
A VIRTUAL REPRESENTATION FOR TIME- AND FREQUENCY-SELECTIVE
CORRELATED MIMO CHANNELS

Akbar M. Sayeed

Electrical and Computer Engineering
University of Wisconsin-Madison

ABSTRACT

A key to reliable communication is a fundamental understanding
of the interaction between the signal space and the channel. In
time- and frequency-selective MIMO (space-time) fading channels
this interaction happens in time, frequency and space. In this pa-
per we propose a four-dimensional Karhunen-Loeve-like virtual
representation for space-time channels that captures the essence
of such interaction and exposes the intrinsic degrees of freedom
in the channel. The four dimensions are: time, frequency and the
two spatial dimensions at the transmitter and receiver. The key
signal space parameters are the signaling duration, bandwidth and
the two array apertures. The corresponding channel parameters
are the delay, Doppler and the two angular spreads associated with
the scattering environment. The representation induces a virtual
partitioning of propagation paths in time, frequency and space that
reveals their contribution to channel capacity and diversity. It also
exposes fundamental dependencies between time, frequency and
space thereby revealing the essential degrees of freedom.

1. INTRODUCTION

The capacity and diversity afforded by a time- and frequency-
selective MIMO (space-time) fading channel is due to the distribu-
tion of scatterers in space and the relative motion of the transmit-
ter and receiver arrays. The distribution of scatterers and antenna
array parameters determine the statistics of the space-time chan-
nel, which in turn determine its capacity and diversity. Accurate
modeling of the scattering environment is thus paramount to real-
izing the full potential of antenna arrays. A key to reliable com-
munication is a fundamental understanding of interaction between
the channel and the signal space. An effective channel represen-
tation that captures the essence of such interaction is all this is
needed from a communication viewpoint. In space-time channels,
this interaction happens in four signal space dimensions: time, fre-
quency, and the spatial dimensions at the transmitter and receiver.

In this paper, we propose a new virtual representation for space-
time channels that captures the essence of channel-signal space in-
teraction in time, frequency and space. It is a generalization of
the virtual representation for narrowband correlated MIMO chan-
nels introduced in [1]. Each physical scatterer can be associated
with a unique Angle of Departure (AoD), Angle of Arrival (AoA),
delay, and Doppler shift. The virtual representation replaces the
actual physical scatterers with virtual scatterers associated with
fixed uniformly spaced AoD’s, AoA’s, delays and Doppler shifts
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on a four-dimensional (4D) grid. The grid spacings in the four
dimensions correspond to the resolutions in time, frequency and
the two spatial dimensions that are determined by the signaling
bandwidth, duration, and array apertures, respectively. The vir-
tual representation is a 4D Fourier series for the time-varying fre-
quency response channel matrix,H�t� f�, and yields many power-
ful insights. First, under the assumption of uncorrelated scattering,
we show that H�t� f� is a segment of a 4D wide-sense stationary
(WSS) process and the virtual representation coefficients consti-
tute the corresponding uncorrelated spectral representation. Thus,
the virtual representation captures the essential degrees of freedom
in the channel in temporal, spectral and spatial dimensions that in
turn determine its statistics, capacity and diversity. Second, via the
concept of virtual scatterers, the virtual representation also yields
a simple and intuitively appealing interpretation of the scattering
environment and its effects on capacity [1]. Finally, the repre-
sentation induces a virtual partitioning of propagation paths that
explicitly reveals their contribution to channel capacity and diver-
sity. In particular, it unravels fundamental dependencies in time,
frequency and space that enable accurate estimates of channel ca-
pacity and diversity.

The next section presents a general model for space-time chan-
nels. Section 3 introduces the virtual representation, including the
virtual path partitioning and its implications for channel statistics.
Section 4 discusses fundamental dependencies between time, fre-
quency and space. Section 5 shows some numerical results that
confirm the insights afforded by the virtual framework.

2. A GENERAL MODEL FOR SPACE-TIME CHANNELS

Consider a transmitter array with P elements and a receiver array
with Q elements. We are interested in representing the space-time
channel over a signaling duration T and two-sided bandwidth W .
In the absence of noise, the channel equation is

x�t� �

Z W��

�W��

H�t� f�S�f�ej��ftdf� � � t � T� (1)

where s�t� is the P -dimensional transmitted signal, S�f� is the
Fourier transform of s�t�, x�t� is the Q-dimensional received sig-
nal, andH�t� f� denotes the time-varying frequency response ma-
trix coupling the transmitter and receiver elements. We index en-
tries of H�t� f� as H�i� k� t� f� � i � �� �� � � � �Q � �� k �
�� �� � � � � P � �.

We focus on one-dimensional ULAs of antennas at the trans-
mitter and receiver and consider far-field scattering characteristics.
Let dT and dR denote the antenna spacings at the transmitter and
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receiver, respectively. The channel matrix can be described via the
array steering and response vectors given by

aT ��T � �
�p
P

h
�� e�j���T � � � � � e�j���P����T

iT
aR��R� �

�p
Q

h
�� e�j���R � � � � � e�j���Q����R

iT
(2)

where � is related to the AoA/AoD variable � (measured with re-
spect to the horizontal axis — see Figure 1) as � � d sin����� �
� sin���, � is the wavelength of propagation, and � � d�� is the
normalized antenna spacing. We restrict ourselves to critical (���)
spacing: �T � �R � ��	. In this case, there is a one-to-one map-
ping between � � 
���	� ��	� and� � 
����� ����. The effect of
larger antenna spacings is discussed in detail in [1].

The channel matrix H�t� f� can be generally modeled as

H�t� f� �
NX
n��

	naR��R�n�a
H
T ��T�n�e

j���nte�j���nf (3)

which corresponds toN propagation paths, f� T�n � 
ST� � ST� � �

���	� ��	�g and f�R�n � 
SR� � SR� � � 
���	���	�g represent
the spatial angles (AoDs/AoAs) seen by the transmitter and re-
ceiver, respectively, f
n � 
�
DS� 
DS�g and f�n � 
�� �DS�g
are the Doppler shifts and delays, respectively, and f	 ng are the
independent complex Gaussian path gains. � DS denotes the delay
spread, 
DS denotes the one-sided Doppler spread, and 
S T� � ST� �
and 
SR� � SR� � represent the angular spreads.
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Fig. 1. A schematic illustrating the virtual representation in the
spatial dimension. The virtual angles are fixed a priori and their
spacing defines the spatial resolution. The channel is characterized
by the virtual coefficients, fHV �q� p� � hq�pg, that couple the P
virtual transmit angles, f�T�pg, with the Q virtual receive angles,
f�R�qg.

3. VIRTUAL CHANNEL REPRESENTATION

In (3), each propagation path is associated with an AoD, AoA, de-
lay and Doppler shift which can be arbitrarily distributed within
the angular, delay and Doppler spreads. The virtual representation
replaces the physical propagation paths with virtual ones corre-
sponding to fixed AoD’s, AoA’s, delays and Doppler shifts that
are determined by the spatial, temporal and spectral resolution af-
forded by the finite dimensional space-time signal space. The no-
tion of virtual angles is illustrated in Figure 1. The virtual channel
representation can be expressed as

H�t� f� �
X

q�p�m�l

HV �q� p�m� l�aR�q�Q�aHT �p�P �

ej��mt�T e�j��lf�W (4)

corresponding to fixed virtual AoD’s, AoA’s, delays and Doppler
shifts defined as

��T�p �
p

P
� P� � p � P�� ��R�q �

q

Q
� Q� � q � Q� (5)

e
m �
m

T
� �M � m �M� e�l � l

W
� � � l � L� (6)

where L � dW�DSe and M � dT
DSe denote the normalized
delay and Doppler spreads. P� � bST�Pc, P� � dST�Pe,
Q� � bSR�Qc, and Q� � dSR�Qe represent the normalized
angular spreads. The virtual channel coefficientsfH V �q� p�m� l�g
characterize the virtual representation. The transmit/receive virtual
angle spacings represent the spatial resolutions that are determined
by the array apertures (
�T � ��P and 
�R � ��Q). The
virtual Doppler and delay spacings correspond to the spectral and
temporal resolutions and are determined by the signaling duration
and bandwidth (

 � ��T and 
� � ��W ).

We now address the computation of the virtual representation
from H�t� f�. Assume WLOG that P , Q are odd and defineeP � �P � ����, eQ � �Q � ����. The representation (4) can
be decoupled as

H�t� f� � eARHV �t� f�eAH

T (7)eAR � 
aR�� eQ�Q�� � � � �aR� eQ�Q�� �Q�Q�eAT � 
aT �� eP�P �� � � � �aT � eP�P �� �P � P �� (8)

where eAR and eAT are discrete Fourier transform matrices, as ev-
ident from (2) and (5).1 The matrix HV �t� f� in (7) is the partial
virtual representation with respect to space and can be computed
by beamforming in the direction of virtual angles

HV �t� f� � eAH

RH�t� f�eAT

�
LX
l��

MX
m��M

HV �m� l�ej��mt�T e�j��lf�W(9)

where the second equality further decomposesH V �t� f� into com-
ponent matricesHV �m�l� corresponding to fixed virtual Doppler
shifts and delays, which can be computed from H V �t� f� as

HV �m� l� �
�

TW

Z T

�

Z W��

�W��

HV �t� f�e
�j��mt�T ej��lf�Wdtdf�

(10)

The elements of HV �m� l� are related to the physical model (3)
as

HV �q� p�m� l� �
X
n

	nfQ��R�n � q�Q�f�P ��T�n � p�P �

e�j��m��nT �sinc�m� 
nT �sinc�l� �nW � (11)

were sinc�x� � sin��x����x� and

fQ��� �
�

Q

Q��X
i��

e�j���i �
�

Q
e�j���

eQ sin��Q��

sin����
� (12)

We note that fQ��R�, fP ��T �, sinc�T
� and sinc�W�� get peaky
around the origin with increasing Q, P , T and W .

1Note that eAR and eAT contain all possible virtual angles, some of
which lie outside the angular spreads. HV �q� p�m� l� will be approxi-
mately zero for those angles.
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3.1. Virtual Path Partitioning

The virtual representation induces a partitioning of propagation
paths that is very insightful in determining their contribution to
capacity and diversity and to expose the dependencies between the
temporal, spectral and spatial degrees of freedom in the channel.
Define the following subsets of propagation paths

ST�p � fn � �p � �����P � �T�n � �p� �����Pg (13)

SR�q � fn � �q � �����Q � �R�n � �q � �����Qg (14)

S��m � fn � �m� �����T � 
n � �m� �����Tg (15)

S��l � fn � �l � �����W � �n � �l � �����Wg (16)

corresponding to transmit spatial resolution, receive spatial reso-
lution, spectral resolution, and temporal resolution. Note that

�
p

ST�p �
�
q

SR�q �
�
m

S��m �
�
l

S��l

�
�

p�q�m�l

ST�p � SR�q � S��m � S��l � f�� �� � � � �Ng� (17)

Then,H�t� f� can be approximately expressed as

H�t� f� �
X

q�p�m�l

�
� X
n�Sq�p�m�l

	n

�
�

aR�q�Q�aHT �p�P �ej��mt�T e�j��lf�W (18)

where Sq�p�m�l � ST�p�SR�q�S��m�S��l and the virtual channel
coefficients in (11) can be approximated as

HV �q� p�m� l� �
X

n�Sq�p�m�l

	n� (19)

Equation (19) states that HV �q� p�m� l� is determined by the sum
of gains of all paths that lie in Sq�p�m�l . The approximations in
(18) and (19) get more accurate with increasing P , Q, T and W .

3.2. Channel Statistics

One of the most important characteristics of the virtual representa-
tion is that fHV �q� p�m� l�g are approximately uncorrelated under
the assumption of uncorrelated path gains: E
	n	�n� � � 
�n�n�n�
where �n denotes the kronecker delta function and 
 �n is the power
in each path. This observation is directly evident from (19)

E
HV �q� p�m� l�H�

V �q
�� p��m�� l��� ��

� X
n�Sq�p�m�l


�n

�
� �q�q��p�p��m�m��l�l� (20)

but can also be inferred from (11). Thus, from (18) we have

RH�
i�
k�
t�
f� � E
H�i� k� t� f�H��i�� k�� t�� f ���

�
X

q�p�m�l


�q�p�m�le
�j��q�i�Qej��p�k�P

ej��m�t�T e�j��l�f�W (21)

where 
i � i� i�, 
k � k�k�, 
t � t� t�, 
f � f � f �, and


�q�p�m�l � E
jHV �q� p�m� l�j��
�

X
n


�njfQ��R�n � q�Q�j�jfP ��T�n � p�P �j�

jsinc�m� 
nT �j�jsinc�l�W�n�j� (22)

�
X

n�Sq�p�m�l


�n (23)

is the power in HV �q� p�m� l� and the approximation in (23) is
due to virtual path partitioning. Relation (21) yields the insightful
conclusion that under the assumption of uncorrelated path gains,
H�t� f� is a segment of a 4D WSS process in the two spatial di-
mensions, time and frequency, and fHV �q� p�m� l�g are the corre-
sponding uncorrelated spectral representation. Furthermore, (23)
states that the power in HV �q� p�m� l� is equal to the sum of the
powers in the paths that lie in Sq�p�m�l . We note that the extent of
correlation in space, frequency and time is inversely proportional
to the angular, delay and Doppler spreads, respectively.

4. DEPENDENCIES IN TIME, FREQUENCY AND SPACE

From (4) we may conclude that the total independent degrees of
freedom in the space-time channel are

NST � �Q� �Q� � ���P� � P� � ���L � ����M � �� (24)

where �Q� �Q� � ���P� � P� � �� represents the degrees of
freedom in space and �L� ����M � �� represents the degrees in
time and frequency. However, this conclusion implicitly assumes
that the degrees of freedom in space, time and frequency are in-
dependent. We now use the notion of virtual path partitioning to
demonstrate fundamental dependencies between time, frequency
and space that cause the essential degrees of freedom to be less
than the upperbound in (24).

The dependencies between time, frequency and space are due
to the fact that the delay and Doppler spreads are related to the
angular spreads. For given �q� p�, HV �q� p�m� l� is non-vanishing
over �l�m� between

L��q�p��

��
min
Sq�p

�n

�
W

	
� L��q�p� �


�
max
Sq�p

�n

�
W

�
(25)

M��q�p��

��
min
Sq�p


n

�
T

	
� M��q�p� �


�
max
Sq�p


n

�
T

�
(26)

where Sq�p � SR�q � ST�p . Consequently, (4) can be refined to
limit the ranges of l andm as a function of �q� p� as above to reflect
the essential degrees of freedom in the channel

NST�ess �
X
q�p

L��q�p�X
l�L

��q�p�

M��q�p�X
m�M

��q�p�

� NST � (27)

Note that NST�ess � NST in (24) if and only if �L� � L� �
���M� � M� � �� � �L � ����M � �� for all �q� p� which
would seldom be true particularly for channels that are under-
spread (�DS
DS 	 �). This is because time/frequency selectiv-
ity exhibited by HV �q� p� t� f� depends on the spatial resolution:
higher resolutions would result in less selectivity whereas lower
resolutions will result in higher selectivity. A SISO channel will
exhibit maximum time/frequency selectivity.
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Fig. 2. A schematic illustrating the dependence of delay and
Doppler shift on the virtual transmit and receive angles.

Figure 2 illustrates a simple scattering geometry to quantify
such dependencies. Consider a single scattering cluster at a dis-
tance RT from the transmitter and RR from the receiver. Sup-
pose that vT denotes the relative speed between the transmitter
and the cluster and vR the relative speed between the receiver and
the cluster. Let 
T and 
R denote the angular spreads, and 
w

the “width” of the cluster. Via simple geometric considerations, �
and 
 can be estimated for any given ��R� �T � as

��
p


�
w � jRT �T ��T � RR�R��Rj��c (28)


�fmax�T

q
�� �T

����T � fmax�R

q
�� �R

����R (29)

where c denotes the speed of light, fmax�T � vT �c and fmax�R �
vR�c. We note the expression for � is stricly a lowerbound since
multiple bounces [2] within the cluster may result in longer delays.

5. NUMERICAL RESULTS

We now present some numerical results to illustrate the effect of
time/frequency selectivity on capacity and the effect of number of
antennas on time/frequency selectivity of the channel. We simu-
lated a single scattering cluster, as in Figure 2, with angular spreads
of 
T � 
R � ���� centered at ��T � �R� � ��� ��. We con-
sidered N � ��� propagation paths. We first generated N pairs
of angles, f�R�n� �T�ng, uniformly distributed within the angular
spreads to fix the scatterer positions. To simulate time/frequency
selectivity, we considered a temporal signal space with N o �
TW � �	 dimensions. We simulated three types of channels.
CH 1 (flat): RT � RR � ����m, fmax�R � fmax�T � 	� Hz,
W � � MHz, T � �	�s. CH 2 (medium selective): R � ����m,
fmax � ��� Hz, W � � MHz, T � �	�s. CH 3 (highly selec-
tive): R � ����m, fmax � ��� Hz, W � �� MHz, T � ��	�s.

w � ���m in all cases. Both CH 1 and CH 2 have the same T
and W but CH 2 has larger delay and Doppler spreads and is thus
more selective. CH 3 has the same delay and Doppler spreads but
is even more selective than CH 2 due to larger W (delay diversity
is easier to exploit in this case). Channel realizations were gen-
erated using (3) via iid complex Gaussian f	ng. Each realization
was normalized to yield

P
	�n � PQ.

Figure 3 illustrates the effect of time/frequency selectivity on
outage capacity for P � Q � � antennas. The capacity was nu-
merically computed using 200 independent channel realizations at
an SNR of 20dB (details to be reported elsewhere). As evident, the
outage capacity curves get steeper (higher diversity) as the chan-
nel gets more selective. The ergodic capacity of all three channels
is approximately 21.8 bits/s/Hz. Note that this is consistent with
the experimental results reported in [2] and in disagreement with
analytical results reported in [3] which suggested that increased
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Fig. 3. Comparison of the three channels illustrating the effect of
time/frequency selectivity on outage capacity.

delay spread can increase ergodic capacity. We can prove using
our framework that frequency selectivity does not increase ergodic
capacity and this apparent inconsistency with [3] is due to differ-
ent modeling assumptions used in [3] (details to be reported else-
where).

Figure 4 illustrates the dependencies between time, frequency
and space. CH 2 was simulated using P � Q � � and P �
Q � � antennas. The figure shows contour plots of a subset of

�q�p�m�l as a function of �m� l� for a representative �q� p�. It is ev-
ident that the delay-Doppler spread decreases in the virtual spatial
domain for larger number of antennas, as predicted by our anal-
ysis. The number of significant 
�q�p�m�l provides an estimate for
NST�eff in (27). Our simulations yielded NST�eff�QP � ��	 in
the 2-antenna case and 2.75 in the 4-antenna case, confirming that
time/frequency selectivity decreases in the virtual spatial domain
with increasing number of antennas.
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Fig. 4. Contour plots of the powers in a subset of non-vanishing
virtual delay-Doppler coefficients for CH 2 for a representative
virtual angle pair �q� p�. (a) Q � P � �. (b) P � Q � �.
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