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ABSTRACT

Crosstalk is the major source of performance degradation in
VDSL. A number of crosstalk cancellation techniques have been
proposed to address this. Whilst these schemes lead to large per-
formance increases they also have high run-time complexities, a
problem which grows rapidly with the number of lines within a
binder. Since the majority of crosstalk typically comes from only
a few dominant crosstalkersit is possible to do partial crosstalk
cancellation.

In this paper we present a low-complexity, partial crosstalk can-
cellation technique for VDSL based on line selection. We derive
the optimal line selection technique, and several low-complexity
selection algorithms which give near-optimal performance in most
scenarios. These techniques lead to significant reductions in run-
time complexity whilst giving similar performance to full crosstalk
cancellation.

1. INTRODUCTION

VDSL is the next step in the on-going evolution of DSL stan-
dards and will support data rates up to 52 Mbps in the downstream.
These rates are achieved by operating over short loop lengths and
transmitting in frequencies up to 12 MHz.

Unfortunately the use of such high frequency ranges can
cause significant electromagnetic coupling between neighbouring
twisted pairs within a binder group. This electromagnetic coupling
creates interference, referred to as crosstalk, between the systems
operating within a binder. Over short loop lengths crosstalk is typ-
ically 10-15 dB larger than the background noise and isthedomi-
nant source of performance degradation.

Several schemes have been proposed for crosstalk cancellation
in VDSL. These are typically based on joint processing at the cen-
tral office (CO) of all lines within a binder. Whilst these schemes
lead to significant performance gains their complexities are outside
the scope of current implementation. We refer to these schemes as
full crosstalk cancellation.

In this paper we investigate low complexity crosstalk cancel-
lation for upstream communication which utilizes the concept of
‘line selection’. It has been observed in many DSL systems that
significant crosstalk often comes from only a small selection (typi-
cally 4-5) of the other lines within a binder. Using this observation,
we propose a scheme which detects each user using only a sub-set

This work was carried out in the frame of IUAP P5/22,Dynami-
cal Systems and Control: Computation, Identification and Modellingand
P5/11,Mobile multimedia communication systems and networks; the Con-
certed Research Action GOA-MEFISTO-666,Mathematical Engineering
for Information and Communication Systems Technology; FWO Project
G.0196.02,Design of efficient communication techniques for wireless
time-dispersive multi-user MIMO systemsand was partially sponsored by
Alcatel-Bell.

of the lines present at the CO. This reduces complexity consider-
ably whilst achieving virtually the same performance.

Similar schemes have been proposed in the wireless field re-
ferred to as hybrid selection/maximum ratio combining [1, 2].
These schemes typically involve antenna selection at the transmit-
ter with the goal of reducing the required number of transmit RF
chains. Here we are primarily concerned with selection at the re-
ceiver with the goal of reducing computational complexity. We
also exploit certain properties of the DSL environment to gain a
better understanding of optimal line selection in this context.

2. SYSTEM MODEL

Through use of discrete multi-tone (DMT) transmission and syn-
chronised reception it is possible to model crosstalk independently
on each tone [3]. In this paper we concern ourselves only with
crosstalk cancellation in upstream communication. The extension
of line selection techniques to crosstalk pre-compensation in the
downstream is also possible and is the subject of current work.

We model transmission on a single tonek as follows. x(k)
is the set of QAM-symbols transmitted by each of the customer
premises (CP) modems on tonek wherexi(k) , [x(k)]i is the
symbol transmitted by modemi. y(k) is the set of received signals
on each of the modems at the CO whereyi(k) , [y(k)]i is the
signal received on modemi. H(k) is the channel matrix where
hi,j(k) , [H(k)]i,j is the channel from CP transmitterj into CO
receiveri. The receivers suffer from additive noisez(k) from e.g.
alien crosstalk, RFI and thermal noise.zi(k) , [z(k)]i is the noise
seen at receiveri which we assume to be Gaussian. There areN
users in the binder sox(k), y(k) andz(k) are all vectors of length
N , whilstH(k) is a matrix of dimensionN ×N . Transmission of
one DMT-block on tonek is modeled as

y(k) = H(k)x(k) + z(k)

For simplicity we assume identical noise power on all receivers
at one toneE �z(k)zH(k)

	
= σ2(k)IN and normalised transmit

powersE �x(k)xH(k)
	

= IN . Extensions to include non-white
noise and spectral shaping are trivial, involving the use of an equiv-
alent AWGN channel. We drop the tone indexk in the following to
clarify notation. An identical procedure is followed on each tone.

3. FULL CROSSTALK CANCELLATION

Many schemes for crosstalk cancellation have been proposed in-
cluding linear MUD [4] and non-linear schemes based on deci-
sion feedback [3]. In upstream transmission due to the structure
of the DSL channel there is often little difference in performance
between linear and non-linear schemes. For this reason we restrict
our attention to linear MMSE crosstalk cancellation.

Linear crosstalk cancellers form an estimate of the user of inter-
est’s signal, whom we denote usern, using a linear combination
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of the signals received onall linesbxn = wny

The linear MMSE crosstalk canceller is a row-vector of size1×N
defined as

wn = arg min
w
E |wy − xn|2 = eH

n HH
�
HHH + σ2IN

�−1

whereen is the n’th column of the identity matrixIN . Appli-
cation of this leads to large performance gains, particularly over
short loops where performance is interference limited. Unfor-
tunately this leads to high run-time complexity and memory re-
quirements. Full crosstalk cancellation has a complexity ofO(N)
multiplications/tone/DMT-block/user, leading to a total complex-
ity O(KN2) whereK is the number of tones. This rapidly in-
creases with the number of lines in a binder. For example, in a sys-
tem withK = 4096, N = 20 and a DMT-symbol rate of 4 kHz,
crosstalk cancellation has a run-time complexity of6.55 × 109

mults/second. In binders consisting of hundreds of lines the com-
plexity becomes completely unrealisable.

4. PARTIAL CROSSTALK CANCELLATION

This high complexity motivates the development of reduced com-
plexity techniques. Typically, the majority of crosstalk experi-
enced by a user comes from only a subset of lines within the
binder. We refer to these lines as thedominant crosstalkers. These
lines typically correspond to neighbouring pairs of a particular line
within the binder geometry. In binders who’s constituent lines
have significantly different lengths, another source of dominant
crosstalk is the near-far effect. In such scenarios, near-end users
cause significantly more crosstalk than far-end users since the sig-
nals of far-end users attenuate before crosstalk coupling occurs.

For these reasons we can achieve a large performance gain just
by cancelling crosstalk from dominant crosstalkers. This can be
implemented by observing a sub-set of the lines when detecting
each user. Specifically we observe the direct line of the user of
interest, plusp additional lines. Due to the high SNR nature of
the DSL channel, any interference on the line of interest which is
correlated with interference on thep extra observation lines can be
filtered out with minimal effect on signal power.

By observing only a subset of lines at the receiver, the com-
plexity for crosstalk cancellation of a single user reduces from
O (N) → O (p + 1) which can be considerable for binders with
a large number of linesN .

We denote the set ofp extra observation linesMn ,
{mn(1), . . . , mn(p)}, and the user of interest as usern. Observ-
ing line n and linesMn in the detection of usern leads to the
following reduced system modeleyn = eHnx + ezn (1)

where the set of signals on the observed lineseyn ,�
yn ymn(1) · · · ymn(p)

�T
, noise on the observed linesezn , �

zn zmn(1) · · · zmn(p)

�T
and reduced channeleHn ,

h
[H]Trow n [H]Trow mn(1) · · · [H]Trow mn(p)

iT

.

We form an estimate of the symbol of usern using a linear
combination of the signals received on theobservedlines onlybxn = ewneyn

The optimal design for the linear partial crosstalk cancellerewn in
the MMSE sense is

ewn = arg minew E |eweyn − xn|2

= eH
n
eHH

n

�eHn
eHH

n + σ2Ip+1

�−1

(2)

5. OPTIMAL LINE SELECTION

Using (2) we can design a partial crosstalk canceller given any set
of extra observation linesMn. The process for selecting these ex-
tra observation lines is now described. Our goal is to maximize
data rate. Using information theory we can phrase the line selec-
tion problem as

maxMn

Cn s.t. |Mn| = p (3)

whereCn , I(eyn; xn)1 and|S| denotes the cardinality of setS.
Rewrite (1) as a sum across transmitterseyn =

X
i

ehixi + ezn

whereehi , �hn,i hm(1),i · · ·hm(p),i

�T
. Using this model

Cn = log

0@1 + ehH
n

0@X
i6=n

ehi
ehH

i + σ2Ip+1

1A−1 ehn

1A
Define Z , P

i6=n
ehi
ehH

i + σ2I. In DSL the direct channel
from a given transmitter to its receiver is always much stronger
than the channel fromthat transmitter to another receiver. We
call this column-wise diagonal dominance since it ensures that
|hn,n| À |hm,n| ∀m 6= n, ie. the diagonal element of each
column has the largest magnitude. Hence we can approximateehn ' [hn,n 01×p]T . Using this observation we rewrite (3) as

maxMn

Cn ⇔ maxMn

ehH
n Z−1ehn

⇔ maxMn

|hn,n|2
�
Z−1�

1,1

⇔ maxMn

�
Z−1�

1,1

Now
�
Z−1

�
1,1

=
��Z1,1

�� |Z|−1 whereZi,j , is defined as the ma-

trix Z with row i and columnj removed and|.| denotes the deter-
minant. We can re-writeZ as follows

Z =

�
h

H
n

MH

� �
hn M

�
+ σ2Ip+1 (4)

where hi , [hi,1 · · ·hi,n−1 hi,n+1 · · ·hi,N ]H and M ,�
hm(1) · · ·hm(p)

�
. Note thathi contains the paths from the in-

terferers to the receiver of linei. DecomposeZ into sub-matrices

Z =

�
a bT

c D

�
wherea , 

hn



2
+ σ2, bT , h

H
n M, c , MHhn andD =

MHM+σ2Ip = Z1,1. Using the Schur complement we can write�
Z−1

�
1,1

=
��Z1,1

�� |Z|−1 =
�
a− bT D−1c

�−1
. We can rephrase

our optimisation asmin
�
a− bT D−1c

� ⇔ maxbT D−1c since
a− bT D−1c is positive. Thus our optimisation becomes

maxMn

h
H
n M

�
MHM + σ2Ip

�−1

MHhn

1This can be related to the rate achieved using a conventional slicer
through the SNR-gap to capacity.
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DecomposeM into an orthonormal set of basis vectors using the

SVD, M
svd
= USVH such thatU has sizeN − 1 × p, S ,

diag {s1, . . . , sp}, andV has sizep × p. U contains the first
p left singular vectors ofM and spans the same column-space.
Using this

M
�
MHM + σ2I

�−1

MH = US2 �S2 + σ2I
�−1

UH

Thus our optimisation becomes

maxMn





S �S2 + σ2I
�− 1

2 UHhn





2

Each basis vectorui is scaled by a penalty factor si√
s2

i +σ2
. Basis

vectors with larger singular valuessi introduce less noise when
used for interference cancellation and hence have a light penalty.

Over short lines the interference is typically several orders of
magnitude larger than the background noise. In this special case
we can drop the noise term in (4) and approximateS2+σ2I ' S2.
Our optimisation then becomes

maxMn




UHhn




2

(5)

Effectively we form a basis from the vectorshm(1), . . . ,hm(p)

and use this to cancel the interference seen on linen (recall that
hn is the interference seen on linen). The larger the projection of
the interferencehn onto the basis, the more interference we can
remove and hence the larger the capacity.

Note that (5) must be evaluated over every possible subsetMn

of cardinalityp. There are
�

N−1
p

�
such subsets which leads to a

selection complexity ofO
�
KNp2

�
N−1

p

��
mults/user. This can

be extremely complex for largeN e.g. withp = 4, K = 4096
andN = 20, line selection has a complexity of' 5.08 × 109

mults/user. Fortunately the DSL environment is quite stationary
in time so subset selection doesn’t need to be updated often. This
reduces the impact of such a large selection complexity.

6. SIMPLIFIED LINE SELECTION

Since optimal line selection is highly complex we now present
low-complexity selection algorithms which are near-optimal in
most scenarios.

Greedy Algorithm (Basis Pursuit)
The greedy algorithm (also known as basis pursuit) is commonly
applied to sub-set selection problems[5]. This algorithm works by
selecting, at any one time, the best extra observation line as if this
where the last extra observation line to be selected. As a result the
algorithm is generally short-sighted and gives its best performance
at lowp.

The greedy algorithm is listed in Alg. 1 and operates as fol-
lows. We begin by defining the residual crosstalkr. This contains
all crosstalk which has not been captured in previously selected
lines. The algorithm iteratesp times. Each iteration, the algorithm
selects the extra observation line which will capture the largest
amount of residual crosstalk.

The algorithm has a selection complexity ofO � 1
2
KN3p2

�
mults/user. In our previous example, selection would require
' 2.62 × 108 mults/user, i.e. 19 times less complex than the
optimal scheme. For comparison we also run simulations using
the backwards greedy algorithm[5]. This algorithm is inherently
long-sighted, giving best performance for largep.

Algorithm 1 Greedy algorithm
initialise

residual crosstalkr = hn

rel. basis vect. for each unselected lineui = hi/


hi



 ∀i 6= n
basis of selected linesUs = [ ] (always orthonormal)
set of unselected linesS = [1, N ]− n

for j = 1 . . . p
find line with largest projectionmn(j) = arg maxi∈S uH

i r
update

basis of selected linesUs =
�
Us umn(j)

�
set of unselected linesS = S−mn(j)
relative basis of each unselected line
orthogonalize to selected basisui =

�
I−UsU

H
s

�
ui ∀i ∈ S

normalizeui = ui/ ‖ui‖ ∀i ∈ S
end
Mn = {mn(1), . . . , mn(p)}

Dominant Lines
Partial crosstalk cancellation attempts to cancel interference from
dominant crosstalkers only. In implementation this is done by only
observing a sub-set of the lines at the CO when detecting each
user. Except in extreme near-far scenarios, the best estimate of the
dominant crosstalker’s signals come from their direct lines hence
these lines form a good basis for crosstalk cancellation.

In this scheme we simply observe the direct line of the user of
interest and the direct lines of thep largest crosstalkers (largest
|hn,i|) on each particular tone. The complexity of this scheme is
O (KN), the lowest of all schemes shown here. In our example,
selection would require' 8.2 × 104 mults/user, ie. 62,000 times
less complex than the optimal scheme.

7. PERFORMANCE

We now compare the performance of the different line selection
schemes. In our simulations we useK = 4096, tone spacing
4.3125 kHz, DMT-block rate 4 kHz and Alien Crosstalk Type C
as per ETSI standards. Coding gain is 3 dB, noise margin 6 dB
and target symbol error probability< 10−7. Flat transmit PSDs
are employed at -60 dBm/Hz according to the 998 FDD band-plan.
A set of measured channel transfer functions are used which were
provided by British Telecom. The measurements were done on an
8-pair binder, consisting of 0.5 mm (24-Gauge) pairs.

Time/frequency-sharing (TS/FS) is used as a baseline compari-
son for the schemes. In time (frequency) sharing we simply do full
crosstalk cancellation:p = N − 1, for some fraction of the time
(on some fraction of the tones) and standard detection:p = 0,
for the rest of the time (on the rest of the tones). This is the
simplest form of partial cancellation available and gives a linear
performance-complexity curve.

Distributed Scenario
In this scenario the lengths of the pairs are consistent with a dis-
tributed topology and range from 300m to 1000m in 100m incre-
ments. The measured crosstalk transfer functions from each of the
shorter loops into the 1000m loop are shown in Fig. 1.

The performance vs. run-time complexity curves of the dif-
ferent schemes are shown in Fig. 2. As can be seen, line selec-
tion allows us to achieve 90% of the performance of full crosstalk
cancellation with only 58% of the run-time complexity. It is ex-
pected that with larger binders this effect will grow considerably
and measurements of these binders are currently underway. Little
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performance difference can be seen between the schemes and in
our experience this is the case for all scenarios with lines < 1200m.

Extreme Near-Far Scenario
In extreme near-far scenarios with lines > 1200m, the performance
difference between selection schemes grows considerably.

Over short lines, the direct lines of dominant crosstalkers usu-
ally form the best basis for estimating dominant crosstalkers’ sig-
nals. However, this is not the case if the binder contains a long
line with a weak direct signal, and interference signals which are
highly correlated with the interference on the line of interest. In
this case the long line will allow any correlated interference to be
removed whilst introducing minimal extra interference from the
(weak) direct channel. This only occurs in extreme near-far sce-
narios i.e. on line lengths > 1200m. Furthermore, the effect is only
noticeable ifp < number of dominant crosstalkers.

We evaluated performance in an extreme near-far scenario with
one 1800m line and7× 300m lines. The results are shown in Fig.
3. The greedy algorithm performs well for lowp, whilst the back-
wards greedy and dominant lines algorithms perform well for high
p. Outside of these ranges the algorithms can be significantly sub-
optimal, even worse than time/frequency sharing in some cases.
Note that in practice such extreme near-far scenarios rarely occur.
Line lengths larger than 1200m are outside the range of any cur-
rently planned VDSL deployments.

8. CONCLUSIONS

Crosstalk isthe dominant source of performance degradation in
VDSL. Crosstalk cancellation has been proposed to address this
and leads to large performance gains. Unfortunately it can also
lead to large run-time complexity and memory requirements.

In this paper we have presented a reduced complexity, partial
crosstalk cancellation scheme for upstream VDSL based on line
selection. We presented the optimal scheme for line selection and a
number of simplified schemes. It was seen that optimal line selec-
tion attempts to capture as much interference energy as possible on
the extra observation lines. The simplified line selection schemes
give near-optimal performance provided lines are less than 1200m
which is virtually always the case in practice.

In this paper we focused on line selection to reduce crosstalk
cancellation complexity. It has also been observed that the worst
effects of crosstalk are limited to a small proportion of tones. With
this in mind, the number of extra lines observed on each tone -p
can be made a function of the tone indexk and can vary according
to the benefits of crosstalk cancellation on each tone. This is an in-
teresting extension to this work and is currently being investigated.
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