
SPEED-CHANGE RESISTANT AUDIO FINGERPRINTING USING AUTO-CORRELATION

Jaap Haitsma and Ton Kalker

Philips Research Laboratories Eindhoven
Prof. Holstlaan 4

5656 AA Eindhoven, The Netherlands
Jaap.Haitsma@philips.com, Ton.Kalker@ieee.org

ABSTRACT

At ISMIR 2002 and CBMI 2001 the authors of this paper
presented a new approach to audio fingerprinting. The proposed
scheme, which we will refer to as the Streaming Audio
Fingerprinting (SAF) system allows a very efficient database
lookup and is also very robust against many different audio
processing steps, including low bit rate audio coding, noise
addition and amplitude compression. However it is not
inherently robust against large linear speed changes (i.e. speed
changes larger than 2%) where both the pitch and the tempo
change. This is a potential problem, because some radio stations
speed up by a few percent. In this paper we discuss a
modification of the originally proposed fingerprinting algorithm,
which is robust against large linear speed changes. The proposed
modification has negligible effect on other aspects, such as
robustness and reliability.

1. INTRODUCTION

In recent years we have seen a growing scientific [1][2][3][4][5]
and industrial [6][7][8] interest in automatic identification of
audio. The technology is generally referred to as audio
fingerprinting. Although other names have also been used such
as robust/perceptual hashing [2] and robust signatures.

Audio fingerprint systems can be used for a number of
interesting applications such as automatic monitoring of radio
broadcasts, identification of unknown songs using a mobile
phone [6][7], filtering [1] for legal Napster-like services or
automatically restoring ID3 tags of MP3 files [8][9].

The five main parameters of a fingerprint system are: (i)
robustness, determining how severely an audio clip can be
processed before it cannot be recognized anymore, (ii)
reliability, expressing the probability that an audio clip is falsely
identified, (iii) granularity, determining the minimal segment of
audio needed for identification, (iv) fingerprint size, the number
of bits of a fingerprint and (v) search speed determining how fast
a fingerprint can be looked up in a large database. The authors of
this paper showed that their system [1][2] performs well on all
these five parameters. Although the system is very robust against
almost all common audio processing steps, it is not inherently
robust against large linear speed changes. Note, that we define a
linear speed change as a speed change where both the pitch and
the tempo change. E.g. an audio file that has been sampled at
44.1kHz but is played back at a sampling rate of for instance
44.2 kHz results in a linear speed change. In practice such a

speed changes do occur in radio broadcasts. Broadcasters
supposedly do this for two reasons. Firstly a shorter duration of
songs enables the broadcast of more commercials. Secondly, the
increased beat seems to be preferred by the audience, persuading
them to stay with the selected station.

As the SAF algorithm presented in [1][2] is robust against
speed changes of approximately 2%, we originally proposed to
solve larger speed changes by storing the fingerprint at multiple
speeds in the database or extracting the fingerprint query at
multiple speeds and then perform multiple queries on the
database. The main disadvantage of these methods is that either
the storage requirement increases or the search speed decreases
by several factors. In this paper we describe a modification of the
existing algorithm that does not have this disadvantage, as it is
inherently robust against larger speed changes.

2. EXISTING ALGORITHM

In this section we describe the existing SAF fingerprint
extraction algorithm and explain why it is not robust against
large linear speed changes. For a more detailed explanation the
reader is referred to [1]. It is based on a general approach of
computing a small fingerprint, i.e. a sub-fingerprint, for a time
interval of in the order of 10ms. A sub-fingerprint, typically 32
bits large, does not contain sufficient information to identify an
audio signal by itself, but a sequence of sub-fingerprints, which
we refer to as a fingerprint block, does. A fingerprint block
typically contains 256 sub-fingerprints (corresponding to approx.
3 seconds of audio) and consequently 8192 fingerprint bits.

To identify an audio signal a fingerprint block is extracted
from the audio signal and subsequently sent to the fingerprint
database as a query. The fingerprint database then responds with
the metadata of the best matching fingerprint block in the
database provided that the match is reliable enough. The
matching criterion that we use is the Bit Error Rate (BER). If the
BER between the query and the block in the database is below a

Framing FFT (QHUJ\���
EDQGV

Filter Threshold
6XE�
)LQJHUSULQW

$XGLR

Figure 1 Overview existing fingerprint algorithm.

IV - 7280-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

pre-determined threshold the match is said to be reliable. In [1] it
is derived that a match can be qualified as reliable when the BER
is below 35%. Therefore, for a reliable match, 2867 fingerprint
bits out of the total of 8192 bits of a fingerprint block can be in
error.

An overview of the algorithm is shown in Figure 1. First the
audio is divided into frames, which have a length of approx. 0.37
seconds and a very large overlap of 31/32. This results in one
frame and therefore also one sub-fingerprint for every 11.6 ms of
audio. A spectral representation is obtained by applying a Fast
Fourier Transform on every frame. From the resulting spectrum a
vector of 33 energies is computed by determining the energy in
33 logarithmically spaced bands. The bands typically lie in the
range of 300Hz to 2000Hz, which is perceptually the most
relevant range. If we now put the energy vectors of subsequent
frames as rows in a matrix, we obtain a spectrogram. The
spectrogram is subsequently filtered by a simple 2D (time-
frequency) filter with kernel F given by









−

−
=

11
11

F (1)

This results in values that represent energy differences along
both the time and frequency axis. Finally the obtained energy
differences values are converted to bits (i.e. one 32 bit sub-
fingerprint per frame) by simple thresholding. If a value is larger
than zero it is assigned a ‘1’ bit, otherwise a ‘0’ bit.

This scheme has proven to robust to most common audio
processing steps, except large linear speed changes. This is due
to the fact that speed changes cause misalignment along both the
time and frequency axis.

Considering first the time misalignment, an audio excerpt
subjected to a speed change of (for example) +2% causes the
250th sub-fingerprint of this excerpt to be extracted at the
position of the 255th sub-fingerprint of the original excerpt.
Fortunately, in order to be robust to shifting, the sub-fingerprints
are constructed such that they possess a large correlation along
the time-axis [1][2]. The large correlation is introduced by the
large overlap of the framing. Therefore the BER between the
original excerpt and the same excerpt with a speed change does
not increase dramatically due to the temporal misalignment. This
is demonstrated by experimental results. Figure 3 shows that the
existing scheme is robust to large time scale modifications1. The
main problem introduced by large speed changes seems to be the
frequency misalignment. The above example of 2% speedup
results in a scaling of the frequency axis of the spectrum that is
obtained with the Fourier Transform. For example a tone of
500Hz then results in a tone of 510 Hz and a tone 1000 Hz
results in a tone of 1020 Hz. As a result, speed change causes a
shift of energy from one band to another band. The more energy
shifts from one band into the next, the larger the probability that
the extracted fingerprint bits (which are quantized energy
differences) are erroneous.

1 A processing step in which the tempo changes, giving temporal
misalignment, but the pitch remains unaffected, i.e. no frequency
misalignment.

3. MODIFIED ALGORITHM

As shown in the previous section the main problem in the
existing SAF algorithm seems to be the frequency misalignment
caused by the speed change. In this section we present a
modified version of the algorithm that is less susceptible to
frequency misalignment and is based upon the auto-correlation
of a densely sampled power spectrum. An overview of the
modified scheme is shown in Figure 2. The first two steps (i.e.
framing and FFT) are identical to the existing algorithm of
Section 2. The third step is different: the energy of 512 bands
instead of 33 is computed. The bands are still logarithmically
spaced and in the range of 300 to 2000Hz. Thus the width of the
bands is smaller. As already mentioned in Section 2, a speed-
change results in a (possibly non-integer) shift of the computed
energy vector. It is well known that auto-correlation is shift
invariant, as shown with the following argument. Defining the
auto correlation ff of the function f(t) as:

 ∫
∞

∞−

+= dtxtftfxII)()()(ρ , (2)

The autocorrelation gg of the shifted function g(t)=f(t+) is
shown to be invariant by the following argument:

������������������

����������

[GW[WIWI

GW[WIWIGW[WJWJ[

II

JJ

ρ

ααρ

∫

∫∫
∞

∞−

∞

∞−

∞

∞−

=+=

+++=+=
(3)

Since we are not dealing with a continuous function but a
discrete sequence of energies, we propose to approximate this
behavior by correlating a subsequence of the energies with the
complete sequence. More specifically we calculate the
autocorrelation [x] of the energy vector e[x] as follows:

∑
=

−≤≤++=
0

M

01[IRUM[HM.H[
�

�@>@>@>ρ (4)

where N denotes the length of the whole energy vector (in our
case 512), M the length of the sub-sequence and K the position
where the sub-sequence starts in the complete sequence. Typical
settings for M and K are 64 and 96, respectively. To increase
robustness, the resulting auto-correlation values are low pass
filtered. The two last steps are identical to the steps of the
existing algorithm. These need as input 33 values. However the
low-pass filtered auto-correlation contains 512-64 = 448 values.
Therefore the 448 low-pass filtered values are down-sampled to
33 values.

$XWR�
FRUUHODWLRQFraming

$XGLR
FFT (QHUJ\����

EDQGV

Filter Sub-
Sample Filter Threshold

6XE�
)LQJHUSULQW

Figure 2 Overview modified algorithm

IV - 729

➡ ➡

4. EXPERIMENTAL RESULTS

In order to assess the robustness of the modified fingerprint
extraction algorithm, we repeated the experiments performed in
[1] and compared the results to the existing algorithm. The
experiments were performed by extracting fingerprint blocks
from four audio clips belonging to different musical genres and
from a set of processed versions of these clips. The set of
processed versions consisted of audio coding at different bit
rates, speech coding, filtering, amplitude compression, linear
speed changes, time scaling (i.e. a speed change where the tempo
changes but the pitch remains unaffected), echo addition,
DA/AD conversion and recording with a microphone. To assess
the robustness the bit error rates between the original version
and their respective processed version was determined. The
resulting bit error rates of all experiments were averaged over the
four clips. The results of both the existing and the modified
algorithm are shown in Figure 3. Experiments showed the
standard deviation of the BER [1][2] of non-matching blocks of
the modified algorithm is similar to the original algorithm.
Therefore, for both algorithms, to be able to identify a
fingerprint block the bit error rate has to be below the threshold
of 0.35. The results clearly show that the robustness of both
algorithms is very similar for most audio processing steps, but
that the modified version is much more robust against linear
speed changes. As the main focus of the modified algorithm was
on improving the robustness against linear speed changes Figure
4 shows the bit error rate as a function of the speed change. It
clearly shows that the modified algorithm can handle speed
changes up to 6%, whilst the existing algorithm can only handle
speed changes up to 2%.

It is important for any fingerprinting method that not only it
results in a low BER, but also that it allows efficient searching.
In [1] a search algorithm is presented that uses an index on sub-
fingerprint level to search the fingerprint database for a matching
fingerprint block. For all 256 sub-fingerprints in the query
(recall that a fingerprint block is the typical unit for a query) a
list of most probable sub-fingerprints is generated. These lists of
probable sub-fingerprints are based on soft decoding information
that is available during fingerprint extraction [1] and include the
sub-fingerprint itself as the most probable sub-fingerprint. In
order to find the best matching block in the database a match is
performed at all the positions in the database where a sub-
fingerprint occurs that matches one of the probable sub-
fingerprints of the query. Therefore it is a prerequisite that one of
the sub-fingerprints in the lists of the probable sub-fingerprints
exactly matches the respective sub-fingerprint of the best
matching block in the database. The positions where a certain
sub-fingerprint occurs can be retrieved very efficiently by
implementing the index on the sub-fingerprints as a hash-table.

One can draw an analogy with string searching over here.
The analogy is to find the best matching string (fingerprint
block) in a large database of characters (database of sub-
fingerprints). The query string may contain erroneous characters,
but for every character an estimate of the list of correct
characters is available. Then the best match for the string in the
database can be efficiently retrieved by only performing a match
at positions in the database where either one of the characters or
one of the probable characters of the string occurs. For a more
detailed explanation of the search algorithm the reader is referred
to [1].

In our experiments, a list of 1024 most probable candidates
was created for each of the 256 sub-fingerprints of the
fingerprint block. Figure 5 and Figure 6 show the number (again
averaged over the four excerpts) of lists that contain a
corresponding sub-fingerprint in matching fingerprint block in
the database. This number is referred to as the number of
database hits. Recall that in order to find the matching block in
the database only one single database hit is needed to be
successful. Figure 6 shows that in case of linear speed changes
the number of database hits increases significantly with the
newly proposed algorithm compared to the original algorithm.
Figure 5 shows that the performance with respect to other
common audio processing steps is similar. For most audio
processing steps the number of database hits is much larger than
one. Therefore the number of generated probable sub-
fingerprints can be decreased significantly for most audio
processing steps, which results in faster search times.

5. CONCLUSIONS

In this paper we presented a modified version of the SAF
fingerprint algorithm that is more robust against linear speed
changes. The robustness against speed changes is achieved by
exploiting shift invariance of the auto-correlation function.
Experiments show that the modified SAF algorithm is as robust
as the original SAF algorithm in case of most audio processing
steps. However it is far more robust in case of linear speed
changes. With the modified algorithm the speed may vary
between –6% and +6%. This is sufficient to handle speed
changes applied in radio broadcasting (usually only a few
percent).

6. REFERENCES

[1] J. Haitsma and T. Kalker, “A Highly Robust Audio
Fingerprinting System,” Proceedings of the International
Conference on Music Information Retrieval (ISMIR) 2002, pp.
107-115, October 2002, Paris.

[2] J. Haitsma, T. Kalker, and J. Oostveen. “Robust audio
hashing for content identification”, Proceedings of the
International Workshop on Content-Based Multimedia Indexing
(CBMI) 2001, pp. 117-125, Brescia, Italy, 2001.

[3] E. Allamanche, J. Herre, O. Hellmuth, B. Fröbach. and M.
Cremer, “AudioID: Towards Content-Based Identification of
Audio Material”, 100th AES Convention, Amsterdam, The
Netherlands, May 2001.

[4] H. Neuschmied, H. Mayer and E. Battle, “Identification of
Audio Titles on the Internet”, Proceedings of International
Conference on Web Delivering of Music 2001, Florence, Italy,
November 2001.

[5] D. Fragoulis., G. Rousopoulos, T. Panagopoulos, C. Alexiou
and C. Papaodysseus, “On the Automated Recognition of
Seriously Distorted Musical Recordings”, IEEE Transactions on
Signal Processing, vol.49, no.4, p.898-908, April 2001.

[6] Shazam website <http://www.shazamentertainment.com>

IV - 730

➡ ➡

[7] Philips (audio fingerprinting) website
<http://www.research.philips.com/InformationCenter/Global/FA
rticleSummary.asp?lNodeId=927&channel=927&channelId=N9
27A2568>

[8] ID3Man website <http://www.id3man.com>

[9] MusicBrainz website <http://www.musicbrainz.org>

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

m
p3

@
12

8k
b

m
p3

@
32

kb

re
al

@
20

kb

G
S

M

G
S

M
 (

C
/I

4
dB

)

al
lp

as
s

fil
te

r

am
pl

itu
de

 c
om

p.

eq
ua

liz
at

io
n

ec
ho

 a
dd

iti
o

n

ba
nd

pa
ss

fil
te

r

tim
e

sc
al

in
g

+
4%

tim
e

sc
al

in
g

-4
%

sp
ee

d
+

1%

sp
ee

d
-1

%

sp
ee

d
+

2%

sp
ee

d
-2

%

sp
ee

d
+

3%

sp
ee

d
-3

%

sp
ee

d
+

4%

sp
ee

d
-4

%

no
is

e
ad

di
tio

n

re
sa

m
pl

in
g

D
A

/A
D

m
ic

re
co

rd
in

g

B
E

R

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

m
p3

@
12

8k
b

m
p3

@
32

kb

re
al

@
20

kb

G
S

M

G
S

M
 (

C
/I

4
dB

)

al
lp

as
s

fil
te

r

am
pl

itu
de

 c
om

p.

eq
ua

liz
at

io
n

ec
ho

 a
dd

iti
o

n

ba
nd

pa
ss

fil
te

r

tim
e

sc
al

in
g

+
4%

tim
e

sc
al

in
g

-4
%

sp
ee

d
+

1%

sp
ee

d
-1

%

sp
ee

d
+

2%

sp
ee

d
-2

%

sp
ee

d
+

3%

sp
ee

d
-3

%

sp
ee

d
+

4%

sp
ee

d
-4

%

no
is

e
ad

di
tio

n

re
sa

m
pl

in
g

D
A

/A
D

m
ic

re
co

rd
in

g

B
E

R

Figure 3 The resulting BER after different audio processing
steps. The existing algorithm is plotted as a dotted line with
‘o’. The modified algorithm as a solid line with ‘+’. The BER
threshold for identification is depicted as thick solid line.

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08
0

0.1

0.2

0.3

0.4

0.5

Speed change

B
E

R

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08
0

0.1

0.2

0.3

0.4

0.5

Speed change

B
E

R

Figure 4. The resulting BER as a function of speed change.
The existing algorithm is plotted as a dotted line with ‘o’. The
modified algorithm as a solid line with ‘+’. The BER
threshold for identification is depicted as thick solid line.

0 5 10 15 20 25
0

50

100

150

200

250

300

350

m
p3

@
12

8k
b

m
p3

@
32

kb

re
al

@
20

kb

G
S

M

G
S

M
 (

C
/I

4
dB

)

al
lp

as
s

fil
te

r

am
pl

itu
de

 c
om

p.

eq
ua

liz
at

io
n

ec
ho

 a
dd

iti
o

n

ba
nd

pa
ss

fil
te

r

tim
e

sc
al

in
g

+
4%

tim
e

sc
al

in
g

-4
%

sp
ee

d
+

1%

sp
ee

d
-1

%

sp
ee

d
+

2%

sp
ee

d
-2

%

sp
ee

d
+

3%

sp
ee

d
-3

%

sp
ee

d
+

4%

sp
ee

d
-4

%

no
is

e
ad

di
tio

n

re
sa

m
pl

in
g

D
A

/A
D

m
ic

re
co

rd
in

g

H
its

0 5 10 15 20 25
0

50

100

150

200

250

300

350

m
p3

@
12

8k
b

m
p3

@
32

kb

re
al

@
20

kb

G
S

M

G
S

M
 (

C
/I

4
dB

)

al
lp

as
s

fil
te

r

am
pl

itu
de

 c
om

p.

eq
ua

liz
at

io
n

ec
ho

 a
dd

iti
o

n

ba
nd

pa
ss

fil
te

r

tim
e

sc
al

in
g

+
4%

tim
e

sc
al

in
g

-4
%

sp
ee

d
+

1%

sp
ee

d
-1

%

sp
ee

d
+

2%

sp
ee

d
-2

%

sp
ee

d
+

3%

sp
ee

d
-3

%

sp
ee

d
+

4%

sp
ee

d
-4

%

no
is

e
ad

di
tio

n

re
sa

m
pl

in
g

D
A

/A
D

m
ic

re
co

rd
in

g

H
its

Figure 5. The number of hits in the database after different
audio processing steps. The existing algorithm is plotted as a
dotted line with ‘o’. The modified algorithm as a solid line
with ‘+’.

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08
0

50

100

150

200

250

300

Speed change

H
its

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08
0

50

100

150

200

250

300

Speed change

H
its

Figure 6. The number of hits in the database as a function of
speed change. The existing algorithm is plotted as a dotted
line with ‘o’. The modified algorithm as a solid line with ‘+’

IV - 731

➡ ➠

