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ABSTRACT

A novel adaptive beamforming technique is proposed for
wirel ess communication application based on the minimum
bit error rate (MBER) criterion. It is shown that the MBER
approach provides significant performance gain in terms of
smaller bit error rate (BER) over the standard minimum
mean sguare error (MMSE) approach. Using the classi-
cal Parzen window estimate of probability density function
(p.d.f.), both the block-data and sampl e-by-sample adaptive
implementations of the MBER solution are devel oped.

1. INTRODUCTION

Spatial processing with adaptive antenna array has shown
real promisefor substantial capacity enhancement in mobile
communication [1]-{5]. Adaptive beamforming can sepa-
rate signal's transmitted on the same carrier frequency, pro-
vided that they are separated in the spatial domain. The
beamforming processing, which combines the signals re-
ceived by the different elements of an antennaarray to form
asingle output, is classically done by minimizing the mean
square error between the desired and actual array outputs.
However, for a communication system, it is the BER that
really matters. We propose anovel beamforming technique
based on minimizing the system BER. Adopting Parzen win-
dow or kernel density estimation [6]-{8] to approximate
the p.d.f. of the beamformer output, a block-data adaptive
MBER algorithm is derived. Thisisthen further simplified
to develop a stochastic gradient adaptive MBER algorithm
called the approximate least bit error rate (ALBER).

2. SYSTEM MODEL

The system consists of M users (sources), and each user
transmits a binary phase shift keying signal on the same car-
rier frequency w = 27 f. The baseband signal of user i is
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where b;(k) € {£1} and A? is user i signal power. The
source 1 is the desired user and the other sources are in-
terfering users. The linear antenna array consists of L uni-
formly spaced elements, and signals at the antenna array are

DC

=z(k) +m(k), 1<I<L, @)
wheret; (6;) istherelativetime delay at element [ for source
i, 0; is the direction of arrival for source i, and n,(k) is
a complex white Gaussian noise with zero mean and vari-
ance E[|n;(k)|*] = 202. Thedesired signal to noiseratiois
SNR= A4%/202 and thed&ared signal to interferer i ratiois
SIR; = A%/A?%, for2 < i < M. Invector form, the array
input x(k) = [z1(k) - - - 21 (k)]T can be expressed as

x(k) = x(k) + n(k) = Pb(k) + n(k) €)

where E[n(k)n’ (k)] = 2021, the system matrix P =
[A1s; - - - Aprsg] with the steering vector for sourcei s; =
[exp(jwt1(6;)) - - -exp(jwt (6;))]1, and thebit vector b(k)
= [bo(k)- by (k)]T. Notethat x(k) € X £ {x, =
Pb,, 1 < ¢ < Ny}, where N, = 2M andb,, 1 < g < N,
are all the possible sequences of b(k).

exp (jwt;(6:)) + ni(k)

The beamformer output is
y(k) = wx(k) = g(k) + e(k) 4

where w is the complex beamformer weight vector, and
e(k) = wln(k) is Gaussian with zero mean and E||e(k) |?]
= 202wl w. The estimate of the transmitted bit b, (k) is

bi(k) = sgn(yr(k)) ©)
whereyr (k) = R[y(k)] and sgn(-) the sign function. Note

that j(k) € ¥ = {f, = wlx,, 1 < q < N;}. Thus,
yr (k) can only take values from the set

Vi 2 (Urq = Rlg), 1<q <N} ©)
which can be divided into the two subsets

Vi 2 (gE) € Yt bi(k) = £1). )
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3. MBER BEAMFORMING SOLUTION

Thep.d.f. of yr(k) is

Ny _ 2
_ 1 (YR —YR,q)
plyr) = Nov/ImoZw i q;exp ( 2o whw
8
and it can be shown that the BER is given by
1 Ny
Pp(w) = 3= Q (g4:+(W)) (9)
sb =1

where N, = N;/2 isthe number of the pointsin Y,

Sgn(bq,l)ﬂgq)
gq,-&-(w) = " )
onVWHW

(10)

and b, ; isthefirst element of b, related to the desired user.
Note that the BER is invariant to a positive scaling of w.

Alternatively, the BER can be calculated using y}? .

The MBER beamforming solution is then defined as

WMBER — arg min PE (W) (11)
The gradient of Pr(w) with respecttow is
2
Ny _(+)
1 (yR,q)
VPg(w) = exp | —————
(W) 2NV 2mo,VWHEwW qzzjl 202wHw
—=(+)
yR’ w —(+
xsgn(bg1) (w;w - %! )> i (12)

The optimization problem (11) can be solved for iteratively
using asimplified conjugated gradient algorithm [9],[10].

4. ADAPTIVE MBER BEAMFORMING

Givenablock of K trainingsamples {x(k), b, (k)}, aParzen
window estimate of the p.d.f. (8) is given by:

1 > (yr — yr (k)
p(yr) NI ; exp ( S Ewiw >

(13
where the kernel width p,, is related to the noise standard
deviation o,,. Fromthisestimated p.d.f., the estimated BER
isgiven by

Pu(w) = 2 32 Q (31 (w) (14)

k=1

with
sen(bu (k))yn (k)

pnVWHw

gr(w) = (15)

The gradient of Pp(w) is

V Pg(w)

2
(50
2K\2mpVwHw = 2ppwHw

- x(k)) .

By substituting VP (w) with VPg(w) in the conjugate
gradient updating mechanism, a block-data adaptive MBER
algorithmisreadily obtained. The step size 4 and the kernel
width p,, arethe two algorithm parameters.

xsgn(br (k) (M

wHw

(16)

An alternative Parzen window estimate is given by

K

N o (R~ yr(k))?
and an approximation of the BER is
. 1 K
Pg(w) = T Z Q (gr(w)) (18)
k=1
with
G (w) = sgn(bl(;c))yR(k)_ (19)

This approximation is valid provided that the width p,, is
chosen appropriately. Adopting this approach and consid-
ering sample-by-sample adaptation leads to the stochastic
gradient adaptive MBER algorithm called ALBER:

sen(b () (_uhh)
N p( > ((kz)é)

This ALBER algorithm has a similar computational com-
plexity to the very simple least mean square algorithm.

wk+1)=wk)+u
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Figure 1. Locations of the desired source and the interfering
sources with respect to the three-element linear array with A/2
element spacing, A being the wavelength.
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Figure 2: Comparison of bit error rate performance.
5. SSIMULATION STUDY

The example consisted of six sources and a three-element
antenna array. Fig. 1 shows the locations of the desired
source and the interfering sources graphically. Fig. 2 com-
paresthe BER performance of the MBER solution with that
of the MM SE solution under two different conditions: (a) the
desired user and al the five interfering sources had equal
power, and (b) the desired user and the interfering sources
2,4,5,6 had equal power, but the interfering source 3 had
6 dB more power than the desired user. Under the condition
givenin Fig. 2 (b), the MM SE beamformer had avery high
error rate floor of above % The reason for this was investi-
gated. Given SNR= 14 dB, SIR; = 0 dB fori = 2,4,5,6
and SIR3; = —6 dB, Fig. 3 compares the conditiona p.d.f.
given by (k) = +1 of the MMSE beamformer with that of
the MBER beamformer, where the beamformer weight vec-
tor had been normalized to a unit length. It can be seen that
under the given condition the resulting yl(;) and y}j) for
the MM SE beamforming were linearly inseparable. There
were Ny, = 32 pointsin y(+>, and a cluster of four points
was on the wrong side of the decision boundary y g = 0 for
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Figure 3: Conditional probability density function of beamformer
given by (k) = +1. SNR= 14 dB, SIR; = 0 dB for i = 2,4, 5,6,
and SIR; = —6 dB.

the MM SE beamforming.

Performance of the block-data gradient adaptive MBER al-
gorithm was next studied. Fig. 4 illustrates the convergence
rates of the algorithm given SNR= 14 dB, SIR; = 0 dB
for 2 < ¢ < 6 and the two different initial weight vec-
tors. It can be seen that this block-data adaptive MBER al-
gorithm generally converged rapidly. As the BER surface
is highly complicated, the initial condition will influence
convergence rate. We have found out that the MMSE so-
lution wynvse istypically not agood initial choicein terms
of convergence rate. Performance of the stochastic gradi-
ent adaptive MBER algorithm was a so investigated. Fig. 5
shows the learning curves of the ALBER algorithm under
the same conditions of Fig. 4, where DD denotes decision-
directed adaptation with b, (k) substituting b1 (k). It can
be seen that the ALBER algorithm had a reasonable con-
vergence speed. Note that the steady-state BER misadjust-
ment was higher when the initial weight vector was set to
wMMSE, compared with the other initial condition.

6. CONCLUSIONS

An adaptive MBER beamforming technique has been pro-
posed. It has been demonstrated that the MBER beam-
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Figure 4. Convergence rates of block-data adaptive gradient
MBER algorithm. SNR= 14 dB and SIR; = 0 dB for 2 < i < 6.

(b) Initial wo = [0.1 4 50.0 0.1 + j0.0 0.1+ 50.0]7,
p=0.02 and p2 = 0.08.

Figure 5: Learning curves of stochastic gradient adaptive MBER
algorithm averaged over 30 runs. SNR= 14 dB and SIR; = 0 dB
for2 <i <6.

Block size K = 200, u = 0.6 and p2 = 402 = 0.08.

former utilizes the system resource more intelligently than
[3] L. C. Godara, “Applications of antenna arrays to mobile

the standard MM SE beamformer and, consequently, achieves
a better performancein terms of asmaller BER. The results
also suggest that the MBER solution is robust to the near-
far effect. Adaptive implementation of the MBER beam-
forming solution has been developed based on the classical
approach of Parzen window estimate for the p.d.f. of the
beamformer output. A block-data conjugate gradient adap-
tive MBER agorithm has been shown to converge rapidly
and requires a reasonably small block size to accurately ap-
proximate the theoretical MBER solution. A LMS-style
stochastic gradient adaptive MBER algorithm called the AL -
BER has been shown to perform well. Current work isin-
vestigating the extension of the proposed adaptive MBER
beamforming to other modulation schemes.
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