
AUTOMATED REASSEMBLY OF FRAGMENTED IMAGES

Anandabrata Pal, Kulesh Shanmugasundaram, Nasir Memon

Computer Science Department,
Polytechnic University,
Brooklyn, NY 110201.

ABSTRACT

In this paper we address the problem of reassembly of im-
ages from a collection of their fragments. The image re-
assembly problem is formulated as a combinatorial opti-
mization problem and image assembly is then done by find-
ing an optimal ordering of fragments. We present imple-
mentation results showing that images can be reconstructed
with high accuracy even when there are thousands of frag-
ments and multiple images involved.

1. INTRODUCTION

Reassembly of objects from a collection of randomly mixed
fragments is a problem that arises in several applied disci-
plines, such as forensics, archaeology, and failure analysis.
This problem is well studied in these disciplines and several
tools have been developed to automate the tedious reassem-
bly process [5]. The digital forensic equivalent of the prob-
lem, which we callreassembling fragmented documents,
however, has received little attention. In previous work,
some of the authors of this paper, examined the reassem-
bly of text files and binary executables from fragments [9].
In this paper we look at the problem of reassembling a col-
lection of images from a scattered set of fragments.

Digital evidence in general and images in particular are
easily scattered and a forensic analyst may come across scat-
tered fragments of images in a variety of situations. Perhaps
the most common situation is when analyzing a storage disk
from a crime scene, a forensic analyst finds disk segments
that correspond to fragments of previously deleted images.
Although most file systems provide continuity of data on
disk, in order to reduce file fragmentation, some older file
systems (such as FAT), and highly active file systems, like
that of a busy database server, will often fragment files into
discontinuous blocks. Without adequate file table informa-
tion it is difficult to put the fragments back together in their
original order.

This work was supported by AFOSR Grant F49620-01-1-0243. Au-
thor email addresses are apal01@utopia.poly.edu, kulesh@cis.poly.edu,
and memon@poly.edu, respectively.

Another example where image fragments may be found
is the system swap file, which is one of the critical areas
where lot of useful forensic information can be gathered.
However, swap file state and addressing information is main-
tained in page-tables stored only in volatile memory. With-
out addressing information from the page-table it is difficult
to rebuild contents off a swap file.

Image fragments could also be explicitly hidden in slack
spaces of a filesystem. Criminals can modify a file hid-
ing program to choose the blocks on which files are hidden
based on a sequence of numbers generated using a pass-
word. Knowing the password they can reconstruct the orig-
inal document, whereas a forensic analyst is left with ran-
domly mixed fragments of a document which will need to
be reassembled.

Finally, ubiquitous networking and growing adoption of
peer-to-peer systems give anyone easy access to comput-
ers around the world. There are many peer-to-peer systems
which enable users to store data on a network of comput-
ers for easy, reliable access anytime, anywhere.Freenet[2],
Gnutella[3] and M-o-o-t[8] are some of the better known
systems used by millions of users around the world. These
systems are designed to provide reliable, distributed, and
sometimes anonymous storage networks. A criminal can
use these very systems to hide software tools, documents,
and images that might be useful for his prosecution. Most
peer-to-peer systems associate a unique key, either assigned
by the user or generated automatically, with each document
they store. Hence, a person can split a document into frag-
ments and store each fragment in a peer-to-peer system us-
ing a sequence of secret phrases as keys, such that he can
easily splice the fragments together knowing the proper se-
quence of secret phrases.

Typically, a document reassembly process will comprise
of the following three steps :

1. Preprocessing:Encrypting or compressing digital ev-
idence removes structural details that can assist an an-
alyst in reassembling the evidence. During prepro-
cessing, evidence has to be cryptanalyzed and trans-
formed to its original form. For example, some cryp-

IV - 7320-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

tographic schemes derive their keys based on user
passwords. Since users tend to choose dictionary based
passwords it is quite feasible to attack the password
and obtain the key regardless of the size of the key.
Besides, brute force attacks on cryptographic algo-
rithms, such as DES, are shown to be feasible[1]. Note
that a forensic analyst may not be too constrained on
time, making cryptanalysis a feasible if not manda-
tory process.

2. Collating: Fragments found on a disk could belong
to files of different types like text, binary, image and
audio. Although, in this paper, we consider reassem-
bling a single type of image (ie 24 bit color images),
in reality evidence is usually a collection of mixed
fragments of several types. To reassemble the evi-
dence efficiently fragments that belong to a particular
type of document could be grouped together. There
could be different approaches used to effectively group
similar fragments together. We defer a detailed study
of such techniques to future work. Here we assume
that we have a mixed collection of fragments from
different images. However, it should be noted that
we do not assume any knowledge of which fragment
belongs to which image.

3. Reassembling:The final step in the process is to ei-
ther reassemble a document to its original form or to
provide enough information about the original form
to reduce the work of a forensic analyst. Ideally, we
would like to obtain the proper sequence of fragments
that resembles the original document. Even if the pro-
cess identifies a small number of potential orderings,
that in itself would in considerable savings in time
and effort to the analyst.

In this paper we focus on the final step and furthermore
focus on the case when the underlying fragments are im-
age fragments. That is, we look at reassembling a set of
images given preprocessed fragments. The rest of this pa-
per is organized as follows: in the next section we describe
the problem formally and introduce a general technique for
image reassembly. Section 3 presents initial experimental
results and we conclude in section 4 with a discussion on
future work.

2. THE REASSEMBLY PROBLEM

In this section we formulate the digital object reassembly
problem in a more rigorous manner and describe a general
approach for a solution to the problem.

2.1. Statement of the Problem

Suppose we have a set{A0, A1 . . . An} of fragments of a
documentA. We would like to compute a permutationπ
such thatA = Aπ(0)||Aπ(1)|| . . . Aπ(n), where|| denotes
the concatenation operator. In other words, we would like
to determine the order in which fragmentsAi need to be
concatenated to yield the original documentA. We assume
fragments are recovered without loss of data, that is, con-
catenation of fragments in the proper order yields the origi-
nal document intact.

Note that in order to determine the correct fragment re-
ordering, we need to identify fragment pairs that are adja-
cent in the original document. To quantify the likelihood of
adjacency one may assigncandidate weightsC(i,j), repre-
senting the likelihood that fragmentAj follows Ai. When
dealing with image fragments these weights are computed
based on gradient analysis across the boundaries of each
pair of fragments. Once these weights are assigned, the per-
mutation of the fragments that leads to correct reassembly,
among all possible permutations, is likely to maximize (or
minimize) the sum of candidate weights of adjacent frag-
ments. This observation gives us a technique to identify the
correct reassembly with high probability. That is, we want
to compute the permutationπ such that the value

n−1∑

i=0

C(π(i), π(i + 1)) (1)

is maximized (or minimized) over all possible permutations
π of degreen. This permutation is most likely to be the one
that leads to correct reconstruction of the document.

The problem of finding a permutation that maximizes
the sum in equation (1) can also be abstracted as a graph
problem if we take the set of all candidate weights (C) to
form an adjacency matrix of a complete graph ofn vertices,
where vertexi represents fragmenti and the edge weighteij

represent the likelihood of fragmentj following fragmenti.
The proper sequenceπ is a path in this graph that traverses
all the nodes and maximizes the sum of candidate weights
along that path. The problem of finding this path is equiv-
alent to finding a maximum weight Hamiltonian path in a
complete graph (See Figure 1) and the optimum solution to
the problem turns out to be intractable[4]. However there
are many heuristics known in the literature and we employ
one such heuristic as discussed in section 2.3.

It should be noted that the optimal solution may not nec-
essarily result in reconstruction of the original. However, if
candidate weights have been properly assigned, then the op-
timal solution should have a large number of fragments in
or almost in the right place. Hence, it would be perhaps
better for an automated image reassembly tool to present to
the forensic analyst a small number of most likely reorder-
ings, based on which the correct reordering can be manually

IV - 733

➡ ➡

A

D

E

B

C

Fig. 1. A Complete Graph of Five Fragments & Hamilto-
nian Path (ACBED)

arrived at. The question that remains is how do we assign
candidate weights for pair of fragments being adjacent, in
an efficient and meaningful manner? We address this ques-
tion in the next subsection.

2.2. Assigning Adjacency Weights

Note that the header information of the image being re-
assembled can be easily determined from the first fragment
of every image in the collection, and from this informa-
tion the width of the image in pixels obtained. Then, the
basic approach for assigning candidate weights for a pair
of fragments essentially involves examining pixel gradients
that straddle the boundary formed when the two fragments
are joined together. Is is known an image consists mostly
of smooth regions and the edges present have a structure
that can often be captured by simple linear predictive tech-
niques. Hence one way to assess the likelihood that two
image fragments are indeed adjacent in the original image
is to compute prediction errors based on some simple linear
predictive techniques like one of this used in lossless JPEG
or even better, the MED predictor used in JPEG-LS [6] and
computing the absolute sum of prediction errors for the pix-
els along the boundary formed between the two fragments.
That is, prediction errors are computed for pixels in the last
row of the first fragment and the pixels in the first row of the
second fragment. The number of pixels for which a predic-
tion error is computed hence is equal to the width in pixels
of the image.

2.3. α− β Pruning

Since we know the first fragment of each image we can rep-
resent all the paths in our weighted graph by a tree (See
Figure 3). As we can see, the tree expands exponentially.
Therefore we prune the tree to obtain a set of near optimal
solutions. Our pruning method is adopted fromα-β pruning
used in game theory[7].

Finding the optimal solution in this tree simply means
examining each path in the tree looking for one that max-

A

D
C

B

B
 C
 D

B
 D
 C
B

C
B
D
C
D

Fig. 2. A Tree of Four Fragments with Path(A,D) Pruned

imizes the sum of candidate probabilities along that path.
By pruning we try to avoid examining paths that we be-
lieve may not contribute enough to our solution. A naive
approach to pruning the tree is to choose a node with max-
imum candidate probability at each level. We call this the
greedyapproach or greedy heuristic. However, this method
can be extended to look not only at current level but also at
β levels deep and choose a node at current level that max-
imizes the sum of candidate probabilities. In addition, in-
stead of choosing a single node at each level, which limits
our results to a single sequence, we chooseα best matches
at each level resulting inα best sequences.

2.4. The complete solution

Now we have all the pieces required to describe our ap-
proach to reassembling images given a collection of their
fragments. We first examine all fragments and identify those
that correspond to image headers having known formats.
From these, the number of fragmented images and the width
w of each fragmented image is determined. We then com-
pute weights that represent the likelihood of adjacency for
a given pair of fragments by computing the sum of absolute
prediction errors across the endingw pixels of the first frag-
ment to the startingw pixels of the second fragment. Re-
peating the process for all fragments results in a complete
weighted and directed graph. We then use theα − β prun-
ing solution for computing maximum weight hamiltonian
paths to compute a small number of near-optimal reorder-
ings of the fragments. The actual reordering is likely to be
contained in this set or at worst can be easily derived from
this set by a forensic analyst.

3. IMPLEMENTATION & EXPERIMENTS

This section presents experimental results and discussion of
the results. We used 24-bit color Windows bitmaps as the
images in our experiments. Three datasets were chosen for
experiments. All pictures used were saved or converted into

IV - 734

➡ ➡

24-bit color bitmaps. The pictures within a dataset were
then randomly fragmented together into 4K (4096 Byte)
sizes. 4K sizes were used because it is the size of FAT32
clusters. Simple header checking code was able to deter-
mine the headers for each image in a dataset. Our experi-
ments assumed that all image fragments were present and,
therefore, that all images could be reconstructed in their en-
tirety if the proper ordering was found.

The first data set used was a collection of 7 relatively
non-related images. There were 4 images of fighter planes
mixed in with 1 image of a woman, 1 image of a face and
an image with a dog. All images but 1 of a fighter plane
were reconstructed perfectly with our greedy algorithm. If
however, we iterate and throw out the fragments that we
were able to use to build an image successfully, then we
were able to reconstruct the last fighter plane.

The second data set was a collection of 8 facial images
in colour, and black and white that were roughly of the same
dimensions. All the color images reconstructed perfectly
but all three black and white images were garbled. One of
the images reconstructed showed part of the face, and an-
other image showed part of the same face from the previ-
ously mentioned image.

The third set of images were 4 images of picturesque
nature background. All 4 pictures were reconstructed per-
fectly with the greedy algorithm.

(a)Improperly Reassembled Image with Greedy Heuristic

(b) Original Image - Dog.(c) Original Image - Fighter Plane

Fig. 3. Example of improper reassembly by greedy heuristic
which can be rectified withα− β pruning or by iterations.

4. CONCLUSION

We have introduced and discussed a general procedure for
automated reassembly of scattered image evidence. Experi-
mental results show that even by using a simple greedy algo-
rithm where the best candidate probabilities are used results
in most images being reconstructed in their entirety even
with a simple greedy heuristic. Even those images that are
not reconstructed in their entirety tend to have a large num-
ber of fragments that are in the correct order. This is helpful
because, if an analyst can identify proper subsequences in
these candidate reorderings, they can combine these sub-
sequences to form unit fragments and iterate the process to
eventually converge on the proper reordering with much less
effort than if they were to perform the task manually.

In future work we will implement theα− beta pruning
heuristic and report results at the conference. We shall also
investigate methods to collate fragments of documents from
mixed fragments of several documents.

5. REFERENCES

[1] P. Cho and I. Hamer. DES cracking on the transmo-
grifier 2a. Cryptographic Hardware and Embedded
Systems, LNCS 1717, Springer-Verlag,, pages 13–24,
1999.

[2] Freenet. http://freenetproject.org/.

[3] Gnutella. http://gnutella.wego.com/.

[4] C. E. Leiserson et. al. Introduction to algorithms.MIT
Press, 2001.

[5] Stolfi J. Leitao. A multi-scale mehtod for the re-
assembly of fragmented objects.Proc. British Ma-
chine Vision Conference - BMVC 2000, 2:705–714,
2000.

[6] N. Memon and R. Ansari. The JPEG Lossless Com-
pression Standards.Handbook of Image and Video
Processing. A. Bovik, Editor, Academic Press, 2000.

[7] R. Moore and D. Knuth. An analysis of alpha-beta
pruning.Artificial Intelligence, pages 293–326, 1975.

[8] M o-o t. http://www.m-o-o-t.org/.

[9] K. Shanmugasundaram and N. Memon. Automatic
Reassembly of Document Fragments via Data Com-
pression. Presented at the2nd Digital Forensics Re-
search Workshop, Syracuse, July 2002.

IV - 735

➡ ➠

