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ABSTRACT

We develop a general mathematical model for nearfield multipath
scattering as a basis for studying the spatial limits imposed on
multi-antenna wireless communication systems. This model gen-
eralizes the Herglotz Wave Function, which is an important tool in
the study of inverse scattering problems, to a form where the scat-
terers can be nearfield. This permits the development of the most
general form of spatial correlation which is known to constrain the
capacity of wireless systems.

1. INTRODUCTION

A standard model for a multipath field inR3 is to represent it as a
superposition of plane waves from discrete directions:

u(x) =
∑

p

ap eikx·ŷp , (1)

where the plane wave of indexp has complex amplitudeap ∈ C,
the propagation direction is denoted by the unit vectorŷp andx ·y
denotes the scalar product between vectorsx, y ∈ R3.

A straightforward generalization of (1) is

u(x) =

∫
S2

g(ŷ) eikx·ŷ ds(ŷ), (2)

whereS2 denotes the unit sphere,s(ŷ) is a surface element ofS2

with unit normalŷ andg ∈ L1(S2) is the kernel representing an
angular amplitude distribution of farfield sources. Representation
(2) implies any sources which contribute to the field are farfield
ones.

Wheng is in L2(S2), a stronger condition thang ∈ L1(S2),
it is known as aHerglotz Kernel, and representation (2) is known
as theHerglotz Wave Function[1, p.55]. Herglotz wave functions
primarily find use in inverse scattering problems where it is natural
to find a scattered field satisfy the conditiong ∈ L2(S2).

In our context, we are interested in using representations of
the form (2), or generalizations thereof, to model any physically
realizable scattering environment. If we use (2) then we exclude
fields which have components from nearfield sources, and if, fur-
ther, g ∈ L2(S2) then we exclude some farfield sources as well
including those of the form (1). There is a need for a more gen-
eral representation than (2) which has been used to model spatial
correlation in wireless communication scattering scenarios [2].

The natural arena for the Herglotz Kernel is the Hilbert Space
L2(S2) with the natural inner product defined onS2. However,
important classes of multipath fields cannot be directly associated
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with kernels belonging to such spaces. Our objective is to rework
(2) to find a integral representation for multipath where the kernel
associated with practically important scattering fields can be asso-
ciated with a Hilbert Space corresponding to finite energy signals.
Then the full machinery of Hilbert Space theory can be brought
to bear on the representation to transparently render its properties
which to a large degree fully emulate the remarkable properties of
the classical Herglotz wave function — yielding an infinite number
of orthonormal representations for multipath fields and associated
L2 Fourier Series. As a by-product our theory subsumes and pro-
vides a modest simplification to the results given in [1].

2. PROBLEM FORMULATION

2.1. Subspace Interpretation

Fields of the form (1), (2) and Herglotz wave functions satisfy the
homogeneous Helmholtz equation inR3, sometimes referred to as
the reduced wave equation:

4u(x) + k2u(x) = 0, (3)

where4 is the Laplacian, andk is the wave number given by
the real positive constantk = 2π/λ. Equation (3) holds in any
region of space, a subset ofR3, that excludes any sources. That all
such solutions to (3) for a given source-free region define a linear
subspace of functions follows from the linearity and homogeneity
of (3). That is, ifu1(x) andu2(x) are solutions to (3) in a region
thenα1u1(x) + α2u2(x) is also a solution in the same region.

2.2. Helmholtz Balls

In (2) the kernel is defined onS2 and implicitly the sources may be
regarded as being defined on an infinite sphere. Many of the spe-
cial properties that can be attributed to the Herglotz wave function
are actually a manifestation of the high degree of spherical sym-
metry and the implicit choice of spherically symmetric domains
(albeit infinite domains). Hence in studying (3) we expect highly
structured solutions whenever the region of interest is a ball

B3
R ,

{
x ∈ R3 : ‖x‖ ≤ R

}
, (4)

whereR is the radius (usually finite but possibly infinite). We
write the above problem more compactly as follows.

KEY PROBLEM. Determine the complete subspace of solutions
u ≡ u(x) to

4u + k2u = 0, in B3
R. (5)
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Physically this means we wish to understand the complete set
of valid wavefields for arbitrary source locations with the only con-
dition that the sources are not inB3

R.
Our task will be to find a Hilbert Space formulation where

we can study the geometry of solutions to (5) using complete or-
thonormal sequences and the like. In what follows we assume the
reader is well-familiar with separable Hilbert Spaces [3,4].

Given we are dealing with spherical regions, we often uti-
lize a spherical coordinate system(r, θ, φ) representing radius, co-
latitude and longitude. In a coordinate system independent form
we havex ≡ (r, θ, φ), ‖x‖ representing radiusr, andx̂ repre-
senting the directionθ andφ .

2.3. Modal Representation

From [1], solutions to (5) can be represented as the following entire
series expansion (which converges in the mean)

u(x) =
∑
m,n

(
4πinαm

n

)
jn

(
k‖x‖

)
Y m

n (x̂), (6)

wherejn

(
k‖x‖

)
is the spherical Bessel function of integer order

n, αm
n are complex coefficients, andY m

n (x̂) ≡ Y m
n (θ, φ) are the

spherical harmonics (orthonormal onS2) given by

Y m
n (θ, φ) ,

√
2n + 1

4π

(n− |m|)!
(n + |m|)! P |m|

n (cos θ) eimφ, (7)

P
|m|
n (·) are the associated Legendre functions, and we have intro-

duced the shorthand
∑

m,n ,
∑∞

n=0

∑n
m=−n.

We can interpret the countable set{
Am

n (x)
}

,
{
injn

(
k‖x‖

)
Y m

n (x̂)
}

(8)

as specifying a basis for the subspace of solutions to (5). These
basis functions are orthogonal over any spherically symmetric re-
gion. The sense in which these can be normalized for any size ball
is now determined.

Denote the volume element atx as

dv(x) , r2 sin θ dφ dθ dr, (9)

and define the inner product1 and associated induced norm by

〈f, g〉B3
R

,
∫

B3
R

f(x)g(x)hR

(
‖x‖

)
dv(x), (10a)

≡
∫ R

0

hR(r)r2

∫
S2

f(r, x̂) g(r, x̂) ds(x̂) dr, (10b)

and∥∥f
∥∥2

B3
R

,
〈
f, f

〉
B3

R
≡

∫
B3

R

∣∣f(x)
∣∣2hR

(
‖x‖

)
dv(x), (11)

parametrized by a non-negative bounded real weighting function
hR(r) ≥ 0 that may depend on eitherR or r.

1This is actually a class of inner products given that the radial weight-
ing termhR(r) can take different forms. We are assuming thathR(r)
is chosen such that we do have an inner product, particularly we require
that 〈f, f〉B3

R
= 0 implies f = 0 which is not obviously satisfied. To

avoid clutter, for the inner product we suppress in the notation the explicit
dependence onhR(r).

Then, with a suitable choice of weight functionhR(r), the set
of functions satisfying‖f‖2B3

R
< ∞ is a separable Hilbert Space,

and solutions of (5) are a strict subspace. This subspace naturally
forms a Hilbert Space.

The
{
Am

n (x)
}

are orthogonal with respect to the inner prod-
uct (10). This follows from the orthonormality of the spherical
harmonics defined on the unit sphere,S2, which induces orthogo-
nality of our wave expansion overB3

R leading to

〈Am
n , Ap

q〉B3
R

= δnq δmp

∫ R

0

hR(r)
[
jn(kr)]2 r2 dr (12)

whereδnq andδmp are delta functions. Equation (12) shows or-
thogonality holds independently of the choice of the non-negative
bounded real functionhR(r) ≥ 0. However,hR(r) does influence
the normalization, as we explore next.

2.4. Complete Orthonormal Sequences

Orthonormality as distinct from orthogonality is subtly connected
with the size of the spherical region. Beginning with the unnormal-
ized set (8), equation (12) indicates how to achieve orthonormality

{
ϕm

n;R

}
m,n

,

{
injn

(
k‖x‖

)
Y m

n (x̂)(∫ R

0
hR(r)

[
jn(kr)]2 r2 dr

)1/2

}
m,n

(13)

noting the normalizing factor is a function of bothn andR. Whence,
given completeness, any solutionu(x) to our problem (5) has rep-
resentation (in the sense of convergence in the mean of the induced
norm)

u =
∑
m,n

〈
u, ϕm

n;R

〉
B3

R
ϕm

n;R, (14)

where we have the Fourier coefficient

βm
n;R ,

〈
u, ϕm

n;R

〉
B3

R
(15a)

=

∫
B3

R
u(x)(−i)njn

(
k‖x‖

)
Y m

n (x̂)hR(r) dv(x)(∫ R

0
hR(r) [jn(kr)]2 r2 dr

)1/2
(15b)

2.5. Field Representations

Direct comparison of (14) and (15) with (6) leads to

αm
n =

〈
u(x), ϕm

n;R(x)
〉

B3
R

4π
(∫ R

0
hR(r) [jn(kr)]2 r2 dr

)1/2
(16a)

=

∫
B3

R
u(x)Y m

n (x̂)(−i)njn

(
k‖x‖

)
hR

(
‖x‖

)
dv(x)∫

B3
R

[jn

(
k‖x‖

)
]2hR

(
‖x‖

)
dv(x)

. (16b)

Hence there are a plethora of ways to compute these coefficients
based on different values ofR and different choices ofhR(r).
Here are some of the more interesting choices forhR(r) and the
resulting expressions forαm

n (16):

EXAMPLE 1. If hR

(
‖x‖

)
= δ

(
‖x‖ − r0

)
where0 < r0 ≤ R,

andjn(kr0) 6= 0 then

αm
n =

1

4πinjn(kr0)

∫
S2

ur0(x̂)Y m
n (x̂) ds(x̂), (17)

whereur0(x̂) is u(x) restricted to the shell‖x‖ = r0. That is,
providedk is not a Dirichlet eigenvalue we can use the Spherical
Harmonic Transform to determineαm

n [1].
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EXAMPLE 2. If hR

(
‖x‖

)
= 1 then we have the most natural case

for a finite sphere (R < ∞)

αm
n =

∫
B3

R
u(x)(−i)njn

(
k‖x‖

)
Y m

n (x̂) dv(x)∫
B3

R
[jn

(
k‖x‖

)
]2 dv(x)

(18a)

=

∫
B3

R
u(x)(−i)njn

(
k‖x‖

)
Y m

n (x̂) dv(x)

4π
∫ R

0
[jn(kr)]2 r2 dr

(18b)

The denominator in(18)will be written

Jn(R) ,
∫ R

0

[jn(kr)]2 r2 dr (19)

for which there are known closed form expressions.

EXAMPLE 3. If hR

(
‖x‖

)
= 1/R, and letR → ∞ then we have

the most natural case for the infinite sphere. In this case we use
the expression

lim
R→∞

1

R

∫ R

0

r2[jn(kr)]2 dr =
1

2k2
(20)

to simplify denominator of(16) to glean

αm
n = lim

R→∞

(−i)nk2

2πR

∫
B3

R

u(x)jn

(
k‖x‖

)
Y m

n (x̂) dv(x). (21)

3. ORTHONORMAL EXPANSIONS IN BALLS

3.1. Finite Sphere Case

We now focus on the natural inner product, wherehR

(
‖x‖

)
= 1.

We show that there is a more general representation than (6) when
dealing with spherical regionsB3

R of radiusR.

THEOREM 1 (EXPANSION FOR FINITE SOURCE-FREE BALL ).
Consider the space of finite energy solutions to the homogeneous
Helmholtz equation4u + k2u = 0 in a spherical domainB3

R of
radiusR < ∞. Then any bounded solutionu can be expressed in
terms of an expansion

u(x) =
∑
m,n

βm
n;R

injn

(
k‖x‖

)
Y m

n (x̂)

[Jn(R)]1/2
(22)

such that{
ϕm

n;R(x)
}

m,n
,

{ injn

(
k‖x‖

)
Y m

n (x̂)

[Jn(R)]1/2

}
m,n

(23)

are orthonormal with respect to the inner product

〈f, g〉B3
R

,
∫

B3
R

f(x)g(x) dv(x). (24)

The Fourier Coefficientsβ are given by

βm
n;R =

〈
u, ϕm

n;R

〉
B3

R
(25a)

=

∫
B3

R

u(x)
(−i)njn

(
k‖x‖

)
Y m

n (x̂)

[Jn(R)]1/2
dv(x). (25b)

and are square summable, that is,β ∈ `2.

Proof. The orthonormality of (23) is a special case of (13) with
hR

(
‖x‖

)
= 1. By Parseval∑

m,n

∣∣βm
n;R

∣∣2= 〈
u, u

〉
B3

R
=

∫
B3

R

∣∣u(x)
∣∣2 dv(x) < ∞ (26)

by the finite energy ofu, that is,‖βR‖2`2 = ‖u‖2B3
R

< ∞.

3.2. Infinite Sphere Case

We now consider the case where the region is the whole spaceR3

which can be regarded as an infinite spherical volume. In this case
we usehR

(
‖x‖

)
= 1/R and letR →∞. As we will see, the re-

sults indicate that the expansion in (6) is most naturally associated
with the infinite sphere.

THEOREM2 (EXPANSION FORINFINITE SOURCE-FREE BALL ).
Let u be any bounded solution to the homogeneous Helmholtz
equation4u + k2u = 0 in R3. Thenu can be expressed in terms
of an expansion

u(x) =
∑
m,n

βm
n;∞ k

√
2 injn

(
k‖x‖

)
Y m

n (x̂) (27)

such that{
ϕm

n;∞

}
m,n

,
{

k
√

2 injn

(
k‖x‖

)
Y m

n (x̂)
}

m,n
(28)

are orthonormal with respect to the natural inner product

〈f, g〉B3
∞

, lim
R→∞

1

R

∫
B3

R

f(x)g(x) dv(x), (29)

and the Fourier coefficients are given by

βm
n;∞ =

〈
u(x), ϕm

n;∞(x)
〉

B3
∞

(30a)

= lim
R→∞

(−i)nk
√

2

R

∫
B3

R

u(x)jn

(
k‖x‖

)
Y m

n (x̂) dv(x) (30b)

and are square summable, that is,β∞ ∈ `2.

Proof. The orthonormality of (28) is a special case of (13) with
hR

(
‖x‖

)
= 1/R and lettingR →∞.

Now we present a key representation result — captured in
Theorem 3.22 in [1] — for a class of solutions to the homogeneous
Helmholtz equation.

THEOREM3 (CLASSICAL HERGLOTZ WAVE FUNCTION). Letu
be any bounded solution to the homogeneous Helmholtz equation
4u + k2u = 0 in R3 satisfying the growth condition

lim
R→∞

1

R

∫
B3

R

∣∣u(x)
∣∣2 dv(x) < ∞. (31)

Then we have the representation foru

u(x) =
k

2π
√

2

∫
S2

b(x̂)eikx·ŷ ds(ŷ) (32)

whereb(x̂) is, up to a constant, the Herglotz Kernel and can be
expressed as the Inverse Spherical Harmonic Transform

b(x̂) ,
∑
m,n

βm
n;∞ Y m

n (x̂) ∈ L2(S2) (33)

of the Fourier coefficientsβ∞ ∈ `2 given in Theorem 2.

Proof. By Parseval∑
m,n

∣∣βm
n;∞

∣∣2= ‖u‖2B3
∞

, lim
R→∞

1

R

∫
B3

R

∣∣u(x)
∣∣2 dv(x) (34)

which is finite by the growth condition (31). Henceβ∞ ∈ `2

which implies that (33) is well-defined and inL2(S2). Then (33)
can be inverted and this impliesβm

n = 〈b, Y m
n 〉S2 , leading to

u =
∑
m,n

βm
n ϕm

n;∞ =
∑
m,n

〈b, Y m
n 〉S2ϕm

n;∞, (35)
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which equals

u(x) =
∑
m,n

(∫
S2

b(ŷ)Y m
n (ŷ) ds(ŷ)

)
×

√
2k injn

(
k‖x‖

)
Y m

n (x̂) (36a)

=
( k

2π
√

2

) ∫
S2

b(ŷ)×{
4π

∑
m,n

injn

(
k‖x‖

)
Y m

n (x̂)Y m
n (ŷ)︸ ︷︷ ︸

eikx·ŷ by the Jacobi-Anger Expansion [1]

}
ds(ŷ) (36b)

COMMENT. Comparing(6), (21)and (30)we can see that

βm
n;∞ =

(2π
√

2

k

)
αm

n ≡
(
λ
√

2
)
αm

n , ∀m, n. (37)

Clearly‖β∞‖2`2 < ∞ iff ‖α‖2`2 < ∞ whereα ,
{
αm

n

}
m,n

.

3.3. Generalized Herglotz Wave Functions

As previously mentioned (32) is a Herglotz Wave Function, up to
a constant. We now show how to generalize the classical Herglotz
wave function to broaden its applicability and more transparently
render its derivation and properties.

Let H be the separable Hilbert Space of solutions to the ho-
mogeneous Helmholtz equation4u + k2u = 0 in B3

R ,
{
x ∈

R3 : ‖x‖ ≤ R
}

, with inner product

〈f, g〉B3
R

,
∫

B3
R

f(x)g(x) dv(x), f, g ∈ H. (38)

DEFINITION (GENERALIZED HERGLOTZ WAVE FUNCTION).Let
ϕm

n;R be a complete orthonormal sequence in the separable Hilbert
Space of solutions to the homogeneous Helmholtz equation given
by4u + k2u = 0 in B3

R ,
{
x ∈ R3 : ‖x‖ ≤ R

}
then

v =
〈
g, Y m

n

〉
S2ϕm

n;R. (39)

is a Generalized Herglotz Wave Function with Generalized Her-
glotz Kernelg ∈ L2(S2).

The proof of Theorem 3, particularly in (35), showed that this
reduces to the classical Herglotz Wave Function. The essence of
the Generalized Herglotz Wave Function is that a field can be rep-
resented by aL2-function defined on the unit sphereS2 and this is
captured by (39).

Fig. 1 indicates the relationships between the various represen-
tations. It shows that the classical Herglotz Wave Function can be
viewed as a isomorphism between the space of square integrable
functions defined on the unit sphereS2 and the space of wavefields
generated by sources no closer than distanceR from the origin.

4. APPLICATIONS

4.1. Spatial Correlation

In [2] the expression (2) (which is a form of Herglotz Wave Func-
tion except that the kernel can be inL1(S2) and not only space
L2(S2)) was used to render in closed form an expression spatial
correlation which subsumed a number of other explicit models

which have appeared in the literature. The kernel can be associated
with a farfield angular distribution of power from the scattering
environment. With the generalized Herglotz Wave Function there
are two further advantages: i) nearfield sources and scatterers can
now be incorporated; and ii) the kernel can be chosen inL2(S2)
from which the theory of Hilbert Spaces can be applied. We men-
tion without proof, due to space limitations, that the generalized
Herglotz Wave Function has a single layer and double layer poten-
tial interpretation defined on a spherical boundary. This potential
function is the analogue of (2).

4.2. Channel Representation

The Generalized Herglotz Wave Function permits one to dispense
with a potential complicated source and scatter geometry and re-
place it with a fully equivalent distribution defined on a spherical
region. This decomposition of space and the model it implies will
be presented in a future publication.

u(x) ∈ H
WAVE-FIELD IN B3

R ⊂ R3

〈
u, ϕm

n;R

〉
B3

R

��

∑
m,n

〈
u, ϕm

n;R

〉
B3

R
Y m

n

yy

βm
n;R ∈ `2

FOURIER
COEFFICIENTS

∑
m,n

βm
n;R ϕm

n;R

AA

∑
m,n

βm
n;R Y m

n

��
g(x̂) ∈ L2(S2)

GENERALIZED HERGLOTZ
KERNEL ON S2

〈
g, Y m

n

〉
S2

CC

∑
m,n

〈
g, Y m

n

〉
S2ϕm

n;R

99

Fig. 1: Isomorphisms between the Wave Fieldu(x) in H, the
Fourier Coefficientsβm

n;R in `2 and the Herglotz Kernelg(x̂) in
L2(S2). The mapping between the Generalized Herglotz Ker-
nel and the Wave Field,

∑
m,n

〈
g, Y m

n

〉
S2ϕm

n;R is the Generalized
Herglotz Wave Function.
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