
MULTI-DIMENSIONAL HARMONIC ESTIMATION USING�-D RARE IN APPLICATION
TO MIMO CHANNEL ESTIMATION

Marius Pesavento C.F. Mecklenbräuker Johann F. Böhme
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Abstract

In this paper, a new approach to the multi-dimensional harmonic
retrieval problem is proposed. The novel method is based on
a multi-dimensional extension of the RAnk Reduction Estimator
(RARE), originally developed for DOA estimation in partly cali-
brated arrays. In the�-D RARE algorithm the frequency param-
eters in the various dimensions are sequentially estimates. The
dimensionality of the estimation problem and therefore the com-
putational load of the optimization procedure is successively re-
duced exploiting the rich multidimensional structure of the estima-
tion problem. This important property yields various benefits like
high estimation performance, weak identifiability conditions and
automatically associated parameter estimates. The performance of
the algorithm is illustrated at the example of MIMO communica-
tion channel estimation based on the double-directional channel
model [1]. Numerical examples based on simulated and measured
data recorded from the RUSK vector channel sounder at 2GHz are
presented.

1. INTRODUCTION

Multi-dimensional harmonic retrieval problems arise in a large va-
riety of important applications like estimation of a Multiple Input
Multiple Output (MIMO) communication system where direction-
of-departure (DOD), direction of arrival (DOA), time delays of
arrival (TDOA) and Doppler are jointly estimated. Also certain
signal separation problems in synthetic aperture radar, image mo-
tion estimation and chemistry applications can be solved under this
framework.

Numerous parametric and nonparametric estimation methods
have been proposed for the one-dimensional exponential retrieval
problem. Only few of these techniques allow a simple extension
to the multi-dimensional case at a reasonable computational load
[2]. Simple application of 1D results separately in each dimension
is only suboptimal in the sense that it does not exploit the benefits
inherent in the multi-dimensional (mD) structure, leading to diffi-
culties in mutually associating the parameter estimates obtained in
the various dimensions and over-strict uniqueness conditions [3].
Contrariwise, many parametric high resolution methods specifi-
cally designed for the mD frequency estimation require mD, non-
linear, and non convex optimization so that the computational cost
associated with the optimization procedure becomes prohibitively
high.

In this paper a novel eigenspace-based estimation method for
mD-exponential retrieval problems is proposed. The method can

be viewed as a mD extension to the RAnk Reduction Estimator
(RARE) [4], originally developed for DOA estimation in partly
calibrated arrays. The method is computationally efficient due to
its rooting-based implementation, makes explicit use of the rich
�-D structure in the measurement data and therefore shows im-
proved estimation performance compared to conventional search-
free methods for mD frequency estimation.

2. SIGNAL MODEL

Consider a superposition of� discrete time�-D exponentials
corrupted by noise and let�� � �������� � � � � �������

� denote
the frequency parameter vector of the� discrete harmonics in
the �th dimension. Furthermore let, the vector���������� ��
�� �������� � � � � � ��������������

��
contain the contributions of the

�th harmonic in the�th dimension and	� denote the corre-
sponding sample size. The Khatri-Rao (column-wise Kronecker)
product of matrix� and matrix� is defined as,� Æ � �
��� � ����� � ��� � � ��), where�� � �� is the Kronecker ma-
trix product of �� and ��. Introducing the parameter vector
� �

�
��� � � � � ��

�
	

��
, the�-D signal model associated with the

harmonic retrieval problem can be formulated as

��
� �����	�
� � 
�
�� 
 � �� � � � � � (1)

where the�-D exponential matrix

���� � ������ Æ������ Æ � � � Æ�	��	� (2)

also referred to as the steering matrix, is composed of the individ-
ual 1D exponential matrices

������ �
�
����������� � � � �����������

�
� �

������ (3)

for � � �� � � � � �, ��
� denotes the measurement vector,	�
�
stands for the complex envelope of the� harmonics,
�
� is the
vector of additive Gaussian noise and� is the number of snap-
shots. Equation (1) describes the�-D harmonic retrieval prob-
lem which is efficiently solved by the conventional ESPRIT algo-
rithm [5] and the mD-ESPRIT algorithm [2] for the 1D and the
mD case, respectively. In the following we derive a new search-
free eigenspace-based estimation method for the general case in
(1) which yields highly accurate estimates of the parameters of in-
terest.
Let the data covariance matrix be given by

� � �
�
��
��
�
�

�
������
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� (4)
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where���
 denotes the Hermitian transpose, and� ��� stands for
statistical expectation. The diagonal matrices�� � �

�����

and �� � �
����������� contain the signal-subspace and

the noise-subspace eigenvalues of�, respectively. In turn, the
columns of the matrices�� � �

����� and�� � �
�������

denote the corresponding signal-subspace and noise-subspace
eigenvectors for	 �

�	

���	�. The finite sample estimates
are given by

	� �
�

�

��

��

��
��
�
�� 	��
	�� 	�




� � 	��
	�� 	�




� (5)

3. THE �-D RARE ALGORITHM

The�-D spectral MUSIC algorithm yields minimum function val-
ues for the true parameter estimates, that is

����	
���� � � � � �	�

� �
���
���� � �� �
�	����



������� � �� �	� � 
 (6)

where�� � ���� denotes the�th exponential. Equation (6) rep-
resents a polynomial equation in� variables which is generally
hard to solve. The true source solutions can be obtained from the
�-tuples

	
�����
�� ����
�� � � � � ��	�
��


�

��

located on the unit circle
that root the MUSIC criterion. The manifold vector in (6) can
be represented as����� ��� � � � � �	� � 
 ������������ � � � � �	�

with ������� � � � � �	� � �������� � � �� �	��	�� � �
������.

Instead of solving the minimization problem (6) on the origi-
nal manifold� � ������ � � � � �	� � ���� � � � � � ��	 � � �� we
propose to relax the optimization problem searching for solutions
on the so-called RARE manifold
� �

	

����� 	�� � ���� � ��



for an arbitrary non-zero vector	� � �

������ and 
����� 	�� �


 �����	� where
 ����� � �������� ��� �, �� �
�	

���	�

and the��� � ��� identity matrix��� . The relaxed MUSIC
criteria can now be formulated as
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 (7)

where 
��������� � 

�
� ��
������



�
 ����� � �

������� de-
notes the RARE matrix polynomial. Interestingly, equation (7) has
very simple solutions in the exponential�� which are given by the
roots of the RARE polynomial

����
����������� � ���� 
���������� � 
 (8)

evaluated on the unit circle. It was proven in [4] that the solutions	
������


�
���

to (8) and the solutions of the original MUSIC criteria
(6) are identical provided that the condition

� � ���	� 	 �� � 	 	�� (9)

is satisfied. In other words the true parameter vector�� can
uniquely be determined from the corresponding RARE poly-
nomial without any knowledge of the remaining parameters
��� � � � ��	 .

The computational cost required for expanding the determi-
nant of the RARE matrix polynomial becomes prohibitively high if

the dimension of the polynomial matrix is large [6]. In the follow-
ing we derive an equivalent formulation of (8) based on a RARE
matrix polynomial of reduced dimension.

Using a well known property of block matrix determinants we
can write (8) as
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where�� � 
 �
� ��
���
 ����� is a constant diagonal matrix

and�������� � � 	 �

� 
 ������

��
� 
 �

� ��
����� � �
�����

denotes the RARE matrix polynomial of dimension equal to the
number� of discrete exponentials.

The estimation of the remaining parameter vectors�� to�	
is now straightforward. Due to the special structure of the steering
matrix (2) the various dimensions of the parameter space can be
interchanged. Corresponding RARE polynomial matrices in�� to
�	 can be formulated following similar considerations as above
and using an appropriate permutation of the columns of the signal
eigenvectors in (4). The parameter vectors�� to�	 are uniquely
determined from the roots of these matrix polynomials under
similar conditions as in (9).

A mayor obstacle emerging in this approach is the difficulty
of correctly associating the parameter estimates in the individual
dimensions. The parameter vectors��� � � � ��	 are separately ob-
tained. The computational cost due to the pairing of the solutions
can be significant when the number� of superposed signals is
large and no efficient pairing procedure is available.

4. SUCCESSIVE DIMENSION REDUCTION

Assume that� harmonics correspond to the same frequency com-
ponent��. In this case the polynomial equation in (10) yields a
signal root	�� of multiplicity �� located on the unit circle1. In-
serting	�� into (6) and using representation��	��� ��� � � � � �	� �


 ��	���������� � � � � �	� we obtain the�� 	 ��-D root-MUSIC
polynomial equation

����	
���� � � � � �	 �	���

� �

�	��� ��� � � � � �	����



���	��� ��� � � � � �	�

� ��



����� � � � � �	� 
������	���
������� � � � � �	� � 
 (11)

Comparing (6) and (11) it becomes apparent that the RARE
concept enables us to decompose the�-D polynomial root-
ing problem into multiple �� 	 ��-D polynomial rooting
problems which then can be solved sequentially. That is,
the signal root ����
� inserted into the original�-D root-
MUSIC function reduces the dimensionality of the root-
ing problem by one. Generalizing the procedure above
and using the representation�������� � � �� �	��	�� �

 ����� ������������ � � �� �	��	�� with 
 ����� �

1Note, that the RARE polynomial is self-reciprocal in��, so that if��
is a root then����� is also a root of the RARE polynomial.
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Fig. 1. RMSE’s of estimates versus SNR.

������� � ���� and �� �
�	

�������	�, it is straight-
forward to decompose each�� 	 ��-D polynomial rooting
problem into multiple �� 	 � 	 ��-D polynomial rooting
problems in a recursive procedure. Given the parameter estimates
	��� � � � 	������ the RARE matrix polynomial in�� becomes

����
�����������������
	

���������	��� � � � 	�������



(12)

were the matrix polynomial


���������	��� � � � 	����

� 

�
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 ����� (13)

� �
������� for �� � � 	 � is recursively computed. According

to (10) we have

����
������������� � ���
	

���������	��� � � � 	�������




� �
����

��
� �


���
 �����

 �
� ��
������� ��


�

� 	
����
�
�	�


���
 ������
��
� 


�
� ��
�������

�
� 	
�������������	��� � � � 	�������� � 
 (14)

where �� � 
 ���
���������
 ����, ���� ��
���	���� � � �� �����	�������� ���

�

�� � �

������,
and the matrix polynomial ��������	��� � � � 	������� �

�	�

���
 ������

��
� 
 �

� ��
������� � �
����� .

Due to noise effects in the realistic case the signal roots�� to
�	 evaluated from (10) and (14) for� � �� � � � ��, are displaced
from its ideal positions on the unit circle. In the following we
consider only the roots inside the unit circle.

4.1. Implementation

Initialization: Compute the eigendecomposition of	� to obtain
the matrices	�� and 	�� . Root the polynomial in (10) and
select the� largest roots	������� � � � � 	������. Compute���� for	
	������


�
���

. Set� � �.

Recursion: Given the�� 	 ��-tuples
	
�	����
�� � � � � 	������
��


�

��

of multiplicity ������
� , determine the������
� largest roots of

Rx

Tx
Tunnel

Scatterer

Fig. 2. Map of measurement route in Weikendorf.

(13), for

. Set� � �� �.

Post processing: From all�-tuples obtained in the recursion select
the� signal root�-tuples�	������� � � � � 	��	���� for � � �� � � � � �

with maximum�� � �
�
�	

��� �	�������. Alternatively, select the
� signal�-tuples that minimize the�-D MUSIC function in (6).
Compute estimates of the parameter vector	� from the� signal
root�-tuples.
Remark: In each recursion step, the multiplicity of the roots can
easily be determined from clustering the mD frequency estimates
according to their estimated mD separation angle obtained in the
previous recursions. Without loss of generality and independently
from the true frequency parameters the multiplicity of each root�-
tuple�	����
�� � � � � 	����
�� can also be chosen as�
 � �. However,
overestimating the multiplicity of the roots increases the number of
polynomials that need to be rooted in each recursion and therefore
augments the computational complexity of the algorithm signifi-
cantly.

5. SIMULATION RESULTS

5.1. Synthetic Data

In this section simulation results using synthetic data are pre-
sented. Computer simulations are performed for the 3D case with
sample sizes	� � 	� � 	� � �. The ��� � ��� data co-
variance matrix is computed from� � �

 snapshots and a
number of� � � equi-powered exponentials is assumed with
the frequency parameters�� � �
����� 
������ 
��
���, �� �
�
����� 
������ 
������ and �� � �
����� 
��
��� 
������.
The RMSE of the parameter estimates	��, 	�� and	�� obtained by
the�-D RARE algorithm averaged over 100 simulation runs are
plotted versus the SNR in Figure 1. A comparison to the individual
CRBs reveals that the new method yields estimation performance
close to the optimal bound.

5.2. Measurement Data

The measurement data used for this paper was recorded during a
measurement campaign in Weikendorf, a suburban area in a small
town north of Vienna in autumn 2001. Measurements were per-
formed by a vector channel sounder RUSK ATM, manufactured
by MEDAV [1]. The sounder operated at a center frequency of 2

IV - 646

➡ ➡



0 10 20 30 40 50
−20

−15

−10

−5

0

5

10

15

20

TIME [s]

D
O

A
 [d

eg
]

Fig. 3. 3D-RARE DOA estimates versus time.

GHz with an output power of 2 Watt and a transmitted signal band-
width of 120 MHz. At the mobile station a uniform circular array
composed of 15 monopoles arranged at an inter-element spacing
of 0.43� was mounted on top of a small trolley at a height of about
1.5m. At the receiver site a uniform linear array2 composed of 8
elements with half wavelength distance between adjacent sensors
was mounted on a lift in about 20m height. With above arrange-
ment, consecutive sets of the��� � �� individual transfer func-
tions, cross-multiplexed in time, were measured from correlation
analysis of the received and the transmitted signal. The acquisi-
tion period of one snapshot was limited to����� corresponding to
a maximum path length of about 1km. During the measurements
the receiver was moved at speeds of about 5km/h on the sidewalk.
Rx-position and Tx-position, as well as the motion of the trans-
mitter are marked in the site map in Figure 2. The transmitter was
passing through a pedestrian tunnel approximately between times
� � �� s and� � �
 s of the measurement run. TDOA and DOA
estimates obtained with 3D RARE are displayed in Figure 3 and
Figure 4 relative to the orientation of the array.

The results show that during the first 25 seconds the propaga-
tion scenario is dominated by a strong line-of-sight component sur-
rounded by local scattering pathes from trees and buildings. The
trace of the DOA estimates in Figure 3 and also the corresponding
TDOA estimates match exactly the motion of the transmitter de-
picted in Figure 2 for the direct path. At time 25 the trolley reaches
the pedestrian tunnel and a second path resulting from scattering
at the building (see Figure 2) appears at a DOA of approximately
	��Æ. This path corresponds to a significantly larger access delay
of about 0.55 to 0.58��. By the time the Tx moves out of the tun-
nel the dominant LOS component with local scattering is newly
tracked by the 3D-RARE algorithm.

6. SUMMARY AND CONCLUSIONS

A novel method for�-D harmonic exponential estimation has
been derived as a multi-dimensional extension of the conventional
RARE algorithm. High resolution frequency parameter estimates
are obtained from the proposed method in a search-free procedure
at low computational complexity. The parameters in the various di-
mensions are independently estimated exploiting the rich structure

2provided by T-NOVA, Germany
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Fig. 4. 3D-RARE TDOA estimates versus time.

of the�-D measurement model and the estimates of the param-
eters of interest are automatically associated. Simulation results
based on synthetic and measured data of a MIMO communication
channel underline the strong performance of the new approach.
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“Direction finding in partly calibrated arrays composed of
nonidentical subarrays: a computationally efficient algorithm
for the rank reduction (RARE) estimator,”Proc. Statistical
Signal Processing Workshop, pp. 536 -539, Singapore, Aug.
2001.

[7] H. Hofstetter, Ingo Viering, and Wolfgang Utschick, “Eval-
uation of sub-urban measurements by eigenvalue statistics,”
Proc. 1st COST-273 Workshop on MIMO Measurements, Es-
poo, Finland, May 28-29, 2002.

IV - 647

➡ ➠


