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ABSTRACT

Digital fingerprinting is a means to offer protection to digital data
by which fingerprints embedded in the multimedia are capable of
identifying unauthorized use of digital content. A powerful attack
that can be employed to reduce this tracing capability is collusion.
In this paper, we study the collusion resistance of a fingerprinting
system employing Gaussian distributed fingerprints and orthogo-
nal modulation. We propose a likelihood-based approach to esti-
mate the number of colluders, and introduce the thresholding de-
tector for colluder identification. We first analyze the collusion
resistance of a system to the average attack by considering the
probability of a false negative and the probability of a false pos-
itive when identifying colluders. Lower and upper bounds for the
maximum number of colludersKmax are derived. We then show
that the detectors are robust to different attacks. We further study
different sets of performance criteria.

1. INTRODUCTION

Due to the ease with which digital content can be accessed, re-
trieved and manipulated, there is a demand for methods to pro-
tect digital media and facilitate digital rights management. Digital
fingerprinting is one such technique, whereby some unique infor-
mation, such as a serial number, is embedded in media using wa-
termarking techniques. One powerful class of attacks iscollusion,
whereby a coalition of users combine their different marked copies
of the same multimedia content in an attempt to attenuate/remove
the trace of any original fingerprint. The fingerprint must therefore
survive both standard distortions and collusion attacks by users in-
tending to destroy it. Several methods have been proposed in the
literature to embed and hide fingerprints (watermarks) in different
media [2, 3, 5]. The spread spectrum watermarking method pro-
posed in [3], where the watermarks have a component-wise Gaus-
sian distribution and are statistically independent, was argued to
be highly resistant to collusion attacks [3, 6].

The research on the collusion-resistant fingerprinting systems
can be broadly divided into two main directions. One direction fo-
cuses on designing collusion-resistant fingerprint codes [1, 9, 10].
The other direction of research is on examining the resistance per-
formance of specific watermarking schemes under different at-
tacks. We are aware of only a few works on the collusion re-
sistance of digital watermarks [4, 6, 7, 8]. Proposing a simple
linear collusion attack that consists of adding noise to the aver-
age ofK independent copies, the authors concluded in [6] that
O(

√
N/ log n) independently marked copies are sufficient for an

attack to defeat the underlying system with non-negligible proba-
bility, when Gaussian watermarks are considered. It was further

shown [6] to be optimal: no other watermarking scheme can of-
fer better collusion resistance. These results are also supported by
[4]. Stone suggested that the most powerful attack may succeed
to defeat uniformly distributed watermarks if as few as one to two
dozen independent copies are available [8]. We do not know of
any work that provides a precise analysis of the collusion resis-
tance of watermarks when employed with different possible detec-
tion schemes. This paper will address this issue. We employ some
basic assumptions in this paper:

• We consider independent Gaussian watermarks. Further-
more, we assume that the fingerprints use orthogonal mod-
ulation, or at least the correlations among different finger-
prints can be ignored.

• A non-blind detection scenario is assumed, meaning that
the host signal is available in the detector side. Analysis
shows that 2 or 3 independent copies may defeat water-
marks under blind scenario.

• The additive distortion is modeled asiid Gaussian noise.

We begin, in Section 2, with the problem description and pro-
pose an approach to estimate the number of colluders. We then
introduce the thresholding detector, and examine the collusion re-
sistance of our fingerprinting system when considering the average
attack and the criteria represented by the probabilities of a false
positive and a false negative. In Section 4, we further examine
other types of collusion and two more sets of performance criteria.
We refer the interested readers to [11] for all detailed derivations.

2. A CLASSIFIER APPROACH

Additive embedding is a widely used watermarking scheme. As
shown in Figure 1, the content owner has a family of watermarks,
denoted by{sj} and they are fingerprints associated with different
users, for distributing marked copies to different users and allow-
ing tracing of pirated copies to their original users. For thejth

user, the marked version of the contentyj is computed by adding
the watermarksj to the host signalx. Now the observed content
y after the average collusion is

y =
1

K

∑
j∈Sc

yj + d =
1

K

∑
j∈Sc

sj + x + d (1)

where all vectors have dimensionN , K is the number of colluders,
andSc indicates a subset with sizeK, whereSc ⊆ [1, ..., n] with n
be the total number of users. The normally distributed fingerprint
sj for each userj is assumed to have the equal energy and be
orthogonal to each other. The distortiond is assumed to be an
N -dimensional vector following aniid N(0, σ2

d) distribution.
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Fig. 1. Model for collusion by averaging.

Here the number of colludersK and the subsetSc are un-
known parameters. We haveHK : y = 1

K

∑
j∈Sc

sj + x + d

for 1 ≤ K ≤ Km. To estimateK, we classify an observationy
into one ofKm classes and estimateSc correspondingly, by the
MAP or Bayesian classifier

(K̂, Ŝc) = arg max
K,Sc

p(y|HK , Sc)p(HK)p(Sc|HK) (2)

wherep(.) represents likelihood functions. We choose a nonin-
formative prior such thatp(HK)p(Sc|HK) is constant and thus
can be ignored as long as|Sc| = K is satisfied. Due to the non-
blind assumption, the host signalx is always subtracted fromy for
analysis. Because of the orthogonality of basis{sj}, it suffices to
consider the correlator vectorTN , with

TN (j) = (y − x)T sj/
√
‖sj‖2 (3)

for j = 1, ..., n. It is straightforward to show that

p(TN (j)|HK , Sc) =

{
N( ‖s‖

K
, σ2

d), if j ∈ Sc,
N(0, σ2

d), otherwise
(4)

where‖s‖ = ‖sj‖ for all j, andTN (j) is independent of each
other. Now the classifier is equivalent to

(K̂, Ŝc) = arg max
K,Sc

p(y|HK , Sc) = arg max
K,Sc

p(TN |HK , Sc),

thus K̂ = arg max
K
{2 ‖ s ‖

K

K∑
j=1

T
(j)
N − ‖ s ‖2

K
},

Ŝc = the index ofK̂ largestTN (j)’s (5)

whereT
(j)
N ’s are the order statistics of the sampleTN such that

T
(1)
N ≥ T

(2)
N ≥ · · · ≥ T

(n)
N .

3. DETECTION APPROACHES

In this section, we consider one of the most popular criteria, the
probability of a false negative (Pfn) and the probability of a false
positive (Pfp). A detection approach fails if either the detector
fails to identify any of the colluders (a false negative) or the de-
tector falsely indicates that an innocent user is a colluder (a false
positive) [4, 6]. It is desirable to minimizePfn, with a givenPfp.
Although it might be interesting to studyPfn and Pfp for the
approach introduced in Section 2 and useŜc obtained via (5) to
indicate colluders, the approach is not designed to address the de-
sirable goal represented byPfn andPfp, and furthermore it lacks

the capability of adjusting parameters to meet a givenPfp. Next
we introduce the thresholding detector and study its collusion re-
sistance under the average attack.

We employ the traditional correlatorTN (j) and compare it to
a thresholdh, and report that thej − th fingerprint is present if
TN (j) exceedsh. This simple approach is described as

ĵ = argj=1,...,n{TN (j) ≥ h} (6)

where the set̂j indicates the indices of colluders, and an empty set
means that no user is accused. The thresholdh here is determined
by such parameters as the document lengthN , the total number of
usersn, the number of colludersK, and the WNR.

3.1. Performance Analysis

The thresholdh in test (6) is chosen to yieldPfp = ε, whereε is a
desired small value. For simplicity, we assume that the number of
colludersK is known. We now have

Pfp = Pr{ĵ ∩ S̄c 6= ∅} = 1− (1−Q(h/σd))n−K (7)

Pd = Pr{ĵ ∩ Sc 6= ∅} = 1−
(

1−Q

(
h− ‖s‖/K

σd

))K

whereS̄c is the complementary set ofSc. According to (8), we
can numerically calculateh to yieldPfp = ε with givenK, n, and
WNR, and then compute the correspondingPd.

We illustrate the resistance performance using an example,
whereWNR = 0dB, N = 104, andσ2

d = 1. In this example, the
system requirements are defined asPd ≥ 0.8 andPfp ≤ 10−3.
As shown in Figure 2(a) and (b), when the number of usersn is
on the order of104, the fingerprinting system can resist to up to 28
colluders; whenn is set as a small number 75, the system can resist
to up to 46 colluders. This behavior can be intuitively explained
by the expressions ofPfp andPd in (8). To have an overall under-
standing of the collusion resistance of this orthogonal fingerprint-
ing scheme, we plot the maximum resistible number of colluders
Kmax as a function of the total number of usersn in Figure 3. It
is noted that the system can resist to up ton colluders when the
total number of usersn is less than 60. However, for a system ac-
commodating more than 60 users, its collusion resistance starts to
decrease. For a system accommodating more than one thousand
users, the numberKmax is around 28.

3.2. Lower and Upper Bounds ofKmax

Since the above analysis is based on numerical computation, we
shall study analytic bounds on the maximum number of collud-
ersKmax for an orthogonal fingerprinting system employing the
thresholding detector.

Settingσ2
d = 1 for convenience, note that now‖s‖ =

√
ηN

with the WNRη = ‖s‖2/‖d‖2. We restate the system require-
ments as

Pfp ≤ ε, Pd ≥ β, (8)

in which ε is a small number andβ is close to 1. A key point in
determiningKmax is to figure out the appropriate thresholdh in
the above equation (8). The assumption thatε is small implies that
the choice ofh can meet the conditionQ(h) << 1/n. Based on
this observation and the two Lemmas, we obtain a lower bound
hL and upper boundhH of the thresholdh. We now proceed to
show that a lower and upper bound of the maximum number of
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Fig. 2. Probability of detectionPd as a function of the number
of colludersK when apply the thresholding detector in (6). Here
WNR = 0dB, N = 104 andPfp ≤ 10−3. In figure(a) the
number of usern is 104; in (b) n = 75.

colludersKmax can be obtained by using the bounds ofh. The
basic idea is to find a lower boundKL of Kmax such that the re-
sulting pair(KL, hH) simultaneously satisfies the conditions that
the correspondingPd is larger than but close to the requirementβ
andPfp is smaller than but close to the requirementε. Similarly,
an upper boundKH is chosen such that the pair(KH , hL) results
in aPd, which is smaller than but close to the requirementβ, and a
Pfp, which is larger than but close to the requirementε. A detailed
derivation leads to the following collusion resistance:

Kmax ≥ min{n, KL}, KL =

√√√√ ηN

log
(

n2

2πε2 log(0.5n2/π)

)

Kmax ≤ min{n, KH}, KH =

√
ηN

hL −Q−1(1− K̃
√

1− β)
(9)

whereQ−1(.) represents the inverseQ-function, andK̃ serves as

an upper bound of the upper boundKH : K̃ =

√
ηN

hL−Q−1(1− n
√

1−β)
.

It is worth mentioning that a tighter lower and upper bound of
Kmax can be obtained by solving the one-dimensional problem
Pd = β whenhH andhL are considered, respectively. However,
more computational load will be involved and no explicit expres-
sions ofKH andKL as in (9) be available due to the complex
nature ofPd.

We plot the lower and upper bound ofKmax versus the num-
ber of usersn, along with the numericalKmax, in Figure 3, where
σ2

d = 1, WNR = 0dB, N = 104, and the requirementsPfp ≤
10−3 andPd ≥ 0.8. It is noted that the lower and upper bounds
are within a factor of 2 of the true value ofKmax. Some interest-
ing observations are noted from this example. From the attacker
point of view, if an attack can only collect up to20 copies, he/she
can never succeed in removing all the traces; however, an attacker
is guaranteed to celebrate his/her success if80 independent copies
are available. From the owner (detector) point of view, if the owner
has a mean to ensure that a potential attacker has no way to obtain
as many as20 independent copies, the fingerprinting system is
claimed to be collusion-free. Meanwhile, in order to maximize the
worst case ofPd, the owner should limit the number of indepen-
dent distributions.

3.3. Simulations

Since the knowledge ofK is normally not available in practice, we
need to first estimateK before setting a thresholdh for the detec-
tion process. Our simulations used the following implementation:
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Fig. 3. The lower and upper bound ofKmax as a function of
the number of usersn when apply the thresholding detector in (6).
HereWNR = 0dB, N = 104, ε = 10−3 andβ = 0.8.

1. Estimate the number of colludersK via (5).

2. Determine the thresholdh correspondingly to yield a de-
siredPfp, according to (8). The thresholdh is only a func-
tion of K̂ whenN , WNR andn are given.

3. Apply the thresholding test statistic described in (6).

We compare the simulation results with the ideal performance
in Figure 2(a) and (b). WhenK is estimated based on simulated
observations, the resultingPd always decreases with increasingK.
A good match is observed over the non-increasing part of the ideal
case (whenK is small). Mis-match is noted over the increasing
part of the ideal case (whenK is close ton), sinceK is under-
estimated in this situation due to the increasing overlap between
the two Gaussian distributionsN(0, σ2

d) and N(‖s‖/K, σ2
d) as

K increases. However, estimatingK does not significantly affect
the results ofKmax, compared with that of the ideal performance
analysis, since only the non-increasing part (also the matched part)
of the ideal case in thePd versusK curve is evaluated to decide
Kmax.

4. EXTENSIONS

In this section, we consider three nonlinear attacks suggested by
Stone in [8]. We show in [11] that different attacks provide very
close performance as long as the powers of the composite obser-
vations satisfy

E{‖ yg ‖2} = E{‖ ymean ‖2} 4= ξ0 (10)

whereg(.) represents the attack operation. Note that the power of
the observation indicates the level of MSE introduced to the host
signal. The above fact that, from the detector point of view, differ-
ent attacks provide close performance suggests that with the same
MSE distortion allowed, the average attack is most efficient from
the attacker point of view. This is because from the detector point
of view, there exists better detection schemes than the thresholding
detector given a specific attack except the average attack.

Different goals arise under different situations, and there are
other possible sets of performance measures. These measures pro-
vide different balance between capturing colluders and accusing
innocents. We consider two new sets of performance criteria and
study the thresholding detector under the average attack.
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Case 1: Capture More This set of performance criteria consists
of the expected fraction of colluders that are successfully captured,
denoted asrc, and the expected fraction of innocent users that are
falsely placed under suspicion, denoted asri. Here the major con-
cern is to catch more colluders, possibly at a cost of accusing more
innocents. The system requirements are represented as

ri = Q(h/σd) ≤ αi; rc = Q

(
h− ‖ s ‖ /K

σd

)
≥ αc. (11)

We obtain the following

h = Q−1(αi)σd,

Kmax =

√
ηN

Q−1(αi)−Q−1(αc)
. (12)

It is interesting to note that the thresholdh is a constant value
determined byαi, andKmax is not affected by the total number
of usersn. If placing a larger fraction of innocents into suspicion
is allowed, the system can resist to more colluders.
Case 2: Capture All This set of performance criteria consists of
the efficiency rateR, which describes the amount of expected in-
nocents accused per colluder, and the probability of capturing all
K colluders, referred asPd. Here the goal is to capture all col-
luders with a high probability. The tradeoff between capturing
colluders and placing innocents under suspicion is through the ad-
justment of the efficiency rateR. The system requirements are
expressed as

R =
(n−K)Q(h/σd)

KQ(h−‖s‖/K
σd

)
≤ α; Pd = Q

(
h− ‖ s ‖ /K

σd

)K

≥ β.

(13)
We may find lower and upper bounds forKmax under this criteria,
and an example is given in Figure 4.

The analysis in this section reveals that the maximum number
of colluders allowed is on the same order under two different sets
of criteria. Basically, a few dozen of colluders could break down
the Gaussian fingerprinting system using orthogonal modulation
by generating a new composite copy such that the identification of
the original fingerprints will unlikely be successful.

5. CONCLUSION

In this paper, we investigated how many independently marked
copies of the same multimedia content is required for an attacker
to thwart a fingerprinting system. We studied the collusion resis-
tance of a fingerprinting system to the average attack when con-
sidering the performance criteria represented byPfp and Pnp.
We derived lower and upper bounds of the maximum number of
colludersKmax. Using the upper bound, an attacker can know
how many independent copies are required to guarantee the suc-
cess of a collusion attack; on the other hand, an owner will benefit
from these bounds in designing a fingerprinting system. Our work
was further extended to different attacks and performance crite-
ria. From the detector point of view, the thresholding detector is
robust to different attacks, since different attacks yield very close
performance as long as the levels of MSE distortion introduced
by different attacks are the same. And it seems that attacks based
on a few dozen independent copies will confound a fingerprinting
system accommodating as many as ten thousand users. This obser-
vation suggests that the number of independently marked copies of

10
1

10
2

10
3

10
4

10

20

30

40

50

60

70

80

90

K
m

ax

number of users n

N=104, η=1, β=0.99, α=0.01

K
max

 via numerical calculation

the lower bound
the upper bound

Fig. 4. Resistance performance of the orthogonal fingerprinting
system under the criteriaR and Pd. HereN = 105, η = 1,
α = 0.01 andPd = 0.99.

the same content that can be distributed should be determined by
many concerns, such as the system requirements, and the cost of
obtaining multiple independent copies. Furthermore, it suggests
that tracing colluders via fingerprints should work in concert with
other operations, for example, suspecting a user leads the owner to
more closely monitor that user and further gather other evidences.
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