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ABSTRACT

Drive tests are important means to evaluate critical proper-
ties of a wireless network in operation. One is for example
interested in coverage of the network, and therefore, the re-
ceived power of a dedicated pilot signal is monitored to esti-
mate the spatial variations of the power gain. With uniform
time-sampling and a varying velocity, the typical temporal fil-
ter fails to extract the interesting information. In this paper
we apply convolutional spatial filtering to resolve the problem,
both causal and non-causal. Relations to spatial data analysis
methods are also commented upon. Simulations indicate sig-
nificant improvements.

1. INTRODUCTION

Spatial filtering and spatial data analysis are widely used
within for example geographical information systems (GIS)
and image processing [1]. Non-parametric applications in-
clude clustering of spatial data points or to addressing proper-
ties of spatial data aggregated to areal units such as countries.
Another important field is to construct statistical models given
irregularly sampled and noisy data points, perhaps to predict
or interpolate values at other locations.

In general, spatial data is an example of non-uniformly sam-
pled signals, typically in two or three dimensions. It can often
also be seen as an event-based sampled signal, where the sam-
ple instants depend on when a triggering signal has reached a
pre-defined threshold [2]. The triggering condition could be
when the elapsed time since start has reached kT, i.e. a uni-
formly time-sampled signal. When measuring a spatial quan-
tity while traveling with a time-varying velocity, the spatial
data will be non-uniformly sampled in space (and also event-
based sampled).

One example of such a signal is pilot power measurements
from drive tests in terrestrial wireless networks. Each base
station in such a network typically transmits a pilot signal to
support channel estimation in mobiles and to support the deter-
mination of the most favorable base station to connect to at the
location of the mobile. When deploying and tuning networks,
cell planning software predicting radio propagation helps out,
but comprehensive drive tests are also needed to verify the
coverage of the network. Since it is impossible to maintain
a constant velocity, the measured pilot power is an example of
a uniformly time-sampled and non-uniformly space-sampled
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spatial signal. With dedicated test equipment, the received pi-
lot power is made readily available together with geographical
positions using GPS. Ordinary mobiles report quantities re-
lated to the pilot signal quality, and statistical methods to ex-
tract relevant information from readily available mobile mea-
surements are discussed in [3].

In this paper, practical spatial filtering is intuitively moti-
vated as discretizing a space-continuous linear filter, either
causal or non-causal. It is related to the weighted averaging
and the kernel estimation techniques used for smooting and
interpolation in spatial data analysis [1]. With the linear fil-
tering approach, it is natural to associate the spatial filtering
to the spatial frequency properties of the studied signal. Thus,
the choice of filter depend on the signal characteristics. The
filtering methods in spatial data analysis also relate to the the-
ory of splines used for data interpolation [4]. Other popular
approaches include wavelet transform methods, see for exam-
ple [5].

Section 2 models the pilot power signal and addresses its
typical characteristics. Spatial filtering is described in Sec-
tion 3 together with some implementational aspects. The fil-
ter performance is illustrated by simulations in Section 4, and
Section 5 summarizes with conclusive remarks.

2. SIGNAL MODEL

The general notation of a uniformly time-sampled and non-
uniformly space-sampled signal is described in Section 2.1.
Many test mobiles are based on ordinary mobiles, but with
interfaces to report measurements more frequent. Typically,
the measurements reflect the time-varying channel and/or the
interferencing signals. This is discussed in more detail in Sec-
tion 2.2. The last subsection addresses characteristics of sig-
nals from drive tests.

2.1. Notation

In general we have a time sampled signal u[t] with sample in-
stantst =1,...,N and sample interval Ts. Furthermore, GPS
information is used to compute the relative distance between
samples, and that the signal is spatially related u(d;) to the
travelled distance d; at time instant t. With a time-varying ve-
locity v(t), the travelled distance is thus

t
di— dt,1+/ v(T)|dT
t—1

The spatially filtered measurements are denoted y(d; ).
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2.2. Mobile Station M easurements

The measurement capabilities of an UMTS mobile is specified
in [6]. There are primarily two defined measurement quantities
that relate to the pilot signal - the received pilot power and the
pilot power relative to the power of all other signals and noise.

The base station transmits the pilot signal with the power
Poilot (about 1 W). By averaging fast varying effects on data
symbol and chip level, the communication channel between
the base station and the mobile can be seen as a space varying
power gain, g(d). Moreover, the mobile also receives interfer-
ing signals with power lg. The mobile is capable of measuring

both
Prilotg(d)

lo
The power gain is often separated into three components
g(d) = gp(d)gs(d)gm(d), or in decibels g8 (d) = g% (d) +
9% (d) +g48(d), see Figure 1
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Fig. 1. The power gain g(t) is modeled as the sum of three
components: path loss gp(t), shadow fading gs(t) and multi-
path fading gm(t). Here this is illustrated when moving from a
reference point and away from the transmitter.

The received signal power decreases with the distance to
the base station, and the path loss is modeled as gp = K —

o log,o(d) when traveling directly away from the base station.
Terrain variations cause diffraction phenomenons and this
shadow fading gs is modeled as ARMA(n, m)-filtered Gaus-
sian white noise (n is typically 1-2, m=n—1, [7]). Path
loss and shadow fading have been subject to extensive empir-
ical analysis, see for example [8, 9, 10]. In terms of spatial
frequency, the shadow fading has its frequency content below
0.01 - 1 m~1 [11] depending on the terrain.

The multipath model considers scattering of radio waves,
yielding a rapidly varying gain gm [12, 13]. In suburban and
urban areas, the line-of-sight (LoS) path is sometimes blocked
by buildings. The received signal has therefore no dominating
component. Instead it receives many incident components due
to near-field scattering, where the signals are reflected by a
large number of objects close to the receiver. This causes fast
variations of the signal amplitude known as fast fading. There
are a number of reference fast fading channel models defined
by UMTS the standardization body [14].

The measurements will be represented in decibels, and the
fast fading is thus considered as an additive disturbance. Since
the main focus is to filter out fast fading without affecting the
shadow fading variations, the path loss component is mainly
constant on the considered time scale and is left out. Since the

transmitted pilot power and the interference also can be con-
sidered constant, the focus is on spatially filtering the power
gain.

2.3. Measured Pilot Power Characteristics

The measurements discussed hitherto are important when as-
signing the most appropriate base station for ordinary mobiles.
To avoid ping-pong effects, where mobiles are re-assigned fre-
quently to different base stations, the measurements are fil-
tered to only reflect the path loss and the shadow fading. It is
therefore also interesting for drive tests to record the most fa-
vorable base station on average. The measurements are also
used to improve the propagation models in planning tools,
which typically models path loss and shadow fading, and only
considers the effects of fast fading by margins. To average out
fast fading, measurements are filtered using a temporal filter.
This works fine when the velocity is rather constant, but fails
when the velocity varies. For example see Figure 2a, where
the vehicle stop e.g., at a set of traffic lights in the middle of
the drive test. As seen in Figure 2b, the temporal filter manage
to filter out the fast fading when traveling at moderate speeds,
but fails at low speeds, and the fast fading contribution is evi-
dent.

V(B[ [m/s]

Power Gain [dB]

Time [s]

Fig. 2. Signals used in the simulations. a) Time-varying ve-
locity emulating a stop at a set of traffic lights, b) Resulting
measurements (dashed) and the true shadow fading envelope
(solid).

Together with mobile station measurements, a GPS receiver
keeps track of the spatial location. The absolute location mea-
surements are rather crude, but the relative distance between
measurements can be computed more accurately.

3. SPATIAL FILTERING

Many techniques for spatial filtering tailored for different ap-
plications and more general exist. We bring up two general
techniques from literature, and relate them to the proposed
convolutional spatial filtering. Ordinary averaging fails as in-
dicated by Figure 2b, but weighted averaging [1] considering
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the relative distance between samples is more applicable
N
y(d) = 3 w(ldi —dr|)u(ck) (1)
=1

with SN, w(|d; — d¢|) = 1. The weights typically are chosen
as
w(x) Ox™ % or w(x)Oe @)

where a is related to the amount of smooting. Often, w(x) =
0,X > dimax.
In kernel estimation [1], the smoothed estimate is computed

S (5% ) u(d)
y(ck) = ;M 5"‘5‘*) ©

where k(-) is the kernel. The parameter 3 determines the
amount of smooting (essentially the interval around d; within
which data points significantly will contribute to the estimate).
A popular choice is a quadratic kernel

as

3 2 2

2(1—x xc<1
K(X) = 7l ) ==

0 otherwise
If we assume that the measured signal u(d) is continuous

in space, it is natural to employ a linear filter with impulse
response h(d). The estimate is given by the convolution

4)

d
y(d)= [ h(E-du(@)ds (5)

The estimate at d; can be approximated by representing the
integral by its Riemann sum

t
S (dr —dr_1)h(d; — do)u(dy) 6)

T=—00

y(d) ~

With normalization:
_ Z‘r}m(dr —dr_1)h(d; —dt)u(d,)

di) = 7
y( t) zg'z—oo (dT - dT—l)h(dT — dt) ( )
A simple filter example is the following first order filter
__ 1 _ .—d/D
HO = N@=¢ (8)

with the parameter D. The is intuitively appealing, since the
parameter D is equal to the decorrelation distance (correlation
equal to e —1) and the filter bandwidth is 1/D m —1. Fig-
ure 3 illustrates convolutional spatial filtering using the filter
in (8). With the convolutional approach, it is natural to relate
the filtering properties such as the bandwidth to the spatial fre-
quency content of the interesting signal. The filter length can
be made finite by specifying a maximum distance dmax Of the
filter or a minimally considered correlation c. Note that these
quantities are related by (8):

¢ = g~ Omax/D

The filter in (7) is causal and applicable to real-time pro-
cessing. A typical case is that the data can be post-processed
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Fig. 3. Convolutional spatial filtering. a) Space continuous
shadow fading component (solid), measurements (circles) and
one measurement to be filtered (star), b) Filter impulse re-
sponse, ¢) Riemann approximation of the integral in (6).

after the drive test. To obtain a non-causal and zero-phase ver-
sion of the we use the fact that if HC(z) is a causal filter, then
the non-causal filter

H"(z) = HS(z)Ho(z 1)

is zero-phase. Using the alternative representation of the spa-
tial signals u[t] and y[t] (which is more implementationally ap-
pealing) this can be implemented as follows.

Algorithm 1 (Non-causal Spatial Filtering)

_3b o (de—dr_1)h(dr—d)u[t]
Lyt = S5 aaona®
2. Reverse signals d{*® = dy — dn+1-¢ and
uClt] = y°[N +1 —t].
nefy) _ 2r——oo(df°—dp®)h(dp—df)u[r]
3 Yl = =5 aE e a

4. Re-reverse the result y[t] = y™[N + 1 —t1]

Clearly, the weighted averaging (1) and kernel estima-
tion (3) and the non-causal convolutional algorithm above are
essentially identical. The main reasons for using the linear fil-
tering framework is educational and that it is more natural to
relate the filter to signal properties.

4. SIMULATIONS

Consider the situation in Figure 2, where the measured signal
is strongly affected by the temporary stop at the traffic lights.
(The velocity i s first roughly constant, then exponentially de-
creased to roughly zero for a while, and finally exponentially
increasing to the initial level.). The simulated shadow fading
components have frequency components up to 0.07 m~1 (es-
sentially two sinusoids). Power gain is measured at 1500 Hz
(once per slot in UMTS), low-pass filtered and the measure-
ments are decimated to the sample interval Ts=0.1 s. Fast fad-
ing is modeled using the Typical Urban channel model [14].
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The first order filter in (8) is used for convolutional spatial fil-
tering of the measurements.

Figure 4 illustrate the performance over time and in compar-
ison to the true shadow fading envelope. The temporal low-
pass filter in the test mobile causes a group delay as seen in
Figure 4a. This delay is increase with causal filtering in Fig-
ure 4b, but the fast fading components are essentially filtered
out. The short extra delay have little spatial effect and no effect
on the statistical shadow fading analysis. This additional delay
is however remove when employing the non-causal zero-phase
filter in Algorithm 1.

=
o

QD
—
o

=)

O
~—r

)

O
~—

Power Gain [dB] Power Gain [dB] Power Gain [dB]

|
1N
)

o

@

=)

|
)

Time [s] ! '
Fig. 4. True shadow fading (solid) and measurement/estimate

(dashed) a) Measured signal, b) Causally filtered measure-
ment, ¢) Non-causally filtered measurement.

The estimated shadow fading envelope is close to the true
envelope as seen in Figure 5, where the envelopes ate depicted
relative travelled distance.
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Fig. 5. True shadow fading (solid) and measurement/estimate
(dashed) with respect to distance a) Measured signal, b) Non-
causally filtered measurement.

5. CONCLUSIONS

With uniformly time-sampled, but non-uniformly space sam-
pled signals, it is difficult to suppress noise with temporal fil-
ters. In this work, the applicability of convolutional spatial
filters is explored and simulation results are promising. The
simulations indicate that spatial post-processing can recover
the interesting signals with a causal filter, and even better with
a zero-phase non-causal filter. The filter approach allow intu-
itive interpretations of parameters, and it is natural to relate to
channel characteristics of the wireless link. Relations to spa-
tial data analysis methods are also commented upon.
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