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ABSTRACT

A Kkey to reliable communication is a fundamental understanding
of the interaction between the signal space and the channel. In
time- and frequency-selective MIM O (space-time) fading channels
this interaction happensin time, frequency and space. In this pa-
per we propose a four-dimensional Karhunen-Loeve-like virtual
representation for space-time channels that captures the essence
of such interaction and exposes the intrinsic degrees of freedom
in the channel. The four dimensions are: time, frequency and the
two spatial dimensions at the transmitter and receiver. The key
signal space parameters are the signaling duration, bandwidth and
the two array apertures. The corresponding channel parameters
arethe delay, Doppler and the two angular spreads associated with
the scattering environment. The representation induces a virtual
partitioning of propagation pathsin time, frequency and spacethat
revealstheir contribution to channel capacity and diversity. It also
exposes fundamental dependencies between time, frequency and
spacethereby revealing the essential degreesof freedom.

1. INTRODUCTION

The capacity and diversity afforded by a time- and frequency-
selective MIM O (space-time) fading channel is dueto thedistribu-
tion of scatterersin space and the relative motion of the transmit-
ter and receiver arrays. The distribution of scatterers and antenna
array parameters determine the statistics of the space-time chan-
nel, which in turn determine its capacity and diversity. Accurate
modeling of the scattering environment is thus paramount to real-
izing the full potential of antenna arrays. A key to reliable com-
munication is afundamental understanding of interaction between
the channel and the signal space. An effective channel represen-
tation that captures the essence of such interaction is al thisis
needed from a communication viewpoint. In space-time channels,
thisinteraction happensin four signal spacedimensions: time, fre-
quency, and the spatial dimensionsat the transmitter and receiver.
Inthis paper, we proposeanew virtual representationfor space-
time channel sthat capturesthe essenceof channel-signal spacein-
teraction in time, frequency and space. It is a generalization of
the virtual representation for narrowband correlated MIMO chan-
nels introduced in [1]. Each physical scatterer can be associated
with aunigue Angle of Departure (AoD), Angle of Arrival (AoA),
delay, and Doppler shift. The virtual representation replaces the
actual physical scatterers with virtual scatterers associated with
fixed uniformly spaced AoD’s, AoA’s, delays and Doppler shifts
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on a four-dimensional (4D) grid. The grid spacings in the four
dimensions correspond to the resolutions in time, frequency and
the two spatial dimensions that are determined by the signaling
bandwidth, duration, and array apertures, respectively. The vir-
tual representation is a 4D Fourier seriesfor the time-varying fre-
quency responsechanne matrix, H (t, f), andyieldsmany power-
ful insights. First, under the assumption of uncorrelated scattering,
we show that H (¢, f) is a segment of a4D wide-sense stationary
(WSS) process and the virtual representation coefficients consti-
tute the corresponding uncorrelated spectral representation. Thus,
thevirtual representation capturesthe essential degreesof freedom
in the channel in temporal, spectral and spatial dimensions that in
turn determineits statistics, capacity and diversity. Second, viathe
concept of virtual scatterers, the virtual representation also yields
asimple and intuitively appealing interpretation of the scattering
environment and its effects on capacity [1]. Finally, the repre-
sentation induces a virtual partitioning of propagation paths that
explicitly reveals their contribution to channel capacity and diver-
sity. In particular, it unravels fundamental dependenciesin time,
frequency and space that enable accurate estimates of channel ca-
pacity and diversity.

Thenext section presentsageneral model for space-time chan-
nels. Section 3 introduces the virtual representation, including the
virtual path partitioning and its implications for channel statistics.
Section 4 discussesfundamental dependenciesbetween time, fre-
quency and space. Section 5 shows some numerical results that
confirm the insights afforded by the virtual framework.

2. A GENERAL MODEL FOR SPACE-TIME CHANNELS

Consider atransmitter array with P elements and areceiver array
with @ elements. We are interested in representing the space-time
channel over asignaling duration 7" and two-sided bandwidth WW.
In the absence of noise, the channel equationis

w2
:c(t):/ H(t, ))S(fHe’*™df, o<t <T, (1)

—w/2

where s(t) is the P-dimensional transmitted signal, S(f) is the
Fourier transform of s(¢), «(t) isthe @-dimensional received sig-
nal, and H (¢, f) denotesthe time-varying frequency responsema-
trix coupling the transmitter and receiver elements. We index en-
triesof H(¢, f) as H(i,k;t, f) : ¢ =0,1,---,Q -1, k =
0,1,---,P—1.

We focus on one-dimensional ULAs of antennas at the trans-
mitter and receiver and consider far-field scattering characteristics.
Let dr and d r denote the antenna spacings at the transmitter and
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receiver, respectively. The channel matrix can be describedviathe
array steering and response vectors given by

T

1 —jom _j2n(P—
aT(eT) = |:17 € 7?2 9T7"' , € s2m(P 1)9T]

VP
1
Va
whered is related to the AoA/AoD variable  (measured with re-
spect to the horizontal axis — seeFigure 1) asd = dsin(p)/A =
asin(p), A isthe wavelength of propagation, and o = d/X isthe
normalized antennaspacing. We restrict ourselvesto critical (A\/2)
spacing: oo = avr = 0.5. In this case, there is a one-to-one map-
ping betweend € [—0.5,0.5] and ¢ € [—=/2, 7 /2]. Theeffect of

larger antennaspacingsis discussedin detail in [1].
The channel matrix H (¢, f) can be generally modeled as

aR(HR)

—J2m0R
[, emon, ..

6—J2W(Q—1)9R] T 2

N

H(t7 f) = Z ﬁnaR(eR,n)aqg(eTyn)eﬂm’"te—ﬂ”"'nf 3)

n=1

whichcorrespondsto N propagationpaths, {8 r» € [St_, ST, ] C
[-0.5,0.5)} and {0r,n € [Sr_,Sr,] C [-0.5,0.5)} represent
the spatial angles (AoDS/A0AS) seen by the transmitter and re-
ceiver, respectively, {v,, € [—vps,vps]} and {7, € [0, mps]}
are the Doppler shifts and delays, respectively, and {3 .} are the
independent complex Gaussian path gains. s denotesthe delay
spread, vps denotesthe one-sided Doppler spread, and[S 7_, S, ]
and[Sr_, Sr, ] represent the angular spreads.

{SCATTERERS
o-n

TRANSMITTER RECEIVER
ARRAY SPATIAL MULTIPATH CHANNEL ARRAY

Fig. 1. A schematic illustrating thevirtual representation in the
spatial dimension. The virtual angles are fixed a priori and their
spacing definesthe spatial resolution. The channel is characterized
by the virtual coefficients, { Hv (g, p) = hq,p}, that couple the P
virtual transmit angles, {5, }, with the Q virtual receive angles,

{¢Rr.q}-

3. VIRTUAL CHANNEL REPRESENTATION

In (3), each propagation path is associated with an AoD, AoA, de-
lay and Doppler shift which can be arbitrarily distributed within
the angular, delay and Doppler spreads. Thevirtual representation
replaces the physical propagation paths with virtual ones corre-
sponding to fixed AoD’s, AoA’s, delays and Doppler shifts that
are determined by the spatial, temporal and spectral resolution af-
forded by the finite dimensional space-time signal space. The no-
tion of virtual anglesisillustrated in Figure 1. Thevirtual channel
representation can be expressed as

H(t,f) = > Hv(gpim,Dar(a/Q)at (p/P)
q,p,m,l
6]27‘r7nt/T6—]27'rlf/VV (4)

corresponding to fixed virtual AoD’s, AoA’s, delays and Doppler
shifts defined as

brp =5 P-Sp< Py, fro=3,0-S4<Qr (9
~ ~ l
= ~M<m<M, fi=g0SI<L (§)

where L = [Wrps] and M = [Twvps] denote the normalized
delay and Doppler spreads. P = [Sr_P|, Py = [S7, P],
Q- = [Sr_Q|, and Q4 = [Sr, Q] represent the normalized
angular spreads. Thevirtual channel coefficients{ H v (g, p; m, 1)}
characterizethevirtual representation. Thetransmit/receivevirtual
angle spacingsrepresent the spatial resolutionsthat are determined
by the array apertures (A8 = 1/P and Afr = 1/Q). The
virtual Doppler and delay spacings correspond to the spectral and
temporal resolutions and are determined by the signaling duration
and bandwidth (Av = 1/7 and AT = 1/W).

We now address the computation of the virtual representation
from H(t, f). Assume WLOG that P, ¢ are odd and define

P = (P—-1)/2, Q (@ — 1)/2. The representation (4) can
be decoupled as
H(t7 f) = ARHV(tv f)zg (7)
%R = [aR(_é/Q)7 Tt aR(é/Q)] (Q X Q)
Ar = [ar(=P/P),-,ar(P/P)] (P x P), (8)

where A ; and A are discrete Fourier transform matrices, as ev-
ident from (2) and (5).! The matrix Hyv (t, f)in(7) isthe partia
virtual representation with respect to space and can be computed
by beamforming in the direction of virtual angles

Hy(t,f) = ARH(t f)Ar

wherethe second equality further decomposesH v (¢, f) into com-
ponent matrices H v (m, ) corresponding to fixed virtual Doppler
shifts and delays, which can be computed from H v (¢, f) as

w2

—j2mmt/T ]27‘rlf/W
Hyvy(m,l) TW/ V[I/‘./gv (t, fe dtdf.
(10)

The elements of H v(m,!) are related to the physical mode! (3)
as

Hy(q,pim,l) = > Bufolfrn —a/Q)fF(01.n —p/P)

e—jTr(m—VnT)Sinc(m — ynT)SinC(l — W

) (11)

weresinc(z) = sin(#z)/(7z) and

—j2mhe __ — 27'r9Q Sll’l(ﬂ'Qe)
fold Q Z ’ - Qe ’ sin(w6) (12

Wenotethat f¢(8r), fp(f7), Sinc(Tv) and sinc(W ) get peaky
around the origin with increasing @, P, T and V.

INote that A and A7 contain al possible virtual angles, some of
which lie outside the angular spreads. H v (g, p; m,!) will be approxi-
mately zero for those angles.
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3.1. Virtual Path Partitioning

The virtual representation induces a partitioning of propagation
paths that is very insightful in determining their contribution to
capacity and diversity and to exposethe dependenciesbetween the
temporal, spectral and spatial degrees of freedom in the channel.
Define the following subsets of propagation paths

Sty = {n:(p—1/2)/P <brn <(p+1/2)/P} (13)
Srq = {n:(q—1/2)/Q <Orn <(q+1/2)/Q} (14
Som = {n:(m—=1/2)/T <v, <(m+1/2)/T} (15)
St = {n:(-1/2)/W <7 <(I4+1/2)/W}  (16)

corresponding to transmit spatia resolution, receive spatial reso-
lution, spectral resolution, and temporal resolution. Note that

USTVP :USR#Z = USV,m = Usr,l
P q m !

= Srp N Sre N Sum N Sru ={1,2,-- , N}.(17)

p,g,m,l

Then, H (¢, f) can be approximately expressed as

H(tvf) = Z |:

q,p,m;l

3 m}

n€5,p,m,i

aR(q/Q)a¥(p/P)€J2Trmt/T€_J2Trlf/W (18)

where S, p.m, = S7,pNSR,¢NSL,m NSy andthevirtual channel
coefficientsin (11) can be approximated as

> Bu (19)

n€5,p,m,i

Hv(q,p;m,l) =

Equation (19) statesthat H+v (g, p; m, ) is determined by the sum
of gains of all pathsthat lie in S¢p m, . The approximationsin
(18) and (19) get more accuratewith increasing P, Q, T and .

3.2. Channedl Statistics

One of the most important characteristicsof the virtual representa-
tionisthat { Hv (g, p; m, 1)} areapproximately uncorrelated under
the assumption of uncorrelated path gains: E[3,8%] = 028, _n/
where §,, denotesthe kronecker deltafunction and & 2 isthe power
in each path. This observationisdirectly evident from (19)

E[Hv(q,p;m, DHv (¢, p'im' )] =~

[ > ai:| 8g—g? O g Ot 611 (20)

n€5,p,m,i

but can also beinferred from (11). Thus, from (18) we have
Ru(Ai, Ak At Af) = E[H(i,k;t, HH (G Kt )]

2 —j2mgAL[/Q j2wpAk[P
E : Tq,p,m,1€ €

q,p,m;l

Q

6]27‘r7nAt/T6—]27'rlAf/VV (21)

whereAi =i —i , Ak =k -k At=t—t',Af = f— f',and
E[|Hv (g, p;m,1)[]
= Y onlfelbrn —a/Q)I|fp(61,n — p/P)

2
04q,p,m,l

|sinc(m — v, T)?|sinc(l — Wr,)|* (22)
~ > oo (23)
nGSq)p)m)l

is the power in Hv (q, p; m,1) and the approximation in (23) is
dueto virtual path partitioning. Relation (21) yields the insightful
conclusion that under the assumption of uncorrelated path gains,
H{(t, f) isasegment of a4D WSS process in the two spatial di-
mensions, time and frequency, and { # v (g, p; m, 1)} arethe corre-
sponding uncorrelated spectral representation. Furthermore, (23)
states that the power in Hv (g, p; m, 1) isequal to the sum of the
powersin the pathsthat liein S ,.»,;. We note that the extent of
correlation in space, frequency and time is inversely proportional
to the angular, delay and Doppler spreads, respectively.

4. DEPENDENCIESIN TIME, FREQUENCY AND SPACE

From (4) we may conclude that the total independent degrees of
freedom in the space-time channel are

Nor = (Qr = Q-+ (Py — P_+ 1)(L+1)(2M +1) (24

where (Q+ — Q- + 1)(P4 — P + 1) representsthe degrees of
freedomin spaceand (L + 1)(2M + 1) representsthe degreesin
time and frequency. However, this conclusion implicitly assumes
that the degrees of freedom in space, time and frequency are in-
dependent. We now use the notion of virtual path partitioning to
demonstrate fundamental dependencies between time, frequency
and space that cause the essential degrees of freedom to be less
than the upperbound in (24).

The dependenciesbetween time, frequency and space are due
to the fact that the delay and Doppler spreads are related to the
angular spreads. For given (q, p), Hv (g, p; m, 1) isnon-vanishing
over (I, m) between

L_(gp= Hirsnin Tn:| WJ v Lyap) = H:rgax Tn:| W-‘ (25)

9P 9P

M_i4p= Hirsninlln] TJ s Migp = "[rgaxun] T-‘ (26)

9P 9P

where S, , = Sr,q N S7,p. Consequently, (4) can be refined to
limit therangesof { and rn asafunction of (g, p) asaboveto reflect
the essential degrees of freedom in the channel

Li(a,p My (q,p)

NsT ess = Z Z Z

@GP 1=L_(q,p) M=M_(q,p)

< Ngr. 27)

Note that Ns7.e.c = Nsr in (24) if andonly if (Ly — L_ +
DMy — M_+4+1) = (L+1)(2M + 1) for dl (g, p) which
would seldom be true particularly for channels that are under-
spread (rpsvps < 1). Thisis because time/frequency selectiv-
ity exhibited by Hv (q, p; t, f) depends on the spatial resolution:
higher resolutions would result in less selectivity whereas lower
resolutions will result in higher selectivity. A SISO channel will
exhibit maximum time/frequency selectivity.
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Fig. 2. A schematic illustrating the dependence of delay and
Doppler shift on the virtual transmit and receive angles.

Figure 2 illustrates a simple scattering geometry to quantify
such dependencies. Consider a single scattering cluster at a dis-
tance Ry from the transmitter and R from the receiver. Sup-
pose that v denotes the relative speed between the transmitter
and the cluster and v r the relative speed between the receiver and
the cluster. Let A7 and A r denote the angular spreads, and A ,,
the “width” of the cluster. Viasimple geometric considerations, =
and v can be estimated for any given (8 r, 1) as

T:\/A%,+|RT9T/GT—RR9R/GR|2/C (28)

V:fmax,T\/1_6T2/a%“+fmax,R 1_6R2/05?% (29)

where ¢ denotesthe speed of light, fmax, 7 = v7/c and fraxr =
vr/c. We note the expression for 7 is stricly alowerbound since
multiple bounces[2] within the cluster may result in longer delays.

5. NUMERICAL RESULTS

We now present some numerical results to illustrate the effect of
time/frequency selectivity on capacity and the effect of number of
antennas on time/frequency selectivity of the channel. We simu-
lated asingle scattering cluster, asin Figure 2, with angular spreads
of Ar = Ar = 27/3 centered & (o1, 9r) = (0,0). We con-
sidered N = 100 propagation paths. We first generated N pairs
of angles, {¢ r,n, ¢, }, uniformly distributed within the angular
spreads to fix the scatterer positions. To simulate time/frequency
selectivity, we considered a temporal signal space with N, =
TW = 65 dimensions. We simulated three types of channels.
CH1 (flat) Rr = Rr = 1000m, fmax,R = fmax,T = 50 HZ,
W = 1MHz, T = 65us. CH 2 (medium selective): R = 8000m,
fmax = 400 Hz, W = 1 MHz, T = 65us. CH 3 (highly selec-
tive): R = 8000M, frax = 400 Hz, W = 10 MHz, T" = 6.5us.
Aw = 100min all cases. Both CH 1 and CH 2 havethe same T’
and W but CH 2 haslarger delay and Doppler spreadsand isthus
more selective. CH 3 hasthe same delay and Doppler spreads but
is even more selective than CH 2 dueto larger W (delay diversity
is easier to explait in this case). Channel realizations were gen-
erated using (3) viaiid complex Gaussian {3, }. Each realization
was normaizedto yield 3° 32 = PQ.

Figure 3 illustrates the effect of time/frequency selectivity on
outage capacity for P = @@ = 4 antennas. The capacity was nu-
merically computed using 200 independent channel realizations at
an SNR of 20dB (detailsto be reported el sewhere). Asevident, the
outage capacity curves get steeper (higher diversity) as the chan-
nel gets more selective. The ergodic capacity of all three channels
is approximately 21.8 bitss/Hz. Note that this is consistent with
the experimental results reported in [2] and in disagreement with
analytical results reported in [3] which suggested that increased
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Fig. 3. Comparison of the three channels illustrating the effect of
time/frequency selectivity on outage capacity.

delay spread can increase ergodic capacity. We can prove using
our framework that frequency selectivity does not increase ergodic
capacity and this apparent inconsistency with [3] is due to differ-
ent modeling assumptions used in [3] (details to be reported else-
where).

Figure 4 illustrates the dependenciesbetween time, frequency
and space. CH 2wassimulatedusing P = Q@ = 2and P =
@@ = 4 antennas. The figure shows contour plots of a subset of
o7 »m, asafunctionof (m, 1) for arepresentative (q, p). It isev-
ident that the delay-Doppler spread decreasesin the virtual spatial
domain for larger number of antennas, as predicted by our anal-
ysis. The number of significant a;pymyl provides an estimate for
Nsrefs in(27). Our simulationsyielded Nsr,.rr/QP = 4.51n
the 2-antennacase and 2.75 in the 4-antennacase, confirming that
time/frequency selectivity decreasesin the virtual spatial domain
with increasing number of antennas.

Fig. 4. Contour plots of the powers in a subset of non-vanishing
virtual delay-Doppler coefficients for CH 2 for a representative
virtual anglepair (q,p). @ Q=P =2. () P =Q = 4.
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