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ABSTRACT

In wireless OFDM systems, the time-varying channel is often esti-
mated by a Wiener filter-type MMSE estimator based on pilot sym-
bols. Such an estimator, however, requires statistical prior knowl-
edge that is not easily obtained. Here, we propose adaptive Wiener
filters for channel estimation that do not require statistical prior
knowledge. We also calculate the performance limits of finite-length
and infinite-length MMSE estimation. Simulation results demon-
strate the good performance of our adaptive estimators.

1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) [1] is an effi-
cient modulation scheme for broadband wireless communications.
To obtain high data rates, accurate channel estimation is required.
A widely explored approach, minimum mean-square error (MMSE)
channel estimation using Wiener-type filters [2—6], uses training
data (pilot symbols) as well as knowledge of the channel’s second-
order statistics. The latter requirement can be met by assuming
some default channel statistics [5], explicitly estimating the chan-
nel statistics [6], or using a robust design approach [2-4].

Here, we propose adaptive Wiener filters for time-varying chan-
nel estimation that are attractive in that they do not require any
statistical knowledge and are able to track changes of the chan-
nel statistics. We consider both the normalized least-mean-square
(NLMS) and recursive least-squares (RLS) adaptation algorithms.
As a basis for developing the adaptive estimators and as a reference
for performance comparison, we also derive the finite-length and
infinite-length MMSE channel estimators and calculate the perfor-
mance limits for causal linear channel estimation. Related results
for decision-directed channel prediction have been presented in [7].

The paper is organized as follows. After a review of the OFDM
system in Section 2, the (nonadaptive) MMSE channel estimators
are derived in Section 3. In Section 4, the adaptive estimators are
presented. Finally, simulation results are shown in Section 5.

2. OFDM SYSTEM MODEL

We consider an OFDM system with K subcarriers [1]. The trans-
mit symbols are denoted as a[n, k], where n € Z is the OFDM sym-
bol (time) index and k € {0,1,...,K — 1} is the subcarrier (fre-
quency) index. The a[n,k] are drawn from an arbitrary symbol
constellation except at the pilot symbol locations (n,k) € & where
a[n,k] = p[n,k], with p[n,k] € {—1,1} being pilot symbols that are
known to the receiver. The set of pilot locations is given by [8]
P ={(n.k)|n€Z k=iS+(nmodS),ic [0,P—1]}.

Here, P is the number of pilots per OFDM symbol and S=K/P
(assumed to be an integer) is the distance between adjacent pilots of
an OFDM symbol. An example of these pilot locations is shown in
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Figure 1. Location of pllot symbols (e) and data symbols (o) for
K=24,P=6,andS=4

Fig. 1. For later convenience, we define p[n,k] £ 0 for (n,k) & 2.

The nth OFDM symbol sy[m] is obtained by applying a normal-
ized inverse discrete Fourier transform (IDFT) to the a[n,k] and
adding a cyclic prefix of length Lcp,

1 <K-1 j2mmk /K
Tk_o aln,kje’ :
$n[m] = VK 2k=0

0, elsewhere.

Thus, each OFDM symbol has length N = K + Lcp.  The overall
baseband transmit signal is s[m] = S __, Sn[m —nN].

Assuming a time-varying wireless channel with baseband impulse
response h[m,I] (1 =0,1,...,L —1, with L < L¢p + 1 the maximum
delay) and additive noise n [m] the received signal is given by

rmj = %h

The noise n[m] is assumed white and Gaussian with variance a,%.
The receiver discards the cyclic prefix and demodulates the re-
ceived signal r[m] by means of a normalized DFT, which yields

1 K-1
r
VK o
If h[m, 1] varies negligibly within one symbol period, the input-out-
put relation of the overall OFDM system is obtained as

x[n,k] = H[n,k]a[n,k] +z[n,k], 1)
with the channel coefficients

m= *ch7 -

I]s[m—I]+n[m].

x[n, k] = [NN-+m] e~ 12m/K

Hn,k] = z hi[n]e J27M/K " where h[n] £ h[nN, 1] (2)

and the noise z[n,k] = \/_ 3 0[N +m]e-izmknvK,

In what follows, the time-varying channel will be considered ran-
dom. Under the wide-sense stationary uncorrelated scattering
(WSSUS) assumption, E{h[m’, I]h*[m’—m,I']} = ry[m,1] 5[ — ']
[9,10]. The channel’s scattering function is then defined as [9, 10]

Sh(lv) 2 3 rylm,le i2mm,
m=—o

1=0,1,...,L—1,

with v the normalized Doppler frequency. In what follows, Vmax
will denote the maximum Doppler frequency of the channel. The

channel’s path loss is defined as o7 £ ¥~ [162 Sh(l,v)dv.
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Figure 2: Block diagram of the channel estimator.

3. WIENER FILTERS FOR CHANNEL ESTIMATION

Fig. 2 shows the structure of the proposed MMSE channel estima-
tor. (We note that related discussions of finite-length MMSE chan-
nel estimation were previously provided in [2,3].) The estimator
first multiplies the x[n, k] received at the pilot locations by the pilot
values. Using (1), we have

(n.k) e 2,

Hn,k] £ x[n,k] p[n,k] = {g'?[n’kHz[n’k]’ elsewhere,

with Z[n,k] = z[n,k]p[n,k]. In what follows, we assume P > L to
avoid aliasing. A scaled IDFT of the H[n,k] then yields

K=1
ES ; z H[n,k]el2™/K = ] +wn], 1=0,1,...,L—1,

where w|[ ] = b 3K} 2[n,k]el2™/K is white noise with variance
0= /P Note that for each n, this IDFT need only be calculated
over the P < K nonzero values of H[n,k].

Next, the channel impulse response is estimated using L causal
linear filters of length M, one for each channel tap:

~ M71 ~ ~
hin] = % ci[mlfyn—m] = cf'f[n], 3
=
with estimator coefficients ¢, = [¢{[0] ¢ [1] ... cl*[M—l]}T and in-
puts fi[n] = [Fy[n] An—1] ... fn—M+1]]". (Using L separate

scalar filters does not imply a loss of optimality because the chan-
nel taps are uncorrelated due to the WSSUS assumption.) We have

Ay [n] = hy [n] +w; [n] with hy [n] = [hy[n] hy[n—1] ... hy[n—M+1]]"

and wi[n] = [wi[n] wi[n—1] ... w [nfM+l]]T. Finally, the esti-
mated channel coefficients are obtained as (cf. (2))

L—1 )
Aln,k] = zoh. [nje 12mMk/K — y—01 ... K-1.
=

Finite-length MMSE channel estimator. By definition, the
MMSE filter coefficients c| opt minimize the (normalized) MSE

££ = E{|an

Aln,k]|? }— — %E{|h|[” h ]|}

Due to the orthogonality principle [11], E{(hy[n] — hy[n]) A [n—

m}=0form=0,1,...M—land|=0,1,..,L—1 Inserting
(3) yields the Wiener-Hopf equations
M-1 o2
_ _ N 5in— —
N1 - 5 il (mln=m)N1] + - 8[n—m]) = 0,
n=0,1,...,M=1, 1=0,1,....L—1. (4)

The MMSE coefficients are thus obtained as

2
0, -1
Cop= (Ralll+211) mll], 1=01....L-1, ()

with the correlation vectors ry, I] =E{h[n]h{[n]} and the correla-

tion matrices Ry[l] = E{h;[n]h{*[n]} of size M x M. The Ry|[l] are
Toeplitz with first columns rh[lj. The MMSE is given by [11]

1L1

G—h I;) CI opt rufl]. (6)

M) 2 {
min C :Cl.opl

£ =1-

Infinite-length MMSE channel estimator. The case of infinite
filter length, M — oo, characterizes the ultimate performance limit
of causal linear MMSE estimation. Here, (4) can be solved using
the Wiener-Hopf technique [12, Ch. 7.4]. In addition to L < P and
L < Lcp, we assume Vmax < 1/N to avoid aliasing. Then, Fourier
transforming (4) to the Doppler domain (n — v), we obtain

%Sh(l,%) _ C|(v)[%sh<l,%> +0P’2’] —Gv), O

where C(v) = S&_,ci[n]e”12™N and Gy(v) is undetermined ex-
cept that it is the Fourier transform of a strictly anticausal sequence
(because (4) is 0 for n > 0). We now use the spectral factorization

2
Ssn(L) + T = aRVFW), ®

where R (v) = 3% fi[n]e™/2™" with f;[n] minimum phase and
monic (f|[0] = 1). From the monicity property, it follows that [12]

1/2 1 v o"%
o= exp{[l/zln{ﬁsh(l7ﬁ> + F}dv}.
The factorization (8) is guaranteed to exist because p; > —oo due
to aﬁ > 0, i.e., the Paley-Wiener condition is satisfied [12]. Insert-

ing (8) into (7) and identifying the causal parts of both sides of the
resulting equation yields the optimal filter transfer functions

Ciopt(v) = 1- ..,L-1. 9)

A Doppler-domain expression of the MMSE is obtained from (6),

" L-1 ,1/2
£® 1

v
min 1- Naﬁ I% _1/2CI,opt(V)Sh<|7*>dV
o3 L1112 12 1
n *(W)dv f] / dV:|
Pa; zo{ —1/2FI (V)dv ~ Pp Jo12 R(v)

where (8) and (9) have been used. Both integrals evaluate to 1 due
to the monicity property, so that we finally obtain

(w)a—’%|:L O'2L11:|
min PU& | pl

(10)

For a flat scattering function, i.e., Sp(l,v) = 07 /(2Lvmax) for
[0,L — 1] X [~ Vmax, Vmax] and Sp(1,v) = 0 elsewhere, this becomes

Lo?
o n
() 5

From this expression, we see that €,.) is small for small maximum
delay L, small maximum Doppler shift vimax, large number of pllots
P, small symbol duration N, and large SNR parameter oh/a,7

Poﬁ —2NVmax
2LNVinax 02 ’
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4. ADAPTIVE WIENER FILTERS

The design of the Wiener filter-type channel estimator according to
(5) or (9) requires prior knowledge of the second-order statistics of
channel and noise. Moreover, if these statistics change the estima-
tor would have to be redesigned. To avoid these complications, we
propose adaptive channel estimators based on the NLMS or RLS al-
gorithm [11]. These estimators continually update their coefficients
without requiring prior knowledge of channel or noise statistics.
The estimated channel taps are (cf. (3))

hin = cnlfn], n>0, 1=0,1,...,Lep,
with time-varying adaptive filter coefficients ¢;[n]. We use Lep+1
filters since we do not know the true maximum delay L (however, we
assume that L < L¢p+1 because otherwise (1) would not be valid).
The coefficients are updated as
cn] =c¢n—1] + k/[n—1]ef[n], n>1, (12)

where k; [n] is the update gain vector that will be defined presently
and e, [n] is the error sequence defined as

eyfn] £ fy[n] —fy[n—1], (12)

Note that in (12) we use the noisy reference h[n] = h;[n] +w;[n]
because h;[n] is unavailable. As a consequence, we delay hy [n] by
one sample (i.e., we use hy [n—1] in (12)). This makes the error per-
formance surface J(c;) = E{|ey [n]|?|c)[n] } (cf. [11]) independent of
o2, which results in better performance of the adaptive filters. This
delay, in turn, requires that we use kj[n—1] instead of k;[n] in (11).
For initialization of the coefficient update, we will use

¢ =10...0]" or c?=[00...0]".

n>1.

(13)

NLMS algorithm. For the NLMS algorithm, the gain vector in
(11) is (cf. [11])

KEMS[n] = HF”I[:]HZ A, n>1,

where y is the adaptation constant and ||f n][|* = AH [n] Ay [n]. Sta-
ble operation requires 0 < i < 2. The choice of pu is a trade-off
between convergence speed and excess MSE. We obtained good re-
sults with u ~ 0.05. We prefer the NLMS algorithm over the LMS
algorithm because the choice of p is simpler [11].

RLS algorithm. For the RLS algorithm, the gain vector is (cf.

11 -
D KRLS ] _ Py[n—1]hy[n]
| [n] - A = R n>1,
A +ht[n]Py[n—1]hy[n]
where the forgetting factor A with 0 < A < 1 accounts for possible
nonstationarity of h;[n] (we obtained good results for A = 0.99).
Furthermore, Py[n] is the inverse of the sample correlation matrix

s oAy [i] A [i], which can be calculated recursively as

1 ~
P = 5 (1= KSR ) Pin—1], n>1.
For initialization of the RLS recursion, we set

A RH
kR-S[0] = Py[0]Ay[0] = Wﬁl[o}’

with a small stabilization parameter 6 > 0 (we chose 6 = 0.1).

Computational complexity. In each symbol interval, the coeffi-
cient update using the NLMS algorithm and the RLS algorithm has

1 10 20 30 40 50 60 70 80 90 100
filter length M

1 10 20 30 40 50 60 70 80 90 100
filter length M

Figure 3: Channel estimation MSE vs. estimator filter length M: (a)
slow channel, (b) fast channel.

complexity of order & (M (Lep+1)) and & (M? (Lep+1)), respec-
tively. Hence, the RLS algorithm is significantly more complex.
Furthermore, the computational complexity of the channel estima-
tor in Fig. 2 is ﬁ(PIogz P+M (ch+l)) per symbol.

5. SIMULATION RESULTS

We simulated an OFDM system with K = 128 subcarriers, symbol
duration N = 144, and cyclic prefix length Lep = 15. Randomly
chosen pilot symbols (with —1 and 1 equally likely) were transmit-
ted on P = 16 subcarriers; thus, S = K/P = 8. The data symbols
were taken from a 16-QAM constellation. The time-varying chan-
nel was simulated as described in [13], using a scattering function
with Jakes Doppler profile [9] and exponential delay profile, i.e.,
Sp(l,v) = (Vax — V) Y2exp(—1/19) with 79 = L/loge(2L) for
V| < Vmax and 1 =0,...,L—1and Sp(v,I) = 0 elsewhere.

We used L¢p + 1 = 16 adaptive filters (cf. Fig. 2) with NLMS
adaptation constant p = 0.05 and RLS forgetting factor A = 0.99.
For comparison, we also simulated the nonadaptive maximum-like-
lihood channel estimator presented in [14] (hereafter briefly called

“simple”), which uses the fixed coefficients cl(l)[n] =[10...0]T,
M)in (6) and £\ in (10).

min min
Performance vs. estimator filter length. First, we study the de-
pendence of the MSE of the adaptive and nonadaptive channel esti-

mators on the filter length M. We used L = 10 and an SNR o7 /o7

of 10dB. The MSE was estimated by averaging over 10* OFDM
symbols. Figs. 3(a) and (b) show the results obtained for a slow
channel (VmaxK = 0.001) and a fast channel (vnaxK = 0.01), respec-

tively. It is seen that for growing M, Erm decreases towards em
this decrease is quite rapid up to about M = 20 but much slower af-
terwards. Thus, the dominant channel correlations can be exploited
by a relatively short estimator filter. The MSE of the adaptive esti-
mators (after convergence) decreases for M up to about 10 (RLS) or

20 (NLMS). For M = 10, the excess error of the adaptive estimators

over srgm is about 2dB. For higher M, the performance of the adap-
tive estimators degrades again since the excess error increases with
the number of coefficients [11]. All Wiener filter-type estimators
outperform the “simple” estimator.

and we evaluated ¢

Convergence of adaptive estimators. Fig. 4 shows the conver-
gence of the adaptive channel estimators using the coefficient ini-

tializations cl(1> [0] and cl<2> [0] in (13). We chose the fast channel,
an SNR of 10dB, and parameters L = 10 and M = 10. The MSE
was estimated by averaging over 200 realizations. It is seen from

Fig. 4(a) that initialization by cl(l) [0] results in a low initial MSE
for both the NLMS and RLS algorithms (similar to the MSE of the

“simple” estimator) but very slow convergence. Fig. 4(b) shows that
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Figure 4: Convergence of the adaptive estimators: (a) initialization
by c\”)[0], (b) initialization by ¢(?'[0].

5 10 15 20 0 5 10 15 20
SNR (dB) SNR (dB)
Figure 5: Channel estimation MSE vs. SNR: (a) slow channel, (b)
fast channel.

using cI [O] the initial MSE is high (aboutOdB) but convergence is
more rapid. The “simple” estimator is outperformed by the NLMS
and RLS algorithm after 26 and 19 OFDM symbols, respectively.

Performance vs. SNR. Figs. 5(a) and (b) show the MSE vs. the
SNR aﬁ/cy2 for the slow and the fast channel, respectively. We
chose L = 10 and M = 10. The MSE was estimated by averaging
over 10* OFDM symbols. The excess error of the adaptive estima-

tors over sé]'\i/'n) is seen to be about 3dB. Remarkably, the NLMS and
RLS algorithms perform almost similarly, and they outperform the

“simple” estimator by up to 10dB. For the fast channel, the excess

MSE of the adaptive estimators and of srgq n> over srng is smaller
than for the slow channel. This is because the fast channel features
less correlation in the time direction, which is sufficiently exploited

already with M = 10.

Variation of channel parameters. We finally analyze the de-
pendence of the MSE on the channel parameters L (maximum de-
lay) and Vmax (maX|mum Dopfler). We used M = 10, an SNR of
10dB, and averaging over 10* OFDM symbols. Fig. 6(a) shows
the MSE vs. L for vmaxK = 0.01 (fast channel). It is seen that the
MSE increases as L increases. Fig. 6(b) shows the MSE vs. vmaxK
for L = 10. Here, the adaptive algorithms perform only about 3dB

worse than efmn) up to approximately vmaxK = 0.01; beyond that,
their performance degrades fast because the tracking error becomes

dominant. The performance gap between sr(mn> and sfng reduces
with growing vmax due to the increasingly uncorrelated channel.
From both parts of Fig. 6, it is again seen that the performance of

the NLMS and RLS algorithms is very similar.

6. CONCLUSIONS

We developed adaptive Wiener filters for channel estimation in wire-
less OFDM systems. Simulations show that the performance of our
adaptive estimators is only about 3dB worse than that of the non-

Y

Emm

1 4 7 10 13 16 0.001 0.01 0.1
L VmaxK

Figure 6: Channel estimation MSE vs. (a) maximum channel delay
L, (b) maximum Doppler Viax-

adaptive Wiener filter (MMSE estimator) that requires knowledge
of the second-order statistics of channel and noise. In our setup,
the NLMS and RLS algorithms exhibit similar performance; thus,
the simpler NLMS algorithm appears to be better suited for appli-
cations. We also derived a simple expression for the MSE of the
infinite-length MMSE channel estimator and discussed its depen-
dence on basic channel and system parameters.
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