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ABSTRACT 

 
In this paper, we present a new algorithm for blind estimation 
of the symbol timing and frequency offset in a time-varying 
frequency-selective Rayleigh fading multipath channel for 
OFDM systems. It exploits the intrinsic structure of OFDM 
signals and only relies on second-order moment without 
knowledge of probability distribution function of received 
signals. Under minimum mean-square-error (MMSE) sense, 
the proposed estimators are totally optimum and easily 
implemented. Furthermore, we expand the estimation range of 
the frequency offset estimator and improve the timing 
estimator to be independent of the frequency offset. A more 
generalized channel model is considered in this paper. It is 
characterized by its power delay profile and time-varying 
scattering function. The channel has high reliability for real 
mobile environment.  

 

1. INTRODUCTION 
 
Orthogonal frequency division multiplexing (OFDM) is one of the 
most promising techniques for achieving high-speed wireless data 
communications. Recently, this technique has received great 
interest in satellite and terrestrial digital audio broadcasting (DAB), 
digital terrestrial TV broadcasting (DVB-T), and broadband indoor 
wireless systems [1], [2]. 

OFDM system is far more sensitive to synchronization errors 
than single carrier system. In order to operate correctly, an OFDM 
receiver calls for accurate compensation for the symbol timing and 
carrier frequency offset in the input signal [3]. Most estimators of 
the timing and frequency offset proposed for OFDM are data 
aided. They use a known bit pattern or a pilot signal to estimate the 
timing or frequency [4]. On one side, this quality ensures reliable 
operation of the synchronizer, but on the side, it has an impact on 
spectrum efficiency. Recently, a few nondata aided (i.e., blind) 
estimation techniques have been proposed in an additive white 
Gaussian noise channel or frequency-selective multipath channel 
[5], [6]. They exploit only side information concerning the statistics 
of the information signal to estimate synchronization parameters 
from the received data. For frequency-selective multipath channel, 
the transmitted signal that is convoluted with channel impulse 
response can be modeled as a complex Gaussian process with 

zero mean by the central limit theorem. Therefore, the likelihood 
function of received signals is easily achieved in order to estimate 
symbol timing and carrier frequency offset [7]. However, if the 
tenable condition of the central limit theorem can’t be satisfied, this 
method based on maximum-likelihood (ML) will become incapable. 

In this paper, we present a novel algorithm for the blind 
estimation of symbol timing and carrier frequency offset in time-
varying frequency-selective Rayleigh fading multipath channel. 
The proposed blind minimum mean-square-error (MMSE) 
estimators only rely on second-order moment dispense with 
knowledge of probability function of received signals. Namely they 
only use the information provided by the autocorrelation function of 
received signals to minimize a cost function (i.e., mean-square-
error) associated with synchronization parameters. An improved 
approach that can increase estimation range of the frequency 
offset to entire subcarrier spacing of the OFDM signal is proposed. 
Firstly, the salient features of this algorithm are that the estimators 
are globally stable and easy to implement realization; secondly, 
unlike joint ML estimators, the proposed timing estimator don’t 
depend on frequency offset estimator; finally, performance of the 
estimators is less influenced by noise than ML estimator. 
Moreover, we adequately take into account the time variation of 
the channel within one symbol. The channel is characterized by its 
power delay profile and scattering function. Unlike conventional 
OFDM, this generalized channel is more resilient to mobile 
environment. 
 

2. OFDM SIGNAL MODEL 
 
We consider an OFDM system with N  sub-carriers signaling 
through a time-varying frequency-selective Rayleigh fading 
channel. The data are modulated in blocks by means of a discrete 
Fourier transform (DFT). 

At the transmitter end, N  complex data symbols are 
modulated onto the N  sub-carriers by using Inverse Fast Fourier 
Transform (IFFT). The last gN  samples of the IFFT outputs are 

then copied and added to form the guard interval at the beginning 
of each OFDM symbol. By inserting guard interval in the OFDM 
symbols, intersymbol interference (ISI) and intercarrier 
interference (ICI) can be avoided. The baseband-modulated signal 

( )ns  is available after parallel to serial conversion. Thus, ( )ns can 
be expressed as 
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where gNNM += . ( )ld k  is the data symbol modulating the 

k th subcarrier during the l th OFDM symbol duration. It may be 
safely approximated as zero-mean random variables with the 
correlation 
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At the receiver end, The timing uncertainty in the OFDM 
signal will be modeled as a time shift [ ]Me ,1∈θ , assuming eθ is 

an integer, and unknown carrier frequency offset, which is caused 
by the Doppler effect and inherent instabilities of the transmitter 
and receiver carrier frequency oscillators. It is accounted for by a 
frequency shift ε . The received signal is sampled as 

( ) ( ) ( )nvenxny Nnj
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where ( )nv  is a white complex Gaussian noise with zero mean 

and variance 2
vσ , and independent of the signal ( )nx . ( )nx  can 

be expressed as 
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where ( )qnh ,  is the channel impulse response of q th tap at time 
n . In the radio propagation channel, the presence of reflecting 
and scatterers in the channel creates a constantly changing 
environment that dissipates the signal energy in amplitude, phase, 
and time. These effects result in multiple versions (multipath) of 
the transmitted signal that arrive at the receiving antenna. If we 
assume that the channel is the wide sense stationary uncorrelated 
scattering (WSSUS), it may be model as a tapped delay line 
channel [8], where the length Q  of the tapped delay line and the 
power distribution of each tap are determined by the duration of 
the power delay profile, the scattering function that is determined 
by the Doppler frequency describes time-varying behavior of each 
tap. In this paper, we assume that the power delay profile is 
exponential distribution, the length Q  of the tapped delay line is 

less than the length gN  of guard interval, and the inverse Fourier 

transform of Doppler spectrum is the zero-order Bessel function of 
the first kind. Each tap ( )qnh ,  is independently generated by low-
pass filtering of a white complex Gaussian process. By above 
assumptions, the autocorrelation of the channel impulse response 
can be expressed as 
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where 1c is normalization constant, 2c is scale constant, and the 

channel will approximate to Jakes Model [8] with increasing 2c . 

( )⋅0J  is the zero-order Bessel function of the first kind, df  is 

Doppler frequency in hertz, and T  is period of symbol.  
 

3. MMSE ESTIMATION OF OFDM SYMBOL TIMING 
AND CARRIER FREQUENCY OFFSET 

 
We now derive the MMSE estimators of symbol timing and 

frequency offset based on the autocorrelation function of received 
signal. Firstly, the autocorrelation function of ( )ns  is obtained by 
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Secondly, since each tap is uncorrelated and the channel is 
independent of ( )ns , the autocorrelation function of ( )nx  
becomes 
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Above calculation process uses the result of (4). Finally, according 
as (5) and (6), the autocorrelation function of received signal 

( )ny  can be expressed as 
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From (7), it follows that ( )τ,nRy  is −M periodic in n  for every 

τ and only contains information on both synchronization 
parameters. Without loss of generality, ( )τ,nRy  can be 

expressed as a matrix form at N=τ  as follows 

g
j

y ec ARR πε2′=                              (8) 

where ( )TfJNcc dd πσ 20
2

1=′ , A  is a tridiagonal  teopliz matrix 

of ( )1−+× QMM  as expressed by 
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Notice that equation (8) is independent of noise. From (8), mean-
square-error (MSE) function is defined by 
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where yR̂  is the estimation of the correlation function yR . In 

practice, its entries can be estimated from a finite data record 
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The MMSE estimation of eθ  and ε  is the argument minimizing 

( )εθ ,eΛ . The minimization of the error can be performed in two 

steps: 
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The minimum with respect to the frequency offset ε  is obtained 
by  
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Substituting (13) into (9), the MMSE estimation of eθ becomes 
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where ( )T⋅  and ( )H⋅  denote transpose and conjugate transpose 
operator, respectively.  

We notice that the maximum allowed frequency offset follows 

from (13) as 41<eθ , i.e., the carrier frequency estimation 

range is half the subcarrier spacing of the OFDM signal. In order 
to increase its estimation range, we can calculate module of yR ’s 

entries. Due to A  and gR  are real matrix, (8) can be rewritten 

as 

gy c ARR ′=′                                (15) 

where ( ) ( ) ( )[ ]Tyyyy NMRNRNR ,1,,,1,,0 −=′ LR . 

Notice that equation (15) is completely independent of the 
frequency offset ε . Then, the MMSE estimation of eθ is given by 
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From (8), the phase angle of yR is equal to the frequency offset 

ε  multiplied by π2 , i.e., 
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where n  is an arbitrary time. Now, the estimation range of the 
carrier frequency offset increases to the entire subcarrier spacing 
of the OFDM signal. 
 

4. SIMULATIONS 
 
Numerical results are presented to demonstrate the performance 
of the proposed estimation of timing and frequency offset in 
OFDM system. The OFDM model selected for simulation in this 
paper consists of 64-point FFT, a guard interval of 16 samples, i.e., 

41  of the useful data interval, and 16-QAM modulation mapping 
scheme. The signal-to-noise radio (SNR) was defined as 

22lg10)( vsdBSNR σσ= . Each realization consisted of 25 
observation frames except for special description. All results were 
obtained by averaging over 200 independent Monte Carlo trials. 

In our simulations, the sixth-order Butterworth filter is used to 
generate the Doppler spectrum. Q =12, 02.0=Tf d . 
A. Expanded Estimation Range of Frequency Offset 

For 68=eθ , 12 =c , and dBSNR 10= , MSE of the 

frequency offset estimator (13) and (17) is shown in Fig.1., 
respectively. The estimator (17) has wider estimation range and 
lower MSE than (13). 

 
Fig. 1. MSE of the frequency offset estimator (13) (dash line) and 

(17) (solid line) 
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B. Effect of Multipath Channel 
In a time-varying multipath channel, the received signal 

includes multiple versions of the transmitted waveform which are 
attenuated and delayed in time. Thus the channel induces ISI to 
deteriorate the performance of the estimators. 

Fig. 2 shows MSE of timing offset estimator when 
20 and 5,12 =c , respectively. We can see the MSE becomes 

small with 2c increased, i.e., the estimation accuracy of timing can 
be improved with decreasing the degree of multipath, and the 
performance of the timing estimator is almost independent of the 
SNR for a fixed 2c . 

Fig. 3 shows MSE of frequency offset estimator when 
20 and 5,12 =c , respectively. We compute the MSE after the 

timing offset is corrected. Like the timing offset estimator, the 
estimation accuracy of frequency offset can be also improved with 
decreasing the degree of multipath.  

 

 
Fig. 2. MSE of symbol timing estimator at 20 and 5,12 =c , 

respectively. 

 
Fig. 3. MSE of frequency offset estimator at 20 and 5,12 =c , 

respectively. 
 

5. CONCLUSIONS 
 

We derive novel blind estimators of the symbol timing and 
frequency offset in a time-varying frequency-selective Rayleigh 
fading multipath channel for OFDM systems . Since the estimators 
use the inherent information of the OFDM signals, no additional 
training sequence is needed. The proposed MMSE estimators that 
only depend on second-order statistic  are that no probabilistic  
assumptions are made about the received data. Hence, they are 
globally stable and easy to implement realization. Moreover, we 
improve the estimators in order to increase the length of the 
frequency offset estimation range. The symbol timing estimator is 
independent of the frequency offset. For multipath channel model, 
the time variation of the channel within one symbol and exponential 
distribution of the power delay profile are considered in this paper. 
This generalized channel more adapts to mobile environment. 
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