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ABSTRACT

A novel cyclic-prefix based delay-spread estimation tech-
nique for wireless OFDM systems is proposed. The tech-
nique uses change of gradient of a correlation function as
the strategy to detect delayed arrival paths. Estimation of
the symbol timing and frequency synchronization informa-
tion is also inherent in the technique. The proposed tech-
nique can be computationally efficiently implemented using
the Viterbi search algorithm. Numerical results demonstrate
the accuracy of the technique in estimating the relative tim-
ing (delay) and magnitude (power) of delayed paths in a
multipath environment. The delay-spread information pro-
vided by the proposed technique can be adaptively used to
improve the accuracy of the frequency domain channel re-
sponse interpoaltion process in OFDM systems.

1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has
become a prime candidate for future high-data-rate wireless
communication systems due to its features such as multipath
immunity, bandwidth efficiency and resistance to narrow-
band interference [1]. The presence of multiple arrival paths
(multipath) in wireless scenario causes frequency selective
fading across OFDM subcarriers. Channel estimation and
frequency domain equalization (1-tap equalization or tone-
by-tone division) are incorporated at the OFDM demodu-
lator to compensate for this channel fading [2]. In pilot-
symbol-aided channel estimation techniques, frequency do-
main interpolation (Wiener filtering) of the channel response
in incorporated. However, the accurate frequency domain
interpolation of the channel response requires the knowl-
edge of delay-spread of the channel, which is normally a-
priori unknown. Therefore, it is customary to set the delay-
spread parameter (RMS delay spread) in the channel inter-
polator to a likely value (fixed) thus resulting in a subop-
timal channel interpolation and equalization process. In a
wireless communication system, adaptive detection of chan-
nel delay-spread can be effectively used to operate the chan-
nel interpolation and equalization processes at near opti-

mum [3]. This paper presents a new approach of adap-
tive estimation of the channel delay-spread using the cyclic-
prefix of the OFDM symbols.

2. PROPOSED TECHNIQUE

The discrete complex-baseband OFDM signal r(n) at the
receiver for a single path channel can be given as [4]

r(n) = s(n)ej2πnε/N + g(n) (1)

where s(n) is the transmitted OFDM signal and g(n) is
additive white Gaussian noise (AWGN). ε and N denote
the frequency offset error (normalized using the intercarrier
spacing of ∆f ) and the total number of subcarriers, respec-
tively. For a multipath channel s(n) should be replaced by
the multipath signal p(n) =

∑I
i=0 µis(n− τi), giving

r(n) =

[

I
∑

i=0

µis(n− τi)

]

ej2πnε/N + g(n) (2)

We define the multiple-argument correlation function GK
M (n)

as

GK
M (n) =

1

K

K−1
∑

k=0

M−1
∑

m=0

r(n+kNt−m)r∗(n+kNt−m−N)

(3)
where, 1 ≤ M ≤ Ng , Ng is the length of the cyclic-
prefix of OFDM symbols, and Nt = N + Ng is the total
length of an OFDM symbol. In (3), summation over index
m indicates addition of conjugate products of samples N

positions apart for consecutive samples. This is similar to
the correlation function reported in [4] for the purpose of
time and frequency synchronization, where the summation
is performed over the length of cyclic-prefix (Ng). How-
ever in (3), this summation is performed for variable length
of 1 ≤M ≤ Ng . Summation over the index k indicates the
addition of conjugate products of samples N positions apart
for consecutive OFDM symbols (Nt = N + Ng samples).
This is similar to the ensemble correlation function reported
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in [3] for OFDM timing recovery. Therefore, we have inte-
grated both adjacent sample and adjacent symbol averaging
concepts in the correlation function GK

M (n). Also, GK
M (n)

can be written as

GK
M (n) =

M−1
∑

m=0

HK(n−m) (4)

where,

HK(l) =
1

K

K−1
∑

k=0

r(l + kNt)r
∗(l + kNt −N) (5)

=
1

K

K−1
∑

k=0

Jk(l) (6)

where, Jk(l) = r(l + kNt)r
∗(l + kNt − N) is the conju-

gate product of a sample pair N positions apart. Statistical
properties of the term Jk(l) is independent of k as it reflects
OFDM symbol periodicity. Therefore, we consider a sym-
bol independent term J(l) defined as

J(l) = r(l)r∗(l −N) (7)

In the next section we describe the proposed technique for
a simple two-path channel. Generalization of the technique
for a multipath channel is given in Section 2.2.

2.1. Two-path Channel

In this section we consider a wireless channel with only
two paths to demonstrate the use of the correlation function
GK

M (n) for delay-path estimation. For the two-path case
p(n) = s(n)+µs(n−τ), where µ and τ are the complex am-
plitude and the time delay of the second path relative to the
first path. Figure 1 shows the received two-path OFDM sig-
nal p(n). Consider the first arrival path as the reference and
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Fig. 1. Received two-path OFDM signal.

n = 1 and n = N+Ng as the time index values correspond-
ing to the first and last samples of an OFDM symbol, respec-
tively. Note that cyclic-prefix (CP) comes before the data
portion of the OFDM symbol. Therefore, {n|1 ≤ n ≤ Ng}
is the CP and {n|Ng + 1 ≤ n ≤ N + Ng} is the data
part of the OFDM symbol. In the context of a two-path

channel with the second path having a relative delay of τ

samples, we identify 4 distinct regions within an OFDM
symbol. They are; R0 = {n|N + τ + 1 ≤ n ≤ N +Ng},
R1 = {n|N+1 ≤ n ≤ N+τ},R2 = {n|τ+1 ≤ n ≤ N},
and R3 = {n|1 ≤ n ≤ τ}. The expected value E{J(l)}
can be evaluated for l ∈ Ri, where 0 ≤ i ≤ 3, using
the following statistical properties of the OFDM signal and
AWGN noise.

E{s(l1)s
∗(l2)} =

{

σ2
s , if l1 = l2
0, if l1 6= l2

(8)

E{s(l1)g
∗(l2)} = E{g(l1)s

∗(l2)} = 0, ∀ l1, l2 (9)

E{g(l1)g
∗(l2)} =

{

σ2
n, if l1 = l2
0, if l1 6= l2

(10)

where, σ2
s and σ2

n are the variances of OFDM signal and
noise samples, respectively. The property (8) is true since
the OFDM signal is wideband [4]. Using above properties
it can be shown that

E{J(l)} =















(1 + |µ|2)σ2
se

j2πε , l ∈ R0

σ2
se

j2πε , l ∈ R1

0 , l ∈ R2

|µ|2σ2
se

j2πε , l ∈ R3

(11)

As can be seen from (6) for sufficiently large K, HK(l) can
be approximated by E{J(l)}.

HK(l) ' E{J(l)} (12)

As give in (4), GK
M (n) is the sum of HK(l) for M consec-

utive samples, n −M + 1 to n. The magnitude of GK
M (n)

for M = Ng (i.e. |GK
Ng
(n)|) can be effectively used to de-

termine symbol timing information,. According to (11) and
(12), |GK

Ng
(n)|maximizes at the last sample of each OFDM

symbol (i.e. at n = N + Ng). This is true as the delayed
path is normally has a smaller magnitude (|µ| < 1). There-
fore, the symbol timing estimation can be given as

T̂ = argmax
n
|GK

Ng
(n)|. (13)

Error of symbol timing estimation of (13) approaches zero
for a time-invariant channel as K → ∞. Any finite value
of K causes a certain degree of estimation error due to the
approximation in (12). The phase of GK

Ng
(n) can be used to

estimate frequency-offset (ε).

ε̂ =
1

2π
6 GK

Ng
(n) (14)

It should be noted that the symbol timing and frequency
offset estimators given in (13) and (14) are similar to that
reported in [4] for non-fading (i.e. AWGN only) channel.
Our analysis shows that these estimators are asymptotically
optimal for a frequency-selective channel as K →∞.
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Fig. 2. Plot of |GK
M (T̂ )| against M as K →∞, for the two-path

channel scenario. γ0 and γ1 are the gradient of |GK
M (T̂ )| for the

segments Ng−τ ≤M ≤ Ng and 1 ≤M ≤ Ng−τ , respectively.

The relative delay (τ ) and magnitude (|µ|) of the sec-
ond path in the two-path channel can be estimated observ-
ing |GK

M (T̂ )| as a function of M , where 1 ≤ M ≤ Ng .
Figure 2 shows the plot of |GK

M (T̂ )| as K →∞. As can be
seen from Figure 2, the plot of |GK

M (T̂ )| against M shows a
change of gradient (i.e. a knee-point) at M = Ng − τ . The
relative magnitude of the second path (|µ|) can be estimated
as

|µ̂| =

√

γ1

γ0

− 1 (15)

where γ0 and γ1 are the gradient of |GK
M (T̂ )| for the seg-

ments Ng − τ ≤ M ≤ Ng and 1 ≤ M ≤ Ng − τ , respec-
tively. For finite K the line segments in Figure 2 are not
perfectly straight, thus the knee-point (M = Ng − τ ) and
the gradients γ0 and γ1 should be estimated using a best-
fitting criterion.

2.2. Multipath Channel

In this section, we extend the basic delay-path estimation
developed for a two-path channel in Section 2.1 to a mul-
tipath channel. Consider a multipath channel with the re-
sponse h(n) =

∑I
i=0 µiδ(n− τi) consisting of I + 1 paths

(first arrival path and I delay paths). Without loosing gen-
erality it is assumed that µ0 = 1 and τ0 = 0 (i.e. the first
arrival path is the reference for delay and magnitude esti-
mations), and 0 < τ1 < τ2 < . . . < τI < Ng . For the
multipath channel it can be shown that the plot of |GK

M (T̂ )|,
for 1 ≤ M ≤ Ng , consists of I + 1 number of straight line
segments as K → ∞. The ranges Mi’s and the gradients
γi’s of the line segments are given by

Mi = {Ng − τi+1 ≤M ≤ Ng − τi} , 1 ≤ i ≤ I (16)

where, τI+1 = Ng − 1, and

γi =

i
∑

j=0

|µj |
2σ2

s , 1 ≤ i ≤ I, respectively. (17)

For a finite K the plot of |GK
M (T̂ )| will not consist of

perfectly straight line segments. The knee points Ng − τi,
where 1 ≤ i ≤ I , in the plot of |GK

M (T̂ )| defining the
boundaries of the of the regions Mi’s can be determined
using the following best fitting criterion.

T = arg min
τ1,τ2,...,τI

I
∑

i=o

Ψerr

({

|GK
M (T̂ )|

∣

∣Mi

})

(18)

where, T = {τ̂1, τ̂2, . . . , τ̂I}, and

γ̂i = Ψgrad

({

|GK
M (T̂ )|

∣

∣M̂i

})

, 0 ≤ i ≤ I (19)

where, M̂i = {Ng − τ̂i+1 ≤M ≤ Ng − τ̂i}, for 0 ≤ i ≤
I . The function Ψgrad({.}) denotes the gradient of the best
fitting (minimum mean-square-error) straight line segment
to the data set given in the argument. The associated squared-
error of fitting is given by Ψerr({.}). The magnitudes |µi|’s
of the delayed paths can be estimated using (17) and (19) as

|µ̂i| =

√

γ̂i − γ̂i−1

γ̂0

, 1 ≤ i ≤ I. (20)

The computational complexity of this technique is mainly
associated with the optimization task given in (18). How-
ever, as (18) involves a sequential decision making process
with the cost function Ψerr({.}), it can be computationally
efficiently solved using the Viterbi search algorithm. Since
the technique is based on the knee-point detection in the plot
of |GK

M (T̂ )|, the multipath components are expected to be
sufficiently spaced in time with large enough magnitudes.
The accuracy of the technique can be expected to degrade
for closely spaced and weak (in magnitude) multipath com-
ponents.

3. NUMERICAL RESULTS

An OFDM system with N = 512 subcarriers and cyclic-
prefix length of Ng = 64 samples was used in simula-
tions. A two-path channel with relative second path mag-
nitude µ = 0.7 and delay τ = 32 samples was incorpo-
rated for evaluation. Frequency offset (normalized) was set
to ε = 0.3. An average channel signal-to-noise (SNR) range
of 0-25 dB at steps of 5 dB was selected. The second-path
delay (τ̂ ) and the second-path magnitude (|µ̂|) were esti-
mated using (18) and (20), respectively. Simulations were
performed for K = 16, 32, and 64, each over a total of
2048 OFDM symbols for each SNR value. Figures 3 and 4
show the mean-square-error of T̂ and ε̂, respectively. Figure
5 shows the RMS error of the second path delay estimation
(τ̂ ). The mean-square-error of second path magnitude esti-
mation (|µ̂|) is shown in Figure 6.
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Fig. 3. Mean-square-error of the OFDM symbol timing estima-
tion (T̂ ), for K = 16, 32, and 64.
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Fig. 4. Mean-square-error of the normalized frequency offset es-
timation (ε̂), for K = 16, 32, and 64.

4. CONCLUSIONS

A new cyclic-prefix based delay-spread estimation technique
for OFDM systems was presented. It was shown that the
change of gradient (knee-point) of a correlation function is
indicative of a delayed arrival path. Timing and magnitude
information of delayed paths can be determined1 by estimat-
ing the knee-point location and the gradients of the associ-
ated line segments of the correlation function. It was shown
that the accuracy of the proposed technique increases as the
number of adjacent OFDM symbols K, over which aver-
aging is performed, is increased. Numerical results show
that for K = 64 and SNR ≥ 10 dB, the RMS error of the
delay estimation becomes less than 1 sample, and the mean-
square-error of the magnitude estimation becomes less than
10−3. Using the proposed technique the delay-spread infor-
mation of the channel can be accurately and adaptively es-
timated, which can be effectively used to improve the accu-
racy of the channel interpolation process in OFDM systems.

1However, this does not amount to a complete channel state detection
because the phase information of the multipaths is not resolved.
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Fig. 5. Root-mean-square-error (RMS error) of the second-path
delay estimation (τ̂ ), for K = 16, 32, and 64.
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Fig. 6. Mean-square-error of the second-path magnitude estima-
tion (|µ̂|), for K = 16, 32, and 64.

Slowly varying channel conditions allowing adequate ad-
jacent symbol averaging (sufficiently large K) are the best
situations where the proposed delay-spread estimating tech-
nique can be applied.
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