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ABSTRACT

We develop a general mathematical model for nearfield multipath
scattering as a basis for studying the spatial limits imposed on

multi-antenna wireless communication systems. This model gen-

eralizes the Herglotz Wave Function, which is an important tool in

the study of inverse scattering problems, to a form where the scat-
L

terers can be nearfield. This permits the development of the mos
general form of spatial correlation which is known to constrain the
capacity of wireless systems.

1. INTRODUCTION

A standard model for a multipath field &?® is to represent it as a
superposition of plane waves from discrete directions:

u(@) =Y ap e, €

where the plane wave of ind%xhas complex amplitude, € C,
the propagation direction is denoted by the unit vegipandz - y
denotes the scalar product between vecigrg € R>.

A straightforward generalization of (1) is

u(w) = [ @) ds(d). @

whereS? denotes the unit sphere(y) is a surface element &

with unit normaly andg € L*(S?) is the kernel representing an
angular amplitude distribution of farfield sources. Representation
(2) implies any sources which contribute to the field are farfield
ones.

Wheng is in L?(S?), a stronger condition tham € L' (S?),
it is known as aHerglotz Kernel and representation (2) is known
as theHerglotz Wave Functiofi, p.55]. Herglotz wave functions
primarily find use in inverse scattering problems where it is natural
to find a scattered field satisfy the conditipre L (S?).

In our context, we are interested in using representations of
the form (2), or generalizations thereof, to model any physically
realizable scattering environment. If we use (2) then we exclude
fields which have components from nearfield sources, and if, fur-
ther,g € L*(S?) then we exclude some farfield sources as well
including those of the form (1). There is a need for a more gen-
eral representation than (2) which has been used to model spati
correlation in wireless communication scattering scenarios [2].

The natural arena for the Herglotz Kernel is the Hilbert Space
L?(S?) with the natural inner product defined &3. However,

with kernels belonging to such spaces. Our objective is to rework
(2) to find a integral representation for multipath where the kernel
associated with practically important scattering fields can be asso-
ciated with a Hilbert Space corresponding to finite energy signals.
Then the full machinery of Hilbert Space theory can be brought
to bear on the representation to transparently render its properties
which to a large degree fully emulate the remarkable properties of
the classical Herglotz wave function — yielding an infinite number
of orthonormal representations for multipath fields and associated
L? Fourier Series. As a by-product our theory subsumes and pro-
vides a modest simplification to the results given in [1].

2. PROBLEM FORMULATION

2.1. Subspace Interpretation

Fields of the form (1), (2) and Herglotz wave functions satisfy the
homogeneous Helmholtz equationRA, sometimes referred to as
the reduced wave equation:

Au(x) + k*u(z) =0, (3)

where A is the Laplacian, and is the wave number given by
the real positive constart = 27 /\. Equation (3) holds in any
region of space, a subsetf, that excludes any sources. That all
such solutions to (3) for a given source-free region define a linear
subspace of functions follows from the linearity and homogeneity
of (3). Thatis, ifui (x) anduz(x) are solutions to (3) in a region
thenaiui () + azusz () is also a solution in the same region.

2.2. Helmholtz Balls

In (2) the kernel is defined a8 and implicitly the sources may be
regarded as being defined on an infinite sphere. Many of the spe-
cial properties that can be attributed to the Herglotz wave function
are actually a manifestation of the high degree of spherical sym-
metry and the implicit choice of spherically symmetric domains
(albeit infinite domains). Hence in studying (3) we expect highly
structured solutions whenever the region of interest is a ball

B: £ {z € R’: ||lz|| < R}, @)

a\lNhereR is the radius (usually finite but possibly infinite). We

write the above problem more compactly as follows.

Key PrROBLEM. Determine the complete subspace of solutions

important classes of multipath fields cannot be directly associatedv = u(x) to
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Au+ku =0, in BY. (5)
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Physically this means we wish to understand the complete set

of valid wavefields for arbitrary source locations with the only con-
dition that the sources are notB,.

Our task will be to find a Hilbert Space formulation where
we can study the geometry of solutions to (5) using complete or-

Then, with a suitable choice of weight functiom (r), the set
of functions satisfying| f||2: < oo is a separable Hilbert Space,
and solutions of (5) are a Strict subspace. This subspace naturally
forms a Hilbert Space.

The {A;{L(:p)} are orthogonal with respect to the inner prod-

thonormal sequences and the like. In what follows we assume theuct (10). This follows from the orthonormality of the spherical

reader is well-familiar with separable Hilbert Spaces [3, 4].

Given we are dealing with spherical regions, we often uti-
lize a spherical coordinate systém 6, ¢) representing radius, co-
latitude and longitude. In a coordinate system independent form
we havex = (r,0,¢), |z|| representing radius, andz repre-
senting the directiofl and¢ .

2.3. Modal Representation

From [1], solutions to (5) can be represented as the following entire
series expansion (which converges in the mean)

u(@) = (4mi"ay’) ju (kl|) Yo" (@),

m,n

(6)

wherej,, (k||z||) is the spherical Bessel function of integer order
n, o, are complex coefficients, and;" (z) = Y,;)* (6, ¢) are the
spherical harmonics (orthonormal 6R) given by

2n+1 (n — |m|)!

|m| imae
i (n+\m|)!P" (cosB)e'™?,

Y (6, 0) &

(@)

PJL’"'(-) are the associated Legendre functions, and we have intro-
duced the shorthanel,, £ >°°° S .
We can interpret the countable set

{A7 (@)} = {i"n (Kll]) V2" (2) } ®)

as specifying a basis for the subspace of solutions to (5). These P

basis functions are orthogonal over any spherically symmetric re-

gion. The sense in which these can be normalized for any size ball

is now determined.
Denote the volume elementatas

dv(z) £ r*sin 0 d¢ do dr, 9)

and define the inner proddaind associated induced norm by

(), = [ S@a@hale]) dofe), (102)

R [ —
/O hR(r)r2 . fr,@) g(r,x)ds(x)dr, (10b)
and

17125, 2 (1) = [ 1@ Pzl dvia). @)

R

parametrized by a non-negative bounded real weighting function
hr(r) > 0that may depend on eithét or r.

1This is actually a class of inner products given that the radial weight-
ing termhr(r) can take different forms. We are assuming thai(r)
is chosen such that we do have an inner product, particularly we require
that (f, f)gs = 0 implies f = 0 which is not obviously satisfied. To
avoid cluttef for the inner product we suppress in the notation the explicit
dependence ohg(r).

harmonics defined on the unit spheé, which induces orthogo-
nality of our wave expansion ov@?, leading to

R
<A7’nnv AZ>B}? = 6n,q 6m,p A hR (T) [jﬂ(kr)]Q 7"2 dr (12)

whered,, andd,,, are delta functions. Equation (12) shows or-
thogonality holds independently of the choice of the non-negative
bounded real functiohr () > 0. Howeverhr(r) does influence
the normalization, as we explore next.

2.4. Complete Orthonormal Sequences

Orthonormality as distinct from orthogonality is subtly connected
with the size of the spherical region. Beginning with the unnormal-
ized set (8), equation (12) indicates how to achieve orthonormality

m . i g (| ||) Y, (Z) }
n; m.n = ) 1/2 (13)
teiind, {<.f0RhR<r> (k)22 dr) 2 f

noting the normalizing factor is a function of botrand R. Whence,
given completeness, any solutiafz) to our problem (5) has rep-
resentation (in the sense of convergence in the mean of the induced
norm)

u="> {(u, Prin)as Pk (14)
where we have the Fourier coefficient
mir = (U PR ) g (15a)
_ Jag, w(@)(=0)" g (K]l ]|) Y (@) hr (r) do() (15b)
(o B (r) Ljn (kr))2 72 dr)
2.5. Field Representations
Direct comparison of (14) and (15) with (6) leads to
(u(@), onir(®)) 4
o = —— R (16a)
dre ([, hr(r) [in (k)2 r2 dr)
Joaw(@) Y (@)(=0)" jin (Kl || hr ([l ]]) do()
_ BY, ( ( (16b)

Jos lin (Kll2])1*he(l|2]]) do(=)

Hence there are a plethora of ways to compute these coefficients
based on different values @t and different choices ofr(r).

Here are some of the more interesting choiceshfg(r) and the
resulting expressions far,," (16):

ExampLE 1. If hg(||z|) = (||| — ro) where0 < ro < R,
andj, (kro) # 0 then
L

whereu,, () is u(x) restricted to the shellx| = ro. Thatis,
providedk is not a Dirichlet eigenvalue we can use the Spherical
Harmonic Transform to determing;’ [1].

m ! g (B)V(®) ds(E),

= 17
= dwin g (ko) )
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EXAMPLE 2. If hr(||z|) = 1then we have the most natural case
for a finite sphere R < o0)

w ey 0@ (0" (Rl Yo (@) du(x)

n - 18
. oy U (FI TP o) ()
_ Jrs, u(w)(—i)Zjn(kl\w\l)Yﬁ”(ﬁ) dv(z) (18b)
47Tf0 [jn(kr)]2 2 dr
The denominator if18) will b?%written
Jn(R) & / [ (k)] 72 dr (19)

0
for which there are known closed form expressions.
ExAMPLE 3. If hg(||z|) = 1/R, and letR — oo then we have

the most natural case for the infinite sphere. In this case we use

the expression

Jim % /0 2k ar = L (20)

R—oo 2k2
to simplify denominator of16)to glean

" ) (_i)nk2/
=1
On Rl—rvnoo 2TR ]B%

u(@)jn (kllz|) Y, (@) do(z).  (21)

3. ORTHONORMAL EXPANSIONS IN BALLS

3.1. Finite Sphere Case

We now focus on the natural inner product, whesg(||z||) = 1.

3.2. Infinite Sphere Case

We now consider the case where the region is the whole $phce
which can be regarded as an infinite spherical volume. In this case
we usehrg (||lz]|) = 1/R and letkR — co. As we will see, the re-
sults indicate that the expansion in (6) is most naturally associated
with the infinite sphere.

THEOREM2 (EXPANSION FORINFINITE SOURCEFREEBALL).

Let u be any bounded solution to the homogeneous Helmholtz
equationAu + k*u = 0in R®. Thenu can be expressed in terms
of an expansion

u(@) =Y Biiee kV2i"jn (Kll2|) Y, (@) (27)
such that "
m A n . mo~
{ene} 2 {v2iuklel)v @}  (28)
are orthonormal with respect to the natural inner product
.1 ——
(f, 9>Bgo 2 R}lm & f(@)g(z) dv(z), (29)
—00 B;Ig%
and the Fourier coefficients are given by

~ tim CRV2 / , v (el V@ ) - (300)

R—oo

We show that there is a more general representation than (6) whergnd are square summable, that i, € £2.

dealing with spherical regior}; of radiusR.

THEOREM 1 (EXPANSION FOR FINITE SOURCE-FREE BALL).

Proof. The orthonormality of (28) is a special case of (13) with
hr(||lz||) = 1/R and lettingR — oc. O

Consider the space of finite energy solutions to the homogeneous

Helmholtz equatiom\u 4+ k?u = 0 in a spherical domai®B%, of
radius R < oo. Then any bounded solutiancan be expressed in

terms of an expansion R
i" g (k]2 ]) Vi (&)

u(zx) = mZ"ﬁZ;ER KA (22)
such that ’
m o [ (Klz])Ya" (@)
{Lpn;R(m)}nL,n - { [jn(R)}l/Z }nL,n (23)
are orthonormal with respect to the inner product
(), 2 [ | f@ia@) do(e). (24)
R
The Fourier Coefficientg are given by
Bin = (w Piin)gy (25a)
(=0)"jn (k||| Yo (z)
= /33% u(x) NAGIRE dv(z).  (25b)

and are square summable, that & ¢2.

Proof. The orthonormality of (23) is a special case of (13) with
hr(||z||) = 1. By Parseval

> 1Bia] = (uu)ys = / Ju@)[*dv(@) <00 (26)
m,n ) ]BR
by the finite energy of,, that is, || Br |7 = Hu||]§% < 0. O

Now we present a key representation result — captured in
Theorem 3.22 in [1] — for a class of solutions to the homogeneous
Helmholtz equation.

THEOREM3 (CLASSICAL HERGLOTZWAVE FUNCTION). Letu
be any bounded solution to the homogeneous Helmholtz equation
Au + k*u = 0in R3 satisfying the growth condition

. 1 2
ngx(l)o = /15;3 |u(z)|” dv(z) < co. (31)
Then we have the representation for
k o\ k@G g
z)=—— [ b@)e"™Yd 32
u(x) 323 Jo (@)e 5(Y) (32)

whereb(z) is, up to a constant, the Herglotz Kernel and can be
expressed as the Inverse Spherical Harmonic Transform

b(E@) £ B Yo' (E) € L*(S?)

of the Fourier coefficier;tgoo € ¢? given in Theorem 2.

(33)

Proof. By Parseval
m |2 2 . 1/ 2
Z|5n;oo| = [|ullgs, = RIEHOOE /]B33 |u(z)|” dv(z)  (34)

m,n PR

which is finite by the growth condition (31). Hengh, € 2
which implies that (33) is well-defined and ¥ (S?). Then (33)
can be inverted and this impligg" = (b, Y,)")s2, leading to

m,n

m,n

(35)
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which equals

u(w) = ([ M@ Vr @ as(@) ¢

m,n

V2ki" i, (k||| Yo' (Z) (36a)
k

= (5275) [ 1@
{47 X2 "5 (ki) Y @Y @) pds(G)  (36b)

¢'*¥ py the Jacobi-Anger Expansion [1]

O
CoMMENT. Comparing(6), (21) and (30) we can see that
Brico = <27TI;/§) ay = ()\\/i) ay’, Vm,n. (37)

Clearly || 3o |72 < oo iff [|a]|7> < oo wherea £ {afi'} .

3.3. Generalized Herglotz Wave Functions

As previously mentioned (32) is a Herglotz Wave Function, up to

a constant. We now show how to generalize the classical Herglotz

wave function to broaden its applicability and more transparently
render its derivation and properties.

Let H be the separable Hilbert Space of solutions to the ho-
mogeneous Helmholtz equatighu + k*u = 0in B} £ {x €
R*: ||lz|| < R}, with inner product

(o), = [ f@a@ @), foer.  @8)

DEFINITION (GENERALIZED HERGLOTZ WAVE FUNCTION) Let
g be acomplete orthonormal sequence in the separable Hilbert

Space of solutions to the homogeneous Helmholtz equation given

by Au+ k*u=0inB% £ {z € R®: ||z|| < R} then
v = <g7Ynm>gz(sz (39)

is a Generalized Herglotz Wave Function with Generalized Her-
glotz Kernelg € L*(S?).

The proof of Theorem 3, particularly in (35), showed that this

which have appeared in the literature. The kernel can be associated
with a farfield angular distribution of power from the scattering
environment. With the generalized Herglotz Wave Function there
are two further advantages: i) nearfield sources and scatterers can
now be incorporated; and ii) the kernel can be choseh*(§?)

from which the theory of Hilbert Spaces can be applied. We men-
tion without proof, due to space limitations, that the generalized
Herglotz Wave Function has a single layer and double layer poten-
tial interpretation defined on a spherical boundary. This potential
function is the analogue of (2).

4.2. Channel Representation

The Generalized Herglotz Wave Function permits one to dispense
with a potential complicated source and scatter geometry and re-
place it with a fully equivalent distribution defined on a spherical
region. This decomposition of space and the model it implies will
be presented in a future publication.

u(xz) € H
WAVE-FIELD IN B C R®
7N

Z /BZ?R SDnm;R <U7 <;0nm;R>]E?2

m,n \\
;L <ga Ynm>52ﬁp7nn:R /BZZR c Z2 \
7 { FOURIER |
COEFFICIENTS S
/ \ Z <U, (pn;R>]B%Yn
m,n
<ga Y'n’r,n>-2 ﬁZZR Ynm
S

m,n/

9(z) € L*(S?)
GENERALIZED HERGLOTZ
KERNEL ONS?

Fig. 1: Isomorphisms between the Wave Fiel@c) in H, the
Fourier Coefficients3;; in £> and the Herglotz Kerngj(z) in
L*(S*). The mapping between the Generalized Herglotz Ker-
nel and the Wave Field, (g, "), #nr is the Generalized

reduces to the classical Herglotz Wave Function. The essence oHerglotz Wave Function.

the Generalized Herglotz Wave Function is that a field can be rep-
resented by d2-function defined on the unit sphe®é and this is
captured by (39).
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