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ABSTRACT 

 
At ISMIR 2002 and CBMI 2001 the authors of this paper 
presented a new approach to audio fingerprinting. The proposed 
scheme, which we will refer to as the Streaming Audio 
Fingerprinting (SAF) system allows a very efficient database 
lookup and is also very robust against many different audio 
processing steps, including low bit rate audio coding, noise 
addition and amplitude compression. However it is not 
inherently robust against large linear speed changes (i.e. speed 
changes larger than 2%) where both the pitch and the tempo 
change. This is a potential problem, because some radio stations 
speed up by a few percent. In this paper we discuss a 
modification of the originally proposed fingerprinting algorithm, 
which is robust against large linear speed changes. The proposed 
modification has negligible effect on other aspects, such as 
robustness and reliability. 
 

1. INTRODUCTION 
 
In recent years we have seen a growing scientific  [1][2][3][4][5] 
and industrial [6][7][8] interest in automatic identification of 
audio. The technology is generally referred to as audio 
fingerprinting. Although other names have also been used such 
as robust/perceptual hashing [2] and robust signatures. 

Audio fingerprint systems can be used for a number of 
interesting applications such as automatic monitoring of radio 
broadcasts, identification of unknown songs using a mobile 
phone [6][7], filtering [1] for legal Napster-like services or 
automatically restoring ID3 tags of MP3 files [8][9]. 

The five main parameters of a fingerprint system are: (i) 
robustness, determining how severely an audio clip can be 
processed before it cannot be recognized anymore, (ii) 
reliability, expressing the probability that an audio clip is falsely 
identified, (iii) granularity, determining the minimal segment of 
audio needed for identification, (iv) fingerprint size, the number 
of bits of a fingerprint and (v) search speed determining how fast 
a fingerprint can be looked up in a large database. The authors of 
this paper showed that their system [1][2] performs well on all 
these five parameters. Although the system is very robust against 
almost all common audio processing steps, it is not inherently 
robust against large linear speed changes. Note, that we define a 
linear speed change as a speed change where both the pitch and 
the tempo change. E.g. an audio file that has been sampled at 
44.1kHz but is played back at a sampling rate of for instance 
44.2 kHz results in a linear speed change. In practice such a 

speed changes do occur in radio broadcasts. Broadcasters 
supposedly do this for two reasons. Firstly a shorter duration of 
songs enables the broadcast of more commercials. Secondly, the 
increased beat seems to be preferred by the audience, persuading 
them to stay with the selected station. 

As the SAF algorithm presented in [1][2] is robust against 
speed changes of approximately 2%, we originally proposed to 
solve larger speed changes by storing the fingerprint at multiple 
speeds in the database or extracting the fingerprint query at 
multiple speeds and then perform multiple queries on the 
database. The main disadvantage of these methods is that either 
the storage requirement increases or the search speed decreases 
by several factors. In this paper we describe a modification of the 
existing algorithm that does not have this disadvantage, as it is 
inherently robust against larger speed changes. 
 

2. EXISTING ALGORITHM 
 
In this section we describe the existing SAF fingerprint 
extraction algorithm and explain why it is not robust against 
large linear speed changes. For a more detailed explanation the 
reader is referred to [1]. It is based on a general approach of 
computing a small fingerprint, i.e. a sub-fingerprint, for a time 
interval of in the order of 10ms. A sub-fingerprint, typically 32 
bits large, does not contain sufficient information to identify an 
audio signal by itself, but a sequence of sub-fingerprints, which 
we refer to as a fingerprint block, does. A fingerprint block 
typically contains 256 sub-fingerprints (corresponding to approx. 
3 seconds of audio) and consequently 8192 fingerprint bits.  

To identify an audio signal a fingerprint block is extracted 
from the audio signal and subsequently sent to the fingerprint 
database as a query. The fingerprint database then responds with 
the metadata of the best matching fingerprint block in the 
database provided that the match is reliable enough. The 
matching criterion that we use is the Bit Error Rate (BER). If the 
BER between the query and the block in the database is below a 
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Figure 1 Overview existing fingerprint algorithm. 
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pre-determined threshold the match is said to be reliable. In [1] it 
is derived that a match can be qualified as reliable when the BER 
is below 35%. Therefore, for a reliable match, 2867 fingerprint 
bits out of the total of 8192 bits of a fingerprint block can be in 
error. 

An overview of the algorithm is shown in Figure 1. First the 
audio is divided into frames, which have a length of approx. 0.37 
seconds and a very large overlap of 31/32. This results in one 
frame and therefore also one sub-fingerprint for every 11.6 ms of 
audio. A spectral representation is obtained by applying a Fast 
Fourier Transform on every frame. From the resulting spectrum a 
vector of 33 energies is computed by determining the energy in 
33 logarithmically spaced bands. The bands typically lie in the 
range of 300Hz to 2000Hz, which is perceptually the most 
relevant range. If we now put the energy vectors of subsequent 
frames as rows in a matrix, we obtain a spectrogram. The 
spectrogram is subsequently filtered by a simple 2D (time-
frequency) filter with kernel F given by 
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This results in values that represent energy differences along 
both the time and frequency axis. Finally the obtained energy 
differences values are converted to bits (i.e. one 32 bit sub-
fingerprint per frame) by simple thresholding. If a value is larger 
than zero it is assigned a ‘1’ bit, otherwise a ‘0’ bit. 

This scheme has proven to robust to most common audio 
processing steps, except large linear speed changes. This is due 
to the fact that speed changes cause misalignment along both the 
time and frequency axis.  

Considering first the time misalignment, an audio excerpt 
subjected to a speed change of (for example) +2% causes the 
250th sub-fingerprint of this excerpt to be extracted at the 
position of the 255th sub-fingerprint of the original excerpt. 
Fortunately, in order to be robust to shifting, the sub-fingerprints 
are constructed such that they possess a large correlation along 
the time-axis [1][2]. The large correlation is introduced by the 
large overlap of the framing. Therefore the BER between the 
original excerpt and the same excerpt with a speed change does 
not increase dramatically due to the temporal misalignment. This 
is demonstrated by experimental results.  Figure 3 shows that the 
existing scheme is robust to large time scale modifications1. The 
main problem introduced by large speed changes seems to be the 
frequency misalignment. The above example of 2% speedup 
results in a scaling of the frequency axis of the spectrum that is 
obtained with the Fourier Transform. For example a tone of 
500Hz then results in a tone of 510 Hz and a tone 1000 Hz 
results in a tone of 1020 Hz. As a result, speed change causes a 
shift of energy from one band to another band. The more energy 
shifts from one band into the next, the larger the probability that 
the extracted fingerprint bits (which are quantized energy 
differences) are erroneous.  
 

1 A processing step in which the tempo changes, giving temporal 
misalignment, but the pitch remains unaffected, i.e. no frequency 
misalignment. 

3. MODIFIED ALGORITHM 
 
As shown in the previous section the main problem in the 
existing SAF algorithm seems to be the frequency misalignment 
caused by the speed change. In this section we present a 
modified version of the algorithm that is less susceptible to 
frequency misalignment and is based upon the auto-correlation 
of a densely sampled power spectrum. An overview of the 
modified scheme is shown in Figure 2. The first two steps (i.e. 
framing and FFT) are identical to the existing algorithm of 
Section 2. The third step is different: the energy of 512 bands 
instead of 33 is computed. The bands are still logarithmically 
spaced and in the range of 300 to 2000Hz. Thus the width of the 
bands is smaller. As already mentioned in Section 2, a speed-
change results in a (possibly non-integer) shift of the computed 
energy vector. It is well known that auto-correlation is shift 
invariant, as shown with the following argument. Defining the 
auto correlation ff of the function f(t) as: 
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The autocorrelation gg of the shifted function g(t)=f(t+ ) is
shown to be invariant by the following argument: 
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Since we are not dealing with a continuous function but a 
discrete sequence of energies, we propose to approximate this 
behavior by correlating a subsequence of the energies with the 
complete sequence. More specifically we calculate the 
autocorrelation [x] of the energy vector e[x] as follows: 
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where N denotes the length of the whole energy vector (in our 
case 512), M the length of the sub-sequence and K the position 
where the sub-sequence starts in the complete sequence. Typical 
settings for M and K are 64 and 96, respectively. To increase 
robustness, the resulting auto-correlation values are low pass 
filtered. The two last steps are identical to the steps of the 
existing algorithm. These need as input 33 values. However the 
low-pass filtered auto-correlation contains 512-64 = 448 values. 
Therefore the 448 low-pass filtered values are down-sampled to 
33 values. 
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Figure 2 Overview modified algorithm 
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4. EXPERIMENTAL RESULTS 
 
In order to assess the robustness of the modified fingerprint 
extraction algorithm, we repeated the experiments performed in 
[1] and compared the results to the existing algorithm. The 
experiments were performed by extracting fingerprint blocks 
from four audio clips belonging to different musical genres and 
from a set of processed versions of these clips. The set of 
processed versions consisted of audio coding at different bit 
rates, speech coding, filtering, amplitude compression, linear 
speed changes, time scaling (i.e. a speed change where the tempo 
changes but the pitch remains unaffected), echo addition, 
DA/AD conversion and recording with a microphone. To assess 
the robustness the bit error rates between the original version 
and their respective processed version was determined. The 
resulting bit error rates of all experiments were averaged over the 
four clips. The results of both the existing and the modified 
algorithm are shown in Figure 3. Experiments showed the 
standard deviation of the BER [1][2] of non-matching blocks of 
the modified algorithm is similar to the original algorithm. 
Therefore, for both algorithms, to be able to identify a 
fingerprint block the bit error rate has to be below the threshold 
of 0.35. The results clearly show that the robustness of both 
algorithms is very similar for most audio processing steps, but 
that the modified version is much more robust against linear 
speed changes. As the main focus of the modified algorithm was 
on improving the robustness against linear speed changes Figure 
4 shows the bit error rate as a function of the speed change. It 
clearly shows that the modified algorithm can handle speed 
changes up to 6%, whilst the existing algorithm can only handle 
speed changes up to 2%. 

It is important for any fingerprinting method that not only it 
results in a low BER, but also that it allows efficient searching. 
In [1] a search algorithm is presented that uses an index on sub-
fingerprint level to search the fingerprint database for a matching 
fingerprint block. For all 256 sub-fingerprints in the query 
(recall that a fingerprint block is the typical unit for a query) a 
list of most probable sub-fingerprints is generated. These lists of 
probable sub-fingerprints are based on soft decoding information 
that is available during fingerprint extraction [1] and include the 
sub-fingerprint itself as the most probable sub-fingerprint. In 
order to find the best matching block in the database a match is 
performed at all the positions in the database where a sub-
fingerprint occurs that matches one of the probable sub-
fingerprints of the query. Therefore it is a prerequisite that one of 
the sub-fingerprints in the lists of the probable sub-fingerprints 
exactly matches the respective sub-fingerprint of the best 
matching block in the database. The positions where a certain 
sub-fingerprint occurs can be retrieved very efficiently by 
implementing the index on the sub-fingerprints as a hash-table. 

One can draw an analogy with string searching over here. 
The analogy is to find the best matching string (fingerprint 
block) in a large database of characters (database of sub-
fingerprints). The query string may contain erroneous characters, 
but for every character an estimate of the list of correct 
characters is available. Then the best match for the string in the 
database can be efficiently retrieved by only performing a match 
at positions in the database where either one of the characters or 
one of the probable characters of the string occurs. For a more 
detailed explanation of the search algorithm the reader is referred 
to [1]. 

In our experiments, a list of 1024 most probable candidates 
was created for each of the 256 sub-fingerprints of the 
fingerprint block. Figure 5 and Figure 6 show the number (again 
averaged over the four excerpts) of lists that contain a 
corresponding sub-fingerprint in matching fingerprint block in 
the database. This number is referred to as the number of 
database hits. Recall that in order to find the matching block in 
the database only one single database hit is needed to be 
successful. Figure 6 shows that in case of linear speed changes 
the number of database hits increases significantly with the 
newly proposed algorithm compared to the original algorithm. 
Figure 5 shows that the performance with respect to other 
common audio processing steps is similar. For most audio 
processing steps the number of database hits is much larger than 
one. Therefore the number of generated probable sub-
fingerprints can be decreased significantly for most audio 
processing steps, which results in faster search times. 
 

5. CONCLUSIONS 
 

In this paper we presented a modified version of the SAF 
fingerprint algorithm that is more robust against linear speed 
changes. The robustness against speed changes is achieved by 
exploiting shift invariance of the auto-correlation function. 
Experiments show that the modified SAF algorithm is as robust 
as the original SAF algorithm in case of most audio processing 
steps. However it is far more robust in case of linear speed 
changes. With the modified algorithm the speed may vary 
between –6% and  +6%. This is sufficient to handle speed 
changes applied in radio broadcasting (usually only a few 
percent). 
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Figure 3 The resulting BER after different audio processing 
steps. The existing algorithm is plotted as a dotted line with 
‘o’. The modified algorithm as a solid line with ‘+’. The BER 
threshold for identification is depicted as thick solid line. 
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Figure 4. The resulting BER as a function of speed change.  
The existing algorithm is plotted as a dotted line with ‘o’. The 
modified algorithm as a solid line with ‘+’. The BER 
threshold for identification is depicted as thick solid line. 
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Figure 5. The number of hits in the database after different 
audio processing steps. The existing algorithm is plotted as a 
dotted line with ‘o’. The modified algorithm as a solid line 
with ‘+’. 
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Figure 6. The number of hits in the database as a function of 
speed change.  The existing algorithm is plotted as a dotted 
line with ‘o’. The modified algorithm as a solid line with ‘+’ 
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