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Abstract be viewed as a mD extension to the RAnk Reduction Estimator

. e ) . (RARE) [4], originally developed for DOA estimation in partly
In this paper, a new approach to the multi-dimensional harmonic cgjibrated arrays. The method is computationally efficient due to
retrieval problem is proposed. The novel method is based oniis rooting-based implementation, makes explicit use of the rich
a multi-dimensional extension of the RAnk Reduction Estimator z-_p structure in the measurement data and therefore shows im-

(RARE), originally developed for DOA estimation in partly cali-  proved estimation performance compared to conventional search-
brated arrays. In th&-D RARE algorithm the frequency param-  free methods for mD frequency estimation.

eters in the various dimensions are sequentially estimates. The
dimensionality of the estimation problem and therefore the com-
putational load of the optimization procedure is successively re-
duced exploiting the rich multidimensional structure of the estima-
tion problem. This important property yields various benefits like
high estimation performance, weak identifiability conditions and
automatically associated parameter estimates. The performance
the algorithm is illustrated at the example of MIMO communica- T
tion channel estimation based on the double-directional channel |1, e?“D ... ?Mx=Yww.n) | contain the contributions of the
model [1]. Numerical examples based on simulated and measuredin harmonic in thekth dimension andM; denote the corre-
data recorded from the RUSK vector channel sounder at 2GHz aregponding sample size. The Khatri-Rao (column-wise Kronecker)
presented. product of matrix A and matrix B is defined as,A o B =

[a1 ® b1,a2 ® bs,...]), wherear ® by, is the Kronecker ma-
trix product of a, and b,. Introducing the parameter vector

2. SIGNAL MODEL

Consider a superposition df discrete timeK-D exponentials
corrupted by noise and leby, = [w(k,1),-..,w(,z)]” denote
0R‘he frequency parameter vector of tfiediscrete harmonics in
the kth dimension. Furthermore let, the vectby.(wk,)) =

1. INTRODUCTION

Q= |w],... ,wﬁ]T, the K-D signal model associated with the
Multi-dimensional harmonic retrieval problems arise in a large va- Narmonic retrieval problem can be formulated as
riety of important applications like estimation of a Multiple Input y(i) = HQ)e()) +n(i), i=1,...,N L

Multiple Output (MIMO) communication system where direction-
of-departure (DOD), direction of arrival (DOA), time delays of where thek -D exponential matrix
arrival (TDOA) and Doppler are jointly estimated. Also certain

signal separation problems in synthetic aperture radar, image mo- H(Q) = Hi(wi)oHsz(wz)o...oHg(wk) (2)
tion estimation and chemistry applications can be solved under this . s o
framework yapp also referred to as the steering matrix, is composed of the individ-
) . . L ual 1D exponential matrices

Numerous parametric and nonparametric estimation methods
have been proposed for the one-d_lmen5|onal exp_onentlal retngval Hi(wi) = [hk(w(k,l))7 T (w(k,L))] € C(MrxL) A3)
problem. Only few of these techniques allow a simple extension
to the multi-dimensional case at a reasonable computational loadfor & = 1,..., K, y(i) denotes the measurement vectof;)

[2]. Simple application of 1D results separately in each dimension stands for the complex envelope of theharmonics,n(i) is the
is only suboptimal in the sense that it does not exploit the benefits vector of additive Gaussian noise andis the number of snap-
inherent in the multi-dimensional (mD) structure, leading to diffi- shots. Equation (1) describes th&D harmonic retrieval prob-
culties in mutually associating the parameter estimates obtained inlem which is efficiently solved by the conventional ESPRIT algo-
the various dimensions and over-strict uniqueness conditions [3]. rithm [5] and the mD-ESPRIT algorithm [2] for the 1D and the
Contrariwise, many parametric high resolution methods specifi- mD case, respectively. In the following we derive a new search-
cally designed for the mD frequency estimation require mD, non- free eigenspace-based estimation method for the general case in
linear, and non convex optimization so that the computational cost (1) which yields highly accurate estimates of the parameters of in-
associated with the optimization procedure becomes prohibitively terest.
high. Let the data covariance matrix be given by

In this paper a novel eigenspace-based estimation method for
mD-exponential retrieval problems is proposed. The method can R = E {y(i)yH(i)} =EsAsE§ + EvANEN (4
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where(-)¥ denotes the Hermitian transpose, ¢} stands for
statistical expectation. The diagonal matricks € R(E*E)
and Ay € RM~-DX(M=L) contain the signal-subspace and
the noise-subspace eigenvaluesRf respectively. In turn, the
columns of the matrice®s € CM*™) andEy € CM*(M-L)

the dimension of the polynomial matrix is large [6]. In the follow-
ing we derive an equivalent formulation of (8) based on a RARE
matrix polynomial of reduced dimension.

Using a well known property of block matrix determinants we
can write (8) as

denote the corresponding signal-subspace and noise-subspace

eigenvectors fold = Hszl M;,. The finite sample estimates
are given by

N
S y(i)y" () =EsAsES + ExAxEx  (5)

i=1

R 1

N

3. THE K-D RARE ALGORITHM

The K-D spectral MUSIC algorithm yields minimum function val-
ues for the true parameter estimates, that is

WK )

= hM1/z1,...,1/2k)ENERh(z1,...,2) =0

Puusic (w1, - - -
(6)

wherez, = ¢/“* denotes théith exponential. Equation (6) rep-
resents a polynomial equation i variables which is generally

hard to solve. The true source solutions can be obtained from the

k-tuples{ (2(1,), Z(2,i)s - - -» 2(x,i)) } .., located on the unit circle
that root the MUSIC criterion. The manifold vector in (6) can
be represented as(z1, 22,...,2x) = T1i(z1)h1(z2,...,2K)
with fll(22, . ZK) = [hz(Zz) R...Q hK(ZK)] I= (c(ml x1)
Instead of solving the minimization problem (6) on the origi-
nal manifoldM £ {h(zi,...,2x) : |z1] = ... = |zx| = 1} we
propose to relax the optimization problem searching for solutions
on the so-called RARE manifoldf £ {h(z1,¢1): |z1| =1, }
for an arbitrary non-zero vecter; € C™*Y andh(z1,¢1) =
Tl(zl)cl WhereTl(zl) = [hl(zl) ®Im1], mi; = Hf:2 M,
and the(my x mq) identity matrixI,,. The relaxed MUSIC
criteria can now be formulated as

flT(l/zl, Cl)ENEf\]Iﬁ(Zl, 01)
chf(l/zl)ENE%Tl (21)61

1 By ,1(z1)er =0

Prare(z1,c1)

@)

whereB,, 1 (z1) £ T{(l/zl)ENE%T1(Z1) € Clm1xm1) de-
notes the RARE matrix polynomial. Interestingly, equation (7) has
very simple solutions in the exponenttal which are given by the
roots of the RARE polynomial

Prarr(21)])z =1 = det{Bm,,1(21)} =0 (8)

evaluated on the unit circle. It was proven in [4] that the solutions
{24}, to (8) and the solutions of the original MUSIC criteria
(6) are identical provided that the condition
L<mi(Mi—1)=M —mq 9)

is satisfied. In other words the true parameter vecatgrcan
uniquely be determined from the corresponding RARE poly-
nomial without any knowledge of the remaining parameters
w2,...,WK.

The computational cost required for expanding the determi-
nant of the RARE matrix polynomial becomes prohibitively high if

Prare(21)])2,)=1 = det{Bm, 1(21)}
det {TlT(l/zl)Tl(zl) - TlT(l/zl)EsEng(zl)}

Iy

(10)

I
1/L det { [ TT(1/2)Es
M/L det{BL,l(zl)} =0

E{T:(z)
T1 (1/21)T1(z1)

where A; = TT(1/21)T1(z1) is a constant diagonal matrix
andBL,l(Zl) £ I — Eng(Zl)Al_le(l/Zl)Es € (C(LXL)
denotes the RARE matrix polynomial of dimension equal to the
numberL of discrete exponentials.

The estimation of the remaining parameter vectosso w
is now straightforward. Due to the special structure of the steering
matrix (2) the various dimensions of the parameter space can be
interchanged. Corresponding RARE polynomial matrices,ito
zx can be formulated following similar considerations as above
and using an appropriate permutation of the columns of the signal
eigenvectors in (4). The parameter vectorsto w x are uniquely
determined from the roots of these matrix polynomials under
similar conditions as in (9).

A mayor obstacle emerging in this approach is the difficulty
of correctly associating the parameter estimates in the individual
dimensions. The parameter vectars . . ., wx are separately ob-
tained. The computational cost due to the pairing of the solutions
can be significant when the numbgérof superposed signals is
large and no efficient pairing procedure is available.

4. SUCCESSIVE DIMENSION REDUCTION

Assume that harmonics correspond to the same frequency com-
ponentw;. In this case the polynomial equation in (10) yields a
signal root2; of multiplicity 2n located on the unit circle In-
sertingz; into (6) and using representati®(z1, 22, ...,2x) =
T1(21)hi(za,. .., 2x) we obtain the(KX — 1)-D root-MUSIC
polynomial equation

Pyusic(wa, -« -y wik |@1)
h}i21722, .. .,ZK)ENE%h(zA’l,Zz, .. .,ZK)

FLfI(ZQ, ey ZK)Bml,l(ﬁl)ill (22, ey ZK) =0 (11)

Comparing (6) and (11) it becomes apparent that the RARE
concept enables us to decompose #eD polynomial root-

ing problem into multiple (K — 1)-D polynomial rooting
problems which then can be solved sequentially. That is,
the signal rootz(;; inserted into the originalK-D root-
MUSIC function reduces the dimensionality of the root-
ing problem by one. Generalizing the procedure above
and using the representatiofh,(zp) ® ... ® hk(zk)]
Tp(2p) [hpt1(zpt1) ® ... @ hic(zx)]  with T'p(2)

INote, that the RARE polynomial is self-reciprocalap, so that ifz1
is a root therl /2 is also a root of the RARE polynomial.
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Fig. 1. RMSE'’s of estimates versus SNR.

(hp(zp) ® Im,) and m, = HkK:(p+1) My, it is straight-
forward to decompose eactK — p)-D polynomial rooting
problem into multiple (K — p — 1)-D polynomial rooting

Fig. 2. Map of measurement route in Weikendorf.

(13), forVi. Setp = p + 1.

Post processing: From all K-tuples obtained in the recursion select

problems in a recursive procedure. Given the parameter estimateghe L signal rootK-tuples(2(1,1),. .-, Zx,p) for i = 1,...,L

21, ... Z(p—1) the RARE matrix polynomial irx,, becomes
PRARE,p(2p)||z,|=1 =det {Bmp,p(zﬂély e 2(10—1))} 12)
were the matrix polynomial

Bmp,p(zp"’:'la .- 2p)

= Tg(l/zp)Bmﬁ,ﬁ(2ﬁ|21: s 2(1)—2))Tp(zp) (13)

e Cm»xm2) for 5 = p — 1 is recursively computed. According
to (10) we have

PRARE,p(Zp)sz\Zl = det, {Bmp,p(zp\él, .. 2(1,,1))}

1/Ldet{{ TT(1/£,7)ESP E?,pi":(zp) ]}

M/Ldet{I EY T,(2)A; ' TT (1/zp)ESp}
M/Ldet{BL,p(Zp|Z1, .. .Z(p,l))} =0 (14)

where Ap = TT(l/zp)A(p_l)T(zp), Es,p =
(R1(2) @ ... @ hy_1(3p1)) @ Im, | Bs € CmoxD)
and the matrix polynomial B ,(zp|21,...2p—1)) =
I-Ef T,(2,)A, ' T (1/2,)Es,p € CE*E)

Due to noise effects in the realistic case the signal reet®
z i evaluated from (10) and (14) fér= 1, ..., K, are displaced
from its ideal positions on the unit circle. In the following we
consider only the roots inside the unit circle.

4.1. Implementation

Initialization: Compute the eigendecomposition & to obtain
the matricesEs and Ex. Root the polynomial in (10) and
select theL largest rootsé(; 1y, ..., 2x1,). ComputeEs > for

{2(1,1)}{;1. Setp = 2.

Recursion: Given the(p — 1)-tuples{ (21,4, - - -, 2p-1 ,))}I
of multiplicity n(,—_ ;) , determine the,_, ;) Iargest roots of

with maximumr; = 1/K Zszl |Z(k,1)|. Alternatively, select the

L signal K -tuples that minimize thé&-D MUSIC function in (6).
Compute estimates of the parameter ve€ofrom the L signal

root K-tuples.

Remark: In each recursion step, the multiplicity of the roots can
easily be determined from clustering the mD frequency estimates
according to their estimated mD separation angle obtained in the
previous recursions. Without loss of generality and independently
from the true frequency parameters the multiplicity of each peot
tuple (£¢1,4), .. ., 2(p,5) Can also be chosen ag = L. However,
overestimating the multiplicity of the roots increases the number of
polynomials that need to be rooted in each recursion and therefore
augments the computational complexity of the algorithm signifi-
cantly.

5. SSIMULATION RESULTS

5.1. Synthetic Data

In this section simulation results using synthetic data are pre-
sented. Computer simulations are performed for the 3D case with
sample sizes\l; = M, = M3 = 5. The (5° x 5%) data co-
variance matrix is computed frofV = 200 snapshots and a
number of L = 3 equi-powered exponentials is assumed with
the frequency parametess; = (0.557,0.7197,0.9067), wao =
(0.417,0.7777,0.2767) and ws = (0.34m,0.9067,0.3587).

The RMSE of the parameter estimates, w» andw; obtained by

the K-D RARE algorithm averaged over 100 simulation runs are
plotted versus the SNR in Figure 1. A comparison to the individual
CRBs reveals that the new method yields estimation performance
close to the optimal bound.

5.2. Measurement Data

The measurement data used for this paper was recorded during a
measurement campaign in Weikendorf, a suburban area in a small
town north of Vienna in autumn 2001. Measurements were per-
formed by a vector channel sounder RUSK ATM, manufactured
by MEDAV [1]. The sounder operated at a center frequency of 2

IV - 646




20 ‘ ‘ ‘ ‘ 0.6 ‘ ‘ ‘ ‘ 1
15- I
0.55 , .
10f sig ,
AR
= " 1 2 0.5 1
= ] s <
< OF ] o] .
o . E Ve e . . o
a -5t ' | 0.45- . 4
3 L]
-10 . . . 8 . *
: 0.4r % % ° R .
-15+ ' k! e
2% 10 20 30 40 50 03% 10 20 30 40 50
TIME [s] TIME [s]
Fig. 3. 3D-RARE DOA estimates versus time. Fig. 4. 3D-RARE TDOA estimates versus time.

GHz with an output power of 2 Watt and a transmitted signal band- of the K-D measurement model and the estimates of the param-
width of 120 MHz. At the mobile station a uniform circular array ~ eters of interest are automatically associated. Simulation results
composed of 15 monopoles arranged at an inter-element spacind.)ased on synthetic and measured data of a MIMO communication
of 0.43\ was mounted on top of a small trolley at a height of about channel underline the strong performance of the new approach.
1.5m. At the receiver site a uniform linear arfasomposed of 8
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