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ABSTRACT

Measurements taken at the campus of Brigham Young University
(BYU) are used to investigate the statistical properties of the in-
door MIMO channel. Two statistical tests, Royston’s and Henze-
Zirkler’s, are applied to the MIMO data to assess whether the data
belongs to a multivariate normal distribution or not. The possibil-
ity of modeling the covariance matrix as a Kronecker product of
the correlations at the transmitter and receiver are also investigated
by deriving a likelihood ratio test. It is found that small MIMO
systems such as 2 × 2 can be considered normally distributed and
can also be approximated with a Kronecker structure. Larger sys-
tems, on the other hand, show evidence of strong non-normality
and is not well modeled using a Kronecker product. However, for
short measurement segments, these distributions can be used for
approximate channel capacity calculations.

1. INTRODUCTION

Systems with antenna arrays at both the transmitter and receiver,
so called Multiple-Input Multiple-Output (MIMO) systems, have
recently been shown to be capable of providing very high bit rates
[1, 2]. These rates are achieved by utilizing the spatial domain
to a larger extent than previously. Since no additional bandwidth
is required, MIMO systems have attracted considerable attention.
Several MIMO measurement campaigns have recently been re-
ported in [3, 4, 5, 6] where the measured channel capacity in dif-
ferent environments has been investigated. However, the dominat-
ing assumption in system analysis of complex normally distributed
channel coefficients has not been investigated in any detail. Re-
sults regarding the marginal statistics have been reported in [5, 6]
where it was found that the channel coefficients were Rayleigh
distributed in Non Line Of Sight (NLOS) and Rice distributed in
Line Of Sight (LOS). Since the phase was found to be uniformly
distributed, a complex Gaussian distribution for the channel coef-
ficients was found to be a reasonable assumption.

However, the fact that each coefficient has a univariate normal
distribution does not imply that the channel matrix must belong to
a multivariate normal distribution. In fact it will be shown by ap-
plying two tests for MultiVariate Normality (MVN) to measured
MIMO channels that larger MIMO systems show strong evidence
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of non-normality but each individual coefficient is close to a com-
plex normal distribution.

Furthermore, the structure of the covariance matrix is also in-
vestigated. It has been suggested that the correlation between two
subchannels can be modeled by a product of the correlations seen
by the transmitter and receiver using a Kronecker product. This
has been studied previously in terms of predicted channel capacity
[6]. Here, however, a likelihood ratio test is derived to assess the
covariance structure. Finally, the results of the different tests are
related to the channel capacities found under the different assump-
tions.

2. TESTS FOR MULTIVARIATE NORMALITY

There are many tests for MVN in the statistical literature [7]. Un-
fortunately, there is no known uniformly most powerful test and
it is recommended to perform several test to assess MVN. In this
section, two tests that can be applied to measured MIMO data will
be described. These tests have been found [7] to have good overall
power against alternatives to normality.

2.1. Royston’s H test

Royston’s H test [8] is a multivariate extension of a popular test for
UniVariate Normality (UVN), the Shapiro-Wilk W test [9]. The
Shapiro-Wilk test is generally considered to be an excellent test for
UVN [7]. Let Wj denote the value of the Shapiro-Wilk statistic for
the jth variable in a p-variate distribution. Then, define

Rj =

�
Φ−1 � 1

2
Φ � − � (1 − Wj)

λ − µ � /σ ���	� 2

, (1)

where λ, µ, and σ are calculated from polynomial approximations
given in [9] and Φ(·) denotes the standard normal cdf. Now if the
data is MVN, H = ξ 
 Rj/p is approximately χ2

ξ̂
distributed,

where
ξ̂ = p/[1 + (p − 1)c̄], (2)

where c̄ is an estimate of the average correlation among the Rj ’s
[8]. This χ2

ξ̂
distribution is used to obtain critical values for the

test. Royston’s H test was in [7] found to have good power against
many different alternative distributions.

2.2. Henze-Zirkler’s Test

Another MVN known for good power [7] is the Henze-Zirkler test
[10] that is based on the empirical characteristic function. An ap-
pealing property of this test is that it is a consistent test. Let xj
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denote the jth vector sample out of n samples of a p variate distri-
bution. Then, the test statistic is formed as

T =
1

n

n�
j,k=1

exp � −β2

2
|yj − yk|

2 � − 2(1 + β2)−
d

2 ×

n�
j=1

exp � − β2

2(1 + β2)
|yj |

2 � + n(1 + 2β2)−
d

2 , (3)

where |yj − yk|
2 = (xj − xk)H

R̂
−1

(xj − xk), |yj |
2 = (xj −

x̄)H
R̂

−1
(xj − x̄), and x̄, R̂ denote the sample mean vector and

covariance matrix, respectively. The parameter β in (3) represents
a smoothing parameter [10] and in this paper β = 0.5 will be
used. If the data is MVN, the test statistic T is approximately
lognormally distributed with

E[T ] = 1 − (1 + 2β2)−
d

2 � 1 + dβ2

1+2β2 + d(d+2)β4

2(1+2β2)2 �
V ar[T ] = 2(1 + 4β2)−

d

2 + 2(1 + 2β2)−d � 1 + 2dβ4

(1+2β2)2

+ 3d(d+2)β8

4(1+2β2)4 � − 4w− d

2 � 1 + 3dβ4

2w
+ d(d+2)β8

2w2 � , (4)

where w = (1 + β2)(1 + 3β2). This result is used to find the
critical values of the test.

3. A TEST FOR KRONECKER STRUCTURE

To examine if the covariance matrix can be modeled as a Kro-
necker product between the transmitter and receiver covariance
matrices, a likelihood ratio test was derived. The null hypothesis
is a MVN distribution with a Kronecker covariance matrix while
the general alternative is a MVN with arbitrary covariance

H0 : x ∈ N ( � , R1 ⊗ R2)

H1 : x ∈ N ( � , R) . (5)

Here, R is an p × p matrix while R1 and R2 are p1 × p1 and
p2 × p2 with p1p2 = p. Using the standard matrix formulation of
the multivariate complex Gaussian pdf, the likelihood ratio Λ can
be written as

Λ = ���
R̂1 ⊗ R̂2 ���

− n

2

e
− 1

2 � n

r=1
(xr− ˆ� )H � ˆR1⊗

ˆR2 	 −1

(xr− ˆ� )

���
R̂ ���

− n

2

e−
1

2 � n
r=1

(xr− ˆ� )H
ˆR−1

(xr− ˆ� )

.

(6)
Note that for the test to be a true likelihood test, Maximum Like-
lihood (ML) estimates of all the estimated quantities 
(·) should
be used. Finding the ML estimates of the sample mean and co-
variance is straightforward but determining the ML estimates of
R1 and R2 is more difficult. Now, for MIMO data, the vector x
represents the stacked data, i.e. x = vec(H) where the nr × nt

matrix H is the channel matrix. In this case, R1 corresponds to
the transmitter covariance Rt and R2 the receiver covariance Rr .
Hence, straightforward estimates of the transmitter and receiver
covariances may be used

R̂1 = R̂t =
1

np2

n�
k=1 � H(k) − H̄(k) � H � H(k) − H̄(k) � (7)

R̂2 = R̂r =
1

np1

n�
k=1 � H(k) − H̄(k) � � H(k) − H̄(k) � H

. (8)

In [6] it was found that the estimators in (7) and (8) were close to a

least squares approach � R̂1, R̂2 � = minR1,R2 ��� ���
R̂ − R1 ⊗ R2 ��� ���

2

F

where | · |F denotes the Frobenius norm. Here, the estimators in
(7) and (8) will be used since the least squares approach requires
a multiplication involving a large matrix. For example, a 7 × 7
MIMO systems results in a matrix product involving a 74×74 ma-
trix. Taking the logarithm of (6) and using that Tr[AB] = Tr[BA]
and that |AB| = |A||B|

−2 log Λ = n {Tr M − log |M| − p} , (9)

where M = (R̂1⊗R̂2)
−1R̂. No attempt to derive an expression for

the distribution of the statistic under the null hypothesis was made.
Instead, Monte-Carlo simulations provided the critical values for
the test.

4. MEASUREMENT SETUP

A narrowband custom made MIMO communications system de-
signed and built at Brigham Young University (BYU) in Utah was
used to collect measurements. The system was equipped with ten
monopoles forming a uniform circular array at each end. How-
ever, since the elements were mounted over a ground plane the
monopoles behave as dipoles and essentially have the same radi-
ation patterns as dipoles. Furthermore, the elements were posi-
tioned in a circle with radius 0.86 wavelengths that approximately
gives an element separation of a half wavelength. The operating
frequency was 2.43GHz. For a detailed description of the mea-
surement equipment, see [5].

Measurements were collected within the Clyde building at the
BYU campus. A measurement path in NLOS was chosen since it
was expected that it would represent an environment with reason-
ably stationary statistics. The sampling rate was set to 2.5ms in
order to get an oversampled channel with many samples per wave-
length. Over a measurement length of 42m, 10000 MIMO samples
were collected, corresponding to about 30 samples per wavelength.

5. MEASUREMENT RESULTS

5.1. Multivariate Statistics

Since the measurements were collected over many wavelengths,
normalization of the data is necessary. A running mean filter is
one possibility but requires choosing a suitable averaging length
of the filter. Instead, the average of the magnitude of all channel
coefficient is used to normalize the channel matrix at each loca-
tion. That represents a spatial average over the area of the array
which is about 1.7λ × 1.7λ. This is found to yield a reasonable
stable power compensation over the measurement path. In order
to avoid a high correlation between neighboring samples, the data
was downsampled by using only one sample per wavelength. This
yielded a maximum correlation between neighboring samples of
0.25.

The power is not the only channel characteristic changing along
the path. The correlation between the different coefficients also
changes along the path. Therefore, the MVN tests from Section 2
are not applied to the entire measurement path but instead to sub-
sections of the path of length 40λ. In order to build statistics, the
MVN tests were applied to 100 subsections of length 40λ which
were obtained by sliding a window of 40λ along the measurement
path.

IV - 657

➡ ➡



2 × 2 3 × 3 4 × 4 5 × 5 6 × 6
Real 1% 2% 5% 1% 0%R-H
Imag 2% 3% 3% 6% 8%
Real 10% 14% 32% 100% 100%H-Z
Imag 2% 5% 25% 100% 100%

Table 1. The rejection rates of Royston’s and Henze-Zirkler’s
MVN tests applied to the real and imaginary part of the channel
averaged over the subsections for different array sizes.

First, the univariate properties of the data were investigated
since a random vector can only belong to a MVN distribution if
every linear combination of the component variables has a uni-
variate normal distribution. Here, Shapiro-Wilk’s test and the uni-
variate version of Henze-Zirkler’s test were applied using a sig-
nificance level of 0.05. The tests were applied to both the real
part and the imaginary part which were found to be approximately
uncorrelated. By averaging over all subsections and all channel
coefficients Hij i, j = 1, 2, . . . , p, it was found that the average
rejection rate was close to the significance level. However, by only
averaging along the different subsections, it was found that about
10 of the channel coefficients had a rejection rate of 10%-15%.
Hence, there is some evidence of a mild deviation from UVN.

More evidence of non-normality can be obtained by apply-
ing the MVN test to the same data since these tests will detect
deviation in the multivariate structure. The results from apply-
ing Royston’s and Henze-Zirkler’s tests to the real and imaginary
parts of the channel, averaged over the subsections, are shown in
Table 1. It is clear that the H-Z test is detecting evidence of non-
normality for larger MIMO systems while the R-H test does not.
There are two plausible explanations for this: The power of the
R-H test is unknown for larger number of variates; The H-Z test
with β = 0.5 is know to be powerful against distributions with
heavy tails which may be the case of the MIMO data. However,
for both tests no significant evidence against non-normality was
found against 2×2 and 3×3 systems. The 4×4 system has more
evidence of non-normality since the H-Z has a fairly high rejec-
tion rate while MIMO systems with five elements and above can
be considered non-normal in this measurement set.

5.2. Kronecker Structure

The test for Kronecker structure derived in Section 3 was applied
to the same data as the multivariate tests. In this case, no slid-
ing window was used since the Kronecker test already includes
averaging because it is based on estimated covariance matrices.
Instead, the entire measurement path was broken into ten equal
length segments to which the test was applied. To investigate the
possible covariance changes along the path, the test was also ap-
plied to the entire path.

The significance levels of the test statistic for the entire path
for the 2× 2, 3× 3, and 4× 4 were 0.08, 0.23, 0.68. These values
are well below the 5% threshold (0.95). Thus, for these array sizes
a Kronecker structure can not be rejected. The remaining larger
MIMO systems had larger values either close to or equal to unity
and can therefore be rejected. For the ten subsegments case, only
the smallest MIMO system, the 2 × 2, had values less then unity.
For the 2 × 2 system, five subsegments had significance levels
below 0.95 and hence could not be rejected.

It is clear that the Kronecker structure does not describe the
structure of larger MIMO systems well. Another interesting ob-
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Fig. 1. Model error κ for both the ten subsegment case and the one
segment entire measurement case.

servation is that it appears that over the entire path, the Kronecker
structure is more likely to not be rejected than the subsegment case.
A plausible explanation for this is that the more the distribution
characteristics change over the test segment, the more the covari-
ance estimate will focus on the stable part of the covariance due
to the structure of the antennas. Therefore, it is suspected that for
measurement campaigns with a wide variety of measurement lo-
cations, the Kronecker structure will fit the overall data better than
at the individual locations. To summarize, the test results indicates
that the distribution of 2 × 2 systems may exhibit a Kronecker
structure but larger systems are not described accurately using that
structure.

The discrepancy between the general covariance matrix and
the Kronecker approximation can be further examined by calculat-
ing a model error defined as

κ =
|R̂ − R̂t ⊗ R̂r|F

|R̂|F
. (10)

The model error for both the ten subsegment case and the one seg-
ment entire measurement case is shown in Figure 1. For both
cases, the errors are large but the case when the measurement is
divided into ten subsegments has almost twice the error than the
case of one segment constituting the entire sequence. This is again
an indication that the Kronecker structure not works well for sys-
tems above 2 × 2 and that the covariance structure changes along
the measurement path.

Previous work on using the Kronecker structure used the chan-
nel capacity as a performance measure to determine how well the
data fits the structure [6]. Furthermore, results were only presented
for 2 × 2 and 3 × 3 systems. In Figure 2, channel capacities for
array sizes between two and six are shown for the case of ten sub-
segments. The channel capacity was calculated assuming no chan-
nel knowledge at the transmitter [1, 2] and using an SNR of 10dB.
For this case, both the general MVN and the Kronecker approxi-
mations actually are capable of reproducing the channel capacity
at a reasonable accuracy. It can also be noted that the capacity
loss relative to the upper bound of uncorrelated i.i.d. complex nor-
mal distributed coefficients increases with the number of elements.
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Fig. 2. Channel capacities for array sizes between two and six for
the case of ten subsegments.

Hence, for this set of measurements, a MVN distribution may not
model the multivariate distribution very well but is still capable of
modeling the scalar channel capacity.

In Figure 3, the relative error of the channel capacity ∆C =

|Cdata−Ĉ|/Cdata is shown. Here, Ĉ denotes the capacity calculated
using either the general MVN distribution or the Kronecker ap-
proximation. The error is smaller for the case of ten subsegments
than for the entire sequence. This indicates that the covariance
properties of the channel may change along the path, as discussed
above. Hence, a closer fit in capacity can be obtained by calculat-
ing several covariances along a measurement path. Therefore, for
shorter segments of data, a MVN can be used to for capacity com-
parisons with errors at about 2%. A Kronecker structure can also
be used with slightly higher errors. However, for longer segments,
the error exceeds 10% for larger array sizes using either a general
or Kronecker structure.

6. CONCLUSIONS

Measurements taken at the campus of Brigham Young University
(BYU) were used to investigate the statistical properties of the in-
door MIMO channel. Two statistical tests, Royston’s and Henze-
Zirkler’s, were applied to the MIMO data to assess whether the
data belongs to a multivariate normal distribution or not. The pos-
sibility of modeling the covariance matrix as a Kronecker product
of the correlations at the transmitter and receiver was also investi-
gated by deriving a likelihood ratio test.

It was found that smaller systems such as 2 × 2 and 3 × 3
can be considered reasonably normal but large MIMO systems
show strong evidence of non-normality. Furthermore, it is only
these small array sizes that can be approximated with a Kronecker
structure. Surprisingly, it was also found that although the MVN
may not describe the distribution accurately, it can still be used to
simulate channel capacity with a relative error of a few percent.
However, that is under the condition that the channel properties
vary only slightly over the measurement segment.
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