SPF and IBR representations. Such a 
mapping depends on both the scene geometry and the camera 
trajectory, but not the surface property such as BRDF. If we 
have some knowledge about the scene, in other words, if we 
know some property about the SPF, related property can be de-
rived for the IBR representation. More importantly, the mapping 
does not require the scene to have no occlusions or Lambertian 
surface, which is very attractive for IBR sampling analysis.  
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Figure 1 2D SPF and general IBR capturing. 

Without loss of generality, we use the 2D world as example 
throughout this paper for conciseness. The conclusions drawn in 
this paper are easy to extend to the 3D world. In the 2D world, 
surface of objects/light sources is described with curves. Ignor-
ing time and wavelength, the SPF is 2D: one dimension for de-
scribing a point on a curve, the other for illustrating the direction 
of the light ray emitted/reflected. An example scene is shown in 
Figure 1. The surface can be represented by either  
or , where s can be the arc length, i be the 
index for different objects. For a certain object i, define its SPF 
as:  

( ) 0, =yxSi

( ) ( ){ syysxx ii == , }

)( θ,sli  on the curve { }         (1) ( ) ( )syysxx ii == ,
where πθ 20 <≤  is the direction of the light ray; ( )θ,sil  is the 
radiance of the light ray that can be traced back to the surface 
point determined by s with direction θ .  

In order to capture the plenoptic function or surface plenop-
tic function, existing IBR approaches align cameras on a 
path/surface and take images for the scene. For example, cam-
eras are placed on a plane in lightfield, and on a circle in 
concentric mosaic. In the 2D world, 2D lightfield has cameras 
on a line, while 2D concentric mosaic has cameras on a circle. In 
general, the cameras can be put along an arbitrary curve, as is 
shown in Figure 1. Let the camera path be  or 

, where t is the arc length. The image pixels 
can be indexed by the angle between the captured light ray and 
the optical axis, as is represented by 

( ) 0, =yxSc

( ) ( ){ tyytxx cc == , }

α  in Figure 1. Due to the 
correspondence between the light rays emitted/reflected from the 
scene surface and those captured, a coordinate transform be-
tween ( )θ,s ( and )α,t  can be well defined. To analyze the sam-
pling problem for the IBR representation, we may first assume 
some properties on the SPF, and then transform the SPF to the 
IBR representation, hoping that some related properties can be 
derived. In the next two sections, we will show examples where 
we can apply the above strategy to the uniform and non-uniform 
sampling of IBR.  
 
3. UNIFORM SAMPLING – SPECTRAL ANALYSIS 
 
For IBR uniform sampling, we need to find its Fourier spectrum 
so that we may apply the traditional sampling theory. Due to the 
page limit of the paper, we give an example on analyzing the 
lightfield representation.  
 
3.1. 2D Lightfield Analysis 
As shown in Figure 2, 2D lightfield is parameterized by two 
parallel lines, indexed by t and v, respectively. The t line is the 

camera line, while the v line is the focal line. The distance be-
tween the two lines is f, which is the focal length of the cameras. 
The SPF, for ease of analysis, is defined based on a global coor-
dinate of θ .  
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Figure 2 The lightfield parameterization. 

It is easy to show that a light ray indexed by pair  has 
the following algebraic equation:  

( vt, )

)

0=−− ftvyfx   (2) 
Notice that the focal line is indexed locally with respect to where 
the camera is.  

The relationship between lightfield l  and the SPF ( )vtc ,
( θ,sli  is as follows. For the same light ray emitted/reflected 

from a surface point, it must be captured at the corresponding 
angle. That is:  

( ) vf=θtan  or ( )fv1tan23 −−= πθ   (3) 

where  and 00 vvv ≤≤− ( fv0
1tan2 − )  tells the field of view 

(FOV). If the cameras have a limited FOV, which often happens 
in real-life systems, Equation (3) can be linearized as:  

fv−= 23πθ    (4) 
Another constraint is that the light ray (  can be traced 

back to a cross point on the object surface, whose arc length s 
can be obtained through solving:  

)

)

vt,

( ) ( )




=−−
==

0
,

ftvyfx
syysxx ii    (5) 

When multiple objects exist in the scene or some objects oc-
clude themselves, Equation (5) may have multiple answers. We 
have to figure out which cross point is the closest to the cameras. 
The closest point will occlude all the others. This may make 
scenes with occlusions hard to analyze. However, for simple 
occluded scenes this is still doable [9].  We next show a simple 
example for analyzing a scene at constant depth. More complex 
examples can be found in [9].  
 
3.2. An example 
 
The simplest scene we can have for lightfield is one at a constant 
depth. Let the SPF of the scene be ( θ,sl , whose Fourier trans-
form be . The object surface can be described by:  ( θΩΩ ,sL )

( ) ( ){ }000 , dsyyssxx ====   (6) 
We can solve Equation (5) without concerning about occlusion:  

tfvdsftvdfs +=⇒=−− 00 0   (7) 
The lightfield spectrum can be easily derived as:  

( ) ( ) ( )vt fdj
vttvtc efdfLL

Ω−Ω
Ω−ΩΩ=ΩΩ

02
3

0,,
π

      (8) 

IV - 769

➡ ➡



We can see that the spectrum of the lightfield at constant depth 
is a rotated version of the SPF spectrum, with some constant 
factor in magnitude and some shift in phase. The rotation angle 
is determined by the scene depth  and the focal length f.  0d

We may give different assumptions about the SPF. For ex-
ample, if the object surface is Lambertian, which means the light 
rays from the same surface point have identical radiance, we 
may let ( ) ( ) ( θθ )δ ΩΩ=ΩΩ sss LL , . Therefore,  

( ) ( ) ( ) ( )vt fdj
vttsvtc efdfLL

Ω−Ω
Ω−ΩΩ=ΩΩ

02
3

0,
π

δ    (9) 
This is a tilted line in the  space, which is the same 
conclusion as that in [6].    

( vt ΩΩ , )

When the object surface is non-Lambertian, the spectrum of 
the SPF expands along . If the scene surface is not very 
specular, thus light rays from the same surface point change 
slowly about the direction 

θΩ

θ , we may assume that the SPF is 
band-limited along . Therefore, we may let 

, where  
θΩ

) ( θΩ( ) ( θθ ΩΩ=ΩΩ ILL ss ,, )

( )


 <Ω

=Ω
otherwise.            ,0

, if         ,1 θθ
θ

B
I   (10) 

and  defines the bandwidth. Consequently:  θB

( ) ( ) ( ) ( )vt
fdj

vttvtc fdIefdfLL
vt

Ω−ΩΩ−ΩΩ=ΩΩ
Ω−Ω

0
2

3

0
0

,,
π

 (11) 
The spectrum is also tilted, but this time it has a finite width 

22
02 fdB +θ  perpendicular to the tilted spectrum (or 

02 dBθ  horizontally) because of the indicator function.  
The above analysis is illustrated in Figure 3. A scene at con-

stant depth has two sinusoids (different frequency) pasted on it 
as texture, as shown in Figure 3 (a). Figure 3 (b) is the epipolar 
image (EPI) when the scene is Lambertian. Figure 3 (c) is its 
Fourier transform. The spectrum has several peaks because the 
texture on the scene object is pure sinusoids. It basically lies on 
a tilted line with some small horizontal and vertical windowing 
artifact that is due to the truncation of the range of s and θ . We 
ignored the windowing artifacts in our analysis for simplicity. 
Figure 3 (d) shows the EPI for a non-Lambertian case at the 
same depth. It can be seen that because of the non-Lambertian 
property, its Fourier transform in Figure 3 (e) is expanded to-
wards the normal direction of the tilted line.  
 

4. NON-UNIFORM SAMPLING – SAMPLING 
DENSITY FUNCTION 

 
It is not straightforward how to extend the above method to the 
analysis of non-uniform sampling. In this section, we define 
sampling density function as another tool to solve the problem 
together with SPF.  
 
4.1. Stochastic Sampling and the Sampling Density 
Function 

 
Stochastic sampling is a Monte Carlo technique [11] that 

takes samples at irregular locations rather than at regular spaced 
locations. A simple implementation of stochastic sampling is to 
select the sampling locations based on a certain distribution. In 

this paper, we refer the probability density function of such a 
distribution as sampling density function (SDF). 
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Figure 3 Lambertian and non-Lambertian scenes at constant 
depth.   

Although stochastic sampling itself is sometimes referred as 
non-uniform sampling in the literature, we define the uniformity 
of sampling in a different way. A signal is uniformly sampled if 
and only if its SDF is uniform. This is intuitively true because 
when the SDF is uniform, all the locations have equal probabil-
ity to be chosen as a sample.  

In the following analysis on non-uniform sampling of IBR, 
we will show that the SDF of the IBR representation tend to be 
non-uniform, even if the optimal SDF of the surface plenoptic 
function is uniform.  

 
4.2. Method and Example 

 
The SDFs of the SPF and the IBR representation is related by 
the mapping between them. Therefore, one can transform one of 
the SDF to the other. Let the SDF of the SPF be ),( θsSspf , and 

that of the IBR representation be ),( αtSibr . If the mapping be-
tween SPF and IBR representation has an explicit form:  

),(),( θα sMt =   (12) 
under the condition that ),( θsM is monotonically increasing or 
decreasing, we have:  

J
sS

tS spf
ibr

),(
),(

θ
α =   (13) 

where 
θαα
θ

∂∂∂∂
∂∂∂∂

=
s

tst
J  is the Jacobi Determinant of the 

transform.  
Unfortunately, the mapping between SPF and IBR represen-

tation rarely has an explicit form, not to say monotonically in-
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creasing or decreasing. We solve the problem by Monte Carlo 
method. Assume that the SDF of the SPF is known. We simply 
perform stochastic sampling on the light rays from SPF, and 
record their corresponding coordinates in the IBR representation. 
The SDF of the IBR representation is achieved by counting the 
frequencies of the light rays falling into different bins.  

Object

Camera Path

...
...

...

...

R
L

w=0,4L

w=Lw=2L

w=3L  
Figure 4: An example IBR scene. 

An example 2D scene is shown in Figure 4. The object is a 
perfect circle. We assume that the optimal SDF for its SPF is 
uniform. The object is captured with a standard inward-looking 
lightfield. Cameras are placed on a concentric box with their 
optical axes perpendicular to the camera path. In the following 
experiment, we set object radius R = 1, capturing box side length 
L = 4, field of view of the cameras FOV = 90˚. The camera path 
is indexed with w, whose value is from 0 to 4L, divided into 
1000 bins. The FOV is divided into 200 bins. One billion (109) 
light rays are randomly drawn in our Monte Carlo experiment.  

Figure 5 (a) shows the SDF of the IBR representation of the 
setup in Figure 4. The horizontal axis is the camera path w, the 
vertical axis is the pixel index or bin index of the field of view. 
A brighter pixel means denser samples. It can be seen that the 
SDF is non-uniform. Notice that in practice when we take an 
image, the sampling pattern along the pixel index axis is fixed 
(most likely uniform). Therefore, we are only allowed to sample 
the camera path w non-uniformly. The marginal distribution of 
the SDF along the camera path is shown in Figure 5 (b). The 
vertical axis is the number of light rays falling into the corre-
sponding w bin. It tells us that we should capture more images 
around the center of each side of the capturing box.  

 
3.4. Discussions  

 
Transforming the SDF of the SPF to that of the IBR repre-

sentation is generally doable with Monte Carlo method, pro-
vided that the former SDF and the geometry of the scene are 
known. Given the SDF of the IBR representation, it is possible 
to plan the view positions before capturing, which will yield 
optimal rendering quality.  

In practice, the scene geometry is usually unknown. An IBR 
viewer often assumes some rough geometry of the scene, e.g., a 
constant-depth plane. In this case, the above method is still ap-
plicable, but the source SPF has to be defined on the rendering 
surface instead of the true object surface.  

The difficulty lies at finding the SDF of the SPF. A uniform 
SDF of the SPF is unlikely to be optimal in practice, given that 
the scene surface can be specular, and the rendering geometry 
can be arbitrary chosen. In [10], we explore algorithms that can 
approach similar results (near-optimal non-uniform sampling) 
but are more practical. 
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Figure 5: (a) SDF of the IBR representation in Figure 4. (b) Mar-
ginal distribution along camera path w. 
 

5. CONCLUSIONS 
 
We introduced surface plenoptic function in this paper as a tool 
to analyze the sampling problem of image-based rendering. We 
showed its effectiveness for both uniform and non-uniform sam-
pling analysis. Although we may need to assume certain proper-
ties for the SPF, we believe SPF is still a useful tool for IBR 
sampling analysis.  
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