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ABSTRACT shown [6] to be optimal: no other watermarking scheme can of-

fer better collusion resistance. These results are also supported by
[4]. Stone suggested that the most powerful attack may succeed
to defeat uniformly distributed watermarks if as few as one to two
dozen independent copies are available [8]. We do not know of
any work that provides a precise analysis of the collusion resis-
tance of watermarks when employed with different possible detec-
tion schemes. This paper will address this issue. We employ some
basic assumptions in this paper:

Digital fingerprinting is a means to offer protection to digital data

by which fingerprints embedded in the multimedia are capable of
identifying unauthorized use of digital content. A powerful attack

that can be employed to reduce this tracing capability is collusion.
In this paper, we study the collusion resistance of a fingerprinting
system employing Gaussian distributed fingerprints and orthogo-
nal modulation. We propose a likelihood-based approach to esti-
mate the number of colluders, and introduce the thresholding de-

tector for colluder identification. We first analyze the collusion e We consider independent Gaussian watermarks. Further-
resistance of a system to the average attack by considering the more, we assume that the fingerprints use orthogonal mod-
probability of a false negative and the probability of a false pos- ulation, or at least the correlations among different finger-

itive when identifying colluders. Lower and upper bounds for the prints can be ignored.

maximum number of colluderk,,.. are derived. We then show e A non-blind detection scenario is assumed, meaning that
that the detectors are robust to different attacks. We further study the host signal is available in the detector side. Analysis

different sets of performance criteria. shows that 2 or 3 independent copies may defeat water-

marks under blind scenario.
1. INTRODUCTION e The additive distortion is modeled ad Gaussian noise.

) ) . We begin, in Section 2, with the problem description and pro-
D_ue to the ease with which dlgl_tal content can be accessed, re-pose an approach to estimate the number of colluders. We then
trieved and manipulated, there is a demand for methods to pro-jntroduce the thresholding detector, and examine the collusion re-
tect digital media and facilitate digital rights management. Digital gjstance of our fingerprinting system when considering the average
fingerprinting is one such technique, whereby some unique infor- gttack and the criteria represented by the probabilities of a false
mation, such as a serial number, is embedded in media using Wapositive and a false negative. In Section 4, we further examine
termarking techniques. One powerful class of attackelkision other types of collusion and two more sets of performance criteria.

whereby a coalition of users combine their different marked copies e refer the interested readers to [11] for all detailed derivations.
of the same multimedia content in an attempt to attenuate/remove

the trace of any original fingerprint. The fingerprint must therefore
survive both standard distortions and collusion attacks by users in-
tending to destroy it. Several methods have been proposed in th

2. A CLASSIFIER APPROACH

e . . . . .
. T X S Additive embedding is a widely used watermarking scheme. As
literature to embed and hide fingerprints (watermarks) in different shown in Figure 1, the content owner has a family of watermarks,

:)noidég |[r?[§] S\JHe1|:2?hsep\:\?;tgrsngaercl:;uhn;vvgaaﬁ:r(;nn?pr)lgr?gnr:\?\/gzgdGFz)arL?s: denoted bys; } and they are fingerprints associated with different
sian distribution and are statistically independent, was argued to1SETS: fpr dlsftrlk_)utlng mar_ked copr):e_s to .dl_ffe:ent userls:anqﬁgllow-
be highly resistant to collusion attacks [3, 6], ing tracing of pirated copies to their original users. For

The research on the collusion-resistant fingerprinting systems..o. the marked version of the contgntis computed by adding
- - resistant fingerprinting sy the watermarls; to the host signak. Now the observed content
can be broadly divided into two main directions. One direction fo-

cuses on designing collusion-resistant fingerprint codes [1, 9, 10].y after the average collusion is

The other direction of research is on examining the resistance per- 1 1

formance of specific watermarking schemes under different at- YK Z yitd=1 Z s; +x+d
tacks. We are aware of only a few works on the collusion re-
sistance of digital watermarks [4, 6, 7, 8]. Proposing a simple where all vectors have dimensid#, K is the number of colluders,
linear collusion attack that consists of adding noise to the aver- andS. indicates a subset with siZ€, whereS. C [1, ..., n] withn

age of K’ independent copies, the authors concluded in [6] that be the total number of users. The normally distributed fingerprint
O(1/ N/ logn) independently marked copies are sufficient for an s; for each userj is assumed to have the equal energy and be
attack to defeat the underlying system with non-negligible proba- orthogonal to each other. The distortidnis assumed to be an
bility, when Gaussian watermarks are considered. It was further N-dimensional vector following aiid N (0, 03) distribution.
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Fig. 1. Model for collusion by averaging.

Here the number of colluderK and the subse$. are un-
known parameters. We havéx : y = %> .o s;+x+d
for1 < K < K,,. To estimatel, we classify an observation
into one of K,,, classes and estimate. correspondingly, by the
MAP or Bayesian classifier

(K., 5¢) = argmaxp(y|Hi, Se)p(Hx)p(Se|Hx)  (2)

wherep(.) represents likelihood functions. We choose a nonin-
formative prior such thap(Hx)p(S:|Hx) is constant and thus
can be ignored as long &S.| = K is satisfied. Due to the non-
blind assumption, the host signals always subtracted from for
analysis. Because of the orthogonality of bgsis}, it suffices to
consider the correlator vect@ry, with

Tn(j) = (v —x)"si/\/Ilsi | @)
for j =1, ..., n. Itis straightforward to show that
: N(EL 62 ifjes
T Hg,S.) = K d) © 4
P(In () Hx, Se) {N(O,a§)7 otherwise )
where||s|| = ||s;|| for all 7, andTx(j) is independent of each

other. Now the classifier is equivalent to

(K,Sc) = argl;({%)fp(y\HK,Sc) = Wgrlggfp(TN\HK7Sc),
K
b 2 s @ lsl?
thus K = argm}:(xx{TleN - % 1
p

c =

the index ofK largestI'n (5)'s (5)

whereTij)'s are the order statistics of the samfley such that
TV >1H > >1(.

3. DETECTION APPROACHES

In this section, we consider one of the most popular criteria, the

probability of a false negativeli;,,) and the probability of a false
positive (Ps,). A detection approach fails if either the detector
fails to identify any of the colluders (a false negative) or the de-

the capability of adjusting parameters to meet a gi&p. Next
we introduce the thresholding detector and study its collusion re-
sistance under the average attack.

We employ the traditional correlat@iy (j) and compare it to
a thresholdh, and report that thg — th fingerprint is present if
Tn(j) exceedsh. This simple approach is described as
—1,.nIN(j) = h} (6)
where the se} indicates the indices of colluders, and an empty set
means that no user is accused. The threshdidre is determined
by such parameters as the document lerdgtlthe total number of
usersn, the number of colluder&’, and the WNR.

3.1. Performance Analysis

The threshold in test (6) is chosen to yiel&s, = ¢, wheree is a
desired small value. For simplicity, we assume that the number of
colludersK is known. We now have

PGNS 20 =1—(1—QMh/e)™ 5 ()
P{jnS.#0}=1- (1_Q(’”L||S||/K)>

Prp

Py
gd

whereS, is the complementary set ¢f.. According to (8), we
can numerically calculate to yield Py, = € with given K, n, and
WNR, and then compute the correspondifg

We illustrate the resistance performance using an example,
whereW NR = 0dB, N = 10%, ando? = 1. In this example, the
system requirements are definedRs> 0.8 and Py, < 1075,
As shown in Figure 2(a) and (b), when the number of useis
on the order ofl0%, the fingerprinting system can resist to up to 28
colluders; whem is set as a small number 75, the system can resist
to up to 46 colluders. This behavior can be intuitively explained
by the expressions dfy, and P in (8). To have an overall under-
standing of the collusion resistance of this orthogonal fingerprint-
ing scheme, we plot the maximum resistible number of colluders
Kmaz as a function of the total number of usersn Figure 3. It
is noted that the system can resist to up:toolluders when the
total number of users is less than 60. However, for a system ac-
commodating more than 60 users, its collusion resistance starts to
decrease. For a system accommodating more than one thousand
users, the numbéek,,... is around 28.

3.2. Lower and Upper Bounds ofK 44

Since the above analysis is based on numerical computation, we
shall study analytic bounds on the maximum number of collud-
ers Knq. for an orthogonal fingerprinting system employing the
thresholding detector.

Settingo3 = 1 for convenience, note that nojjs|| = /nN
with the WNR# = ||s||?/||d||>. We restate the system require-

ments as
Prp <€, Pa2p, (8)
in which e is a small number angd is close to 1. A key point in

tector falsely indicates that an innocent user is a colluder (a falsedeterminingK,..... is to figure out the appropriate threshdidn

positive) [4, 6]. It is desirable to minimiz&y,,, with a givenPy,,.
Although it might be interesting to stud¥s, and Py, for the
approach introduced in Section 2 and ugeobtained via (5) to

the above equation (8). The assumption thiatsmall implies that
the choice ofh can meet the conditio@(h) << 1/n. Based on
this observation and the two Lemmas, we obtain a lower bound

indicate colluders, the approach is not designed to address the deh;, and upper bound y of the threshold:. We now proceed to

sirable goal represented %, and Py, and furthermore it lacks

show that a lower and upper bound of the maximum number of
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Fig. 2 Probability of detectionP; as a function of the number
of colludersK when apply the thresholding detector in (6). Here

WNR = 0dB, N = 10* and Py, < 1073. In figure(a) the o 5 = -
number of user. is 10; in (b) n = 75.

Fig. 3. The lower and upper bound df,,... as a function of
the number of users when apply the thresholding detector in (6).
colludersK,,.. can be obtained by using the boundshof The HereW NR = 0dB, N = 10* ¢ = 10~% and3 = 0.8.
basic idea is to find a lower bourfd;, of K,,., such that the re-
sulting pair( K1, hi) simultaneously satisfies the conditions that

the corresponding is larger than but close to the requiremgnt 1. Estimate the number of colludef§ via (5).
and Py, is smaller than but close to the requiremenSimilarly, . ) )
an upper bounds; is chosen such that the p&ik ;, h1,) results 2. D_etermlne the th_resholﬂ correspondlngly to yield a de-
in a P4, which is smaller than but close to the requireméyand a sired Py, according to (8). The thresholdis only a func-
P;,, which is larger than but close to the requiremeri detailed tion of K whenN, W N R andn are given.
derivation leads to the following collusion resistance: 3. Apply the thresholding test statistic described in (6).
nN We compare the simulation results with the ideal performance

Kmaz > min{n7KL}7 K =

n2
(

in Figure 2(a) and (b). WheK is estimated based on simulated
IOg (271'52 log(0.5n2 /) )

observations, the resulting; always decreases with increasiRg
A good match is observed over the non-increasing part of the ideal
Komae < min{n, Ku}, Ky = VN " (9) case (WherK is small). Mis-match is noted over th(_e increasing
hp —Q'(1—- ¥1- 3) part of the ideal case (wheR is close ton), since K is under-
. _ ] _ estimated in this situation due to the increasing overlap between
whereQ ™" (.) represents the invergg-function, andi’ serves as  the two Gaussian distributiond (0, 02) and N (||s||/K, 02) as
an upper bound of the upper boufd;: K — \/nNw K increases. However, estimati!ﬁg does not si.gnificantly affect
_ o ) hp—Q~1(1—}/1-6) the results of(;q., compared with that of the ideal performance
It is worth mentioning that a tighter lower and upper bound of analysis, since only the non-increasing part (also the matched part)

Kmaa can be obtained by solving the one-dimensional problem of the ideal case in thé&,; versusK curve is evaluated to decide
P, = 8 whenhy andhy, are considered, respectively. However, Konas.

more computational load will be involved and no explicit expres-
sions of Ky and K1, as in (9) be available due to the complex

nature ofP;,. 4. EXTENSIONS
We plot the lower and upper bound &f,,,.. versus the num- . . . .
ber of users:, along with the numericak .., in Figure 3, where In this section, we consider three nonlinear attacks suggested by

02 =1, WNR = 0dB, N = 10, and the requirement®;, < Stone in [8]. We show in [11] that different attacks provide very
10~ and P; > 0.8. It is noted that the lower and upper bounds clo§e perfqrmance as long as the powers of the composite obser-
are within a factor of 2 of the true value &f,,,,. Some interest- ~ Vations satisfy

ing observations are noted from this example. From the attacker A

point of view, if an attack can only collect up f copies, he/she E{llys I*} = E{ll ymean I’} = &0 (10)

can never succeed in removing all the traces; however, an attacker

is guaranteed to celebrate his/her succesg ihdependent copies ~ Whereg(.) represents the attack operation. Note that the power of
are available. From the owner (detector) point of VieW, if the owner the observation indicates the level of MSE introduced to the host
has a mean to ensure that a potential attacker has no way to obtaigignal. The above fact that, from the detector point of view, differ-
as many a0 independent copies, the fingerprinting system is €nt attacks provide close performance suggests that with the same
claimed to be collusion-free. Meanwhile, in order to maximize the MSE distortion allowed, the average attack is most efficient from
worst case of?;, the owner should limit the number of indepen- the attacker point of view. This is because from the detector point
dent distributions. of view, there exists better detection schemes than the thresholding
detector given a specific attack except the average attack.

Different goals arise under different situations, and there are
other possible sets of performance measures. These measures pro-
Since the knowledge dX is normally not available in practice, we  vide different balance between capturing colluders and accusing
need to first estimat&” before setting a thresholdfor the detec- innocents. We consider two new sets of performance criteria and
tion process. Our simulations used the following implementation: study the thresholding detector under the average attack.

3.3. Simulations
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Case 1: Capture More This set of performance criteria consists
of the expected fraction of colluders that are successfully captured,
denoted as., and the expected fraction of innocent users that are
falsely placed under suspicion, denoted-aHere the major con-
cern is to catch more colluders, possibly at a cost of accusing more
innocents. The system requirements are represented as

ri =Q(h/oa) L ai; e =Q (W) > a.. (11)
0d
We obtain the following
ho= Q '(ai)aa,

Q' (ai) = Q7 (o)

It is interesting to note that the threshaldis a constant value
determined byy;, and K,,.., is not affected by the total number
of usersn. If placing a larger fraction of innocents into suspicion
is allowed, the system can resist to more colluders.

N=10%, n=1, f=0.99, a=0.01

merical calculation

T K ViR

the lower bound
~ ~ the upper bound

number of users n

Fig. 4. Resistance performance of the orthogonal fingerprinting

system under the criteri& and P;. Here N = 10°, n = 1,
a = 0.01 andP; = 0.99.

the same content that can be distributed should be determined by
many concerns, such as the system requirements, and the cost of

Case 2: Capture All This set of performance criteria consists of ~0btaining multiple independent copies. Furthermore, it suggests
the efficiency rateR, which describes the amount of expected in- that tracing colluders via fingerprints should work in concert with
nocents accused per colluder, and the probability of capturing all other operations, for example, suspecting a user leads the owner to

K colluders, referred a®,. Here the goal is to capture all col-
luders with a high probability. The tradeoff between capturing
colluders and placing innocents under suspicion is through the ad-
justment of the efficiency rat&®. The system requirements are
expressed as

(1]

K
< a; Pd=Q<h”S|/K> =B [2]

od
(13)
We may find lower and upper bounds f&,,., under this criteria,
and an example is given in Figure 4.

The analysis in this section reveals that the maximum number
of colluders allowed is on the same order under two different sets
of criteria. Basically, a few dozen of colluders could break down
the Gaussian fingerprinting system using orthogonal modulation
by generating a new composite copy such that the identification of
the original fingerprints will unlikely be successful.

(n — K)Q(h/oa)

R= KQ(A=LE/K

(3]
(4]

(5]
(6]
5. CONCLUSION
In this paper, we investigated how many independently marked (7]
copies of the same multimedia content is required for an attacker
to thwart a fingerprinting system. We studied the collusion resis-
tance of a fingerprinting system to the average attack when con-
sidering the performance criteria representedfyy and P,,.
We derived lower and upper bounds of the maximum number of
colludersK ... Using the upper bound, an attacker can know
how many independent copies are required to guarantee the suc-
cess of a collusion attack; on the other hand, an owner will benefit
from these bounds in designing a fingerprinting system. Our work
was further extended to different attacks and performance crite-[10j
ria. From the detector point of view, the thresholding detector is
robust to different attacks, since different attacks yield very close
performance as long as the levels of MSE distortion introduced (511]
by different attacks are the same. And it seems that attacks base
on a few dozen independent copies will confound a fingerprinting
system accommodating as many as ten thousand users. This obser-
vation suggests that the number of independently marked copies of

(8]

9]
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more closely monitor that user and further gather other evidences.
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