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ABSTRACT

In this paper, we introduce surface plenoptic function (SPF)
as a tool for the sampling analysis of image-based rendering
(IBR). SPF is a plenoptic function defined on the object surface.
It can be mapped onto the normal IBR representation via a coor-
dinate transform. By assuming some properties of the SPF, we
can provide insightful analysis on the sampling of the IBR repre-
sentation, for both uniform and non-uniform methods.

1. INTRODUCTION

Image-based rendering (IBR) has attracted a lot of attentions
recently. Various representations of IBR have been proposed,
such as plenoptic modeling [1], lightfield [2], lumigraph [3],
concentric mosaic [4], unstructured lumigraph [5] etc. IBR has
many advantages over the traditional model-based rendering. It
requires very little or even no geometrical information about the
scene to realistically render it. The rendering speed of IBR is
linearly proportional to the image size, but not the scene com-
plexity. Nevertheless, often a huge number of images have to be
taken in order to avoid aliasing or ghosting during the rendering.
It is therefore extremely important to know how many images
are enough to capture a scene. When the IBR is captured uni-
formly, as in lightfield and concentric mosaics, we could solve
the problem by analyzing the Fourier spectrum of them and ap-
plying the traditional sampling theory. If we are allowed to sam-
ple the scene non-uniformly, we need to decide along the captur-
ing path where to capture more and where to capture less, such
that the optimal rendering results can be achieved.

Work has been done on the spectral analysis of uniformly
sampled IBR. In [6], Chai et al. proposed a method to study the
frequency spectrum of lightfield. Assuming Lambertian surface
and no occlusion, they derived that the spectral support of a
lightfield signal is bounded by the minimum and maximum
depths of objects in the scene only, no matter how complicated
the scene is. Knowing the bound of the support, the maximum
sampling density can be achieved by compacting copies of the
spectral support in the frequency domain. Marchand-Maillet and
Vetterli [7] extended the work for scenes with functional sur-
faces. Lin and Shum [8] performed sampling analysis on both
lightfield and concentric mosaic with scale-space theory under
constant-depth assumption. The bounds are derived from the
aspect of geometry and based on the goal that no “spurious de-
tail” should be generated during the rendering (referred as the
causality requirement). All the above work was successful in
improving our knowledge about IBR sampling. However they
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are not easily extendable to analyzing more complex scenes,
such as scenes with non-Lambertian surface or occlusions, not to
say the non-uniform sampling of IBR.

In this paper, we propose a new method to parameterize the
plenoptic function for IBR sampling analysis. We call the new
representation surface plenoptic function (SPF). There exists a
unique mapping between the SPF and the IBR representation.
We show that when this mapping is well defined, we are able to
do the spectral analysis for generic scenes including occluded or
non-Lambertian ones. We can also provide some insightful
views to the problem of non-uniform sampling.

The paper is organized as follows. Section 2 introduces the
definition of SPF and its relationship to general IBR representa-
tions. We use SPF to analyze the Fourier spectrum of IBR in
Section 3. Section 4 presents the usage of SPF to non-uniform
IBR sampling. Conclusions are given in Section 5.

2. THE SURFACE PLENOPTIC FUNCTION

Any lightfield has its source. Light rays can be either emitted
from some light source (e.g., the Sun), or reflected from some
object surface. Let the entire surface of all the light sources and
objects be S. We can always trace a light ray in the free space
back to a point on S. In the 3D world where radiance does not
change along a line unless blocked, the 7D plenoptic function
can be reparameterized to 6D including time (1D), wavelength
(1D), point on the surface S (2D), and azimuth and elevation
angles (2D) the light ray is emitted. We name this 6D function
as the surface plenoptic function (SPF). Notice that the reparam-
eterization does not lose any information given that radiance
does not change along its path.

The reason we introduce SPF, is that under the same condi-
tion, it will have the same dimensionality as commonly used
IBR representations. For example, when time and wavelength is
ignored, SPF is a 4D function, the same as lightfield. When
cameras and the viewer are constrained on a plane, SPF reduces
to 3D (eliminating the elevation angle), as in concentric mosaic.
The property of same dimensionality provides us the possibility
to easily map between SPF and IBR representations. Such a
mapping depends on both the scene geometry and the camera
trajectory, but not the surface property such as BRDF. If we
have some knowledge about the scene, in other words, if we
know some property about the SPF, related property can be de-
rived for the IBR representation. More importantly, the mapping
does not require the scene to have no occlusions or Lambertian
surface, which is very attractive for IBR sampling analysis.
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Figure 1 2D SPF and general IBR capturing.

Without loss of generality, we use the 2D world as example
throughout this paper for conciseness. The conclusions drawn in
this paper are easy to extend to the 3D world. In the 2D world,
surface of objects/light sources is described with curves. Ignor-
ing time and wavelength, the SPF is 2D: one dimension for de-
scribing a point on a curve, the other for illustrating the direction
of the light ray emitted/reflected. An example scene is shown in
Figure 1. The surface can be represented by either S, (x, y) =0

or {x =x; (s), Y=y (s)}, where s can be the arc length, i be the

index for different objects. For a certain object 7, define its SPF
as:

[; (s,9) on the curve {x =x; (s),y =y (s} (1)
where 0<6 <27 is the direction of the light ray; /, (s,ﬁ) is the

radiance of the light ray that can be traced back to the surface
point determined by s with direction 8.

In order to capture the plenoptic function or surface plenop-
tic function, existing IBR approaches align cameras on a
path/surface and take images for the scene. For example, cam-
eras are placed on a plane in lightfield, and on a circle in
concentric mosaic. In the 2D world, 2D lightfield has cameras
on a line, while 2D concentric mosaic has cameras on a circle. In
general, the cameras can be put along an arbitrary curve, as is
shown in Figure 1. Let the camera path be Sc(x,y)ZO or

{x =x, (t), Y=Y, (t)} , where ¢ is the arc length. The image pixels

can be indexed by the angle between the captured light ray and
the optical axis, as is represented by @ in Figure 1. Due to the
correspondence between the light rays emitted/reflected from the
scene surface and those captured, a coordinate transform be-
tween (S,H) and (t,a) can be well defined. To analyze the sam-

pling problem for the IBR representation, we may first assume
some properties on the SPF, and then transform the SPF to the
IBR representation, hoping that some related properties can be
derived. In the next two sections, we will show examples where
we can apply the above strategy to the uniform and non-uniform
sampling of IBR.

3. UNIFORM SAMPLING - SPECTRAL ANALYSIS

For IBR uniform sampling, we need to find its Fourier spectrum
so that we may apply the traditional sampling theory. Due to the
page limit of the paper, we give an example on analyzing the
lightfield representation.

3.1. 2D Lightfield Analysis
As shown in Figure 2, 2D lightfield is parameterized by two
parallel lines, indexed by ¢ and v, respectively. The ¢ line is the

camera line, while the v line is the focal line. The distance be-
tween the two lines is f, which is the focal length of the cameras.
The SPF, for ease of analysis, is defined based on a global coor-
dinate of &.

yA

1

Figure 2 The lightfield parameterization.
It is easy to show that a light ray indexed by pair (t,v) has

the following algebraic equation:
Se—wy - fi=0 @
Notice that the focal line is indexed locally with respect to where
the camera is.
The relationship between lightfield 7, (t, v) and the SPF

[, (s,G) is as follows. For the same light ray emitted/reflected

from a surface point, it must be captured at the corresponding
angle. That is:

tan(6)= /v or 8=3m/2~tan"' (v/f) (3)
where —v, <v<v, and 2tan_1(v0/f) tells the field of view

(FOV). If the cameras have a limited FOV, which often happens
in real-life systems, Equation (3) can be linearized as:

0=3n/2-v/f “)
Another constraint is that the light ray (t,v) can be traced

back to a cross point on the object surface, whose arc length s
can be obtained through solving:
X = xi(s)’y = J’i(s)
Se—vwy—=fi=0
When multiple objects exist in the scene or some objects oc-
clude themselves, Equation (5) may have multiple answers. We
have to figure out which cross point is the closest to the cameras.
The closest point will occlude all the others. This may make
scenes with occlusions hard to analyze. However, for simple
occluded scenes this is still doable [9]. We next show a simple
example for analyzing a scene at constant depth. More complex
examples can be found in [9].

)

3.2. An example

The simplest scene we can have for lightfield is one at a constant
depth. Let the SPF of the scene be l(s,@) , whose Fourier trans-

form be L(QS ,Q g). The object surface can be described by:

fr=xls)=s.y =y () =dd ©)
We can solve Equation (5) without concerning about occlusion:
Ss—vdy—fi=0=>s=vd,/f +t )
The lightfield spectrum can be easily derived as:
3
j—(dﬂQ,—fQ‘,)
Lc(Qt>Qv):fL(Qt’dOQI _va)e 2 (8)
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We can see that the spectrum of the lightfield at constant depth
is a rotated version of the SPF spectrum, with some constant
factor in magnitude and some shift in phase. The rotation angle
is determined by the scene depth d,, and the focal length f.

We may give different assumptions about the SPF. For ex-
ample, if the object surface is Lambertian, which means the light
rays from the same surface point have identical radiance, we
may let L(QS,QH) =L, (QS )6%)(26) . Therefore,

3
jf(d(,Q,*fQ‘,)
LC(QNQV):ﬂ’S(Qt)J(dOQI _va)e 2 (9)
This is a tilted line in the (Q,,QV) space, which is the same
conclusion as that in [6].

When the object surface is non-Lambertian, the spectrum of

the SPF expands along Q. If the scene surface is not very

specular, thus light rays from the same surface point change
slowly about the direction 8, we may assume that the SPF is
band-limited along Q,z. Therefore, we may let

L(Q,,Q4)=L(Q,,Q,)1(Q,) , where

[, if [Qy| < By,
I1(Q,)=
( ,9) {0, otherwise.

(10)

and B, defines the bandwidth. Consequently:
3
ji(dUQl_fQV)
L, (QnQv) = fL(QtadOQt _va)e 2 I(dOQt _va) (11)
The spectrum is also tilted, but this time it has a finite width

2B, / 11d02+ /% perpendicular to the tilted spectrum (or
2B, /d, horizontally) because of the indicator function.

The above analysis is illustrated in Figure 3. A scene at con-
stant depth has two sinusoids (different frequency) pasted on it
as texture, as shown in Figure 3 (a). Figure 3 (b) is the epipolar
image (EPI) when the scene is Lambertian. Figure 3 (c) is its
Fourier transform. The spectrum has several peaks because the
texture on the scene object is pure sinusoids. It basically lies on
a tilted line with some small horizontal and vertical windowing
artifact that is due to the truncation of the range of s and 6. We
ignored the windowing artifacts in our analysis for simplicity.
Figure 3 (d) shows the EPI for a non-Lambertian case at the
same depth. It can be seen that because of the non-Lambertian
property, its Fourier transform in Figure 3 (e) is expanded to-
wards the normal direction of the tilted line.

4. NON-UNIFORM SAMPLING - SAMPLING
DENSITY FUNCTION

It is not straightforward how to extend the above method to the
analysis of non-uniform sampling. In this section, we define
sampling density function as another tool to solve the problem
together with SPF.

4.1. Stochastic Sampling and the Sampling Density
Function

Stochastic sampling is a Monte Carlo technique [11] that
takes samples at irregular locations rather than at regular spaced
locations. A simple implementation of stochastic sampling is to
select the sampling locations based on a certain distribution. In

this paper, we refer the probability density function of such a
distribution as sampling density function (SDF).
Yy
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Figure 3 Lambertian and non-Lambertian scenes at constant
depth.

Although stochastic sampling itself is sometimes referred as
non-uniform sampling in the literature, we define the uniformity
of sampling in a different way. A signal is uniformly sampled if
and only if its SDF is uniform. This is intuitively true because
when the SDF is uniform, all the locations have equal probabil-
ity to be chosen as a sample.

In the following analysis on non-uniform sampling of IBR,
we will show that the SDF of the IBR representation tend to be
non-uniform, even if the optimal SDF of the surface plenoptic
function is uniform.

4.2. Method and Example

The SDFs of the SPF and the IBR representation is related by
the mapping between them. Therefore, one can transform one of
the SDF to the other. Let the SDF of the SPF be S, (s,0), and
that of the IBR representation be S, (¢,a) . If the mapping be-
tween SPF and IBR representation has an explicit form:

(t,a)=M(s,0) (12)
under the condition that M (s,8) is monotonically increasing or
decreasing, we have:

S._.(s,8
Sw%“FM (13)
V1
0t/os  0t/06| . . .
where J = is the Jacobi Determinant of the
dajds 0a/ob
transform.

Unfortunately, the mapping between SPF and IBR represen-
tation rarely has an explicit form, not to say monotonically in-
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creasing or decreasing. We solve the problem by Monte Carlo
method. Assume that the SDF of the SPF is known. We simply
perform stochastic sampling on the light rays from SPF, and
record their corresponding coordinates in the IBR representation.
The SDF of the IBR representation is achieved by counting the
frequencies of the light rays falling into different bins.
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AWL=3L | w=0,4L
Figure 4: An example IBR scene.

An example 2D scene is shown in Figure 4. The object is a
perfect circle. We assume that the optimal SDF for its SPF is
uniform. The object is captured with a standard inward-looking
lightfield. Cameras are placed on a concentric box with their
optical axes perpendicular to the camera path. In the following
experiment, we set object radius R = 1, capturing box side length
L =4, field of view of the cameras FOV = 90°. The camera path
is indexed with w, whose value is from 0 to 4L, divided into
1000 bins. The FOV is divided into 200 bins. One billion (10%)
light rays are randomly drawn in our Monte Carlo experiment.

Figure 5 (a) shows the SDF of the IBR representation of the
setup in Figure 4. The horizontal axis is the camera path w, the
vertical axis is the pixel index or bin index of the field of view.
A brighter pixel means denser samples. It can be seen that the
SDF is non-uniform. Notice that in practice when we take an
image, the sampling pattern along the pixel index axis is fixed
(most likely uniform). Therefore, we are only allowed to sample
the camera path w non-uniformly. The marginal distribution of
the SDF along the camera path is shown in Figure 5 (b). The
vertical axis is the number of light rays falling into the corre-
sponding w bin. It tells us that we should capture more images
around the center of each side of the capturing box.

3.4. Discussions

Transforming the SDF of the SPF to that of the IBR repre-
sentation is generally doable with Monte Carlo method, pro-
vided that the former SDF and the geometry of the scene are
known. Given the SDF of the IBR representation, it is possible
to plan the view positions before capturing, which will yield
optimal rendering quality.

In practice, the scene geometry is usually unknown. An IBR
viewer often assumes some rough geometry of the scene, e.g., a
constant-depth plane. In this case, the above method is still ap-
plicable, but the source SPF has to be defined on the rendering
surface instead of the true object surface.

The difficulty lies at finding the SDF of the SPF. A uniform
SDF of the SPF is unlikely to be optimal in practice, given that
the scene surface can be specular, and the rendering geometry
can be arbitrary chosen. In [10], we explore algorithms that can
approach similar results (near-optimal non-uniform sampling)
but are more practical.

Pixel Index

x10°

Count

0 é ¢‘1 é é 1‘0 1‘2 1‘4 16
W
(b)
Figure 5: (a) SDF of the IBR representation in Figure 4. (b) Mar-
ginal distribution along camera path w.

5. CONCLUSIONS

We introduced surface plenoptic function in this paper as a tool
to analyze the sampling problem of image-based rendering. We
showed its effectiveness for both uniform and non-uniform sam-
pling analysis. Although we may need to assume certain proper-
ties for the SPF, we believe SPF is still a useful tool for IBR
sampling analysis.
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