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ABSTRACT
In wireless communications the fading multipath channel
attenuates and distorts the transmitted signal. This makes
equalization of the frequency selective channel of utmost
importance. To exploit the full diversity provided by the
multipath channel, maximum likelihood (ML) decoding is
usually employed, which is computationally complex. In
this paper we show that a specific linear zero-forcing equal-
izer is capable of benefitting from maximum multipath di-
versity in systems where the transmitted blocks are sep-
arated by zero guard intervals of length greater than the
channel length (the well-known trailing zeros approach [6]).
Furthermore, we exploit the banded Toeplitz structure of the
channel matrix to reduce the complexity of the equalization
process, and quantify the reduction in complexity. Simula-
tions corroborate our results.

1. INTRODUCTION AND SYSTEM MODEL

In wireless communications multipath propagation causes
the transmitted signal to be distorted due to the superposi-
tion of delayed and attenuated version of the same signal. In
a digital communication system, this effect can be captured
through a discrete-time equivalent tapped delay line model
that relates the matched filtered samples of the received sig-
nal ����, and the transmitted symbols ���� through a well-
known convolution relationship [2]: ���� �

��
��� ��������

�� where ���� is the channel impulse response which rep-
resents the convolution of the transmitter pulse, the physi-
cal channel and the matched (to the transmitter pulse) filter,
sampled at multiples of the baud rate. It is well-known that
by blocking the information symbols into blocks of length
� , and appending �� � � zeros at the end of each block we
obtain the following matrix-vector relationship between the
blocked input and blocked output [6]:

���� � ����� � ���� � (1)
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where ���� �� ����	 �� 
 
 
 � ���	 �	 ����� , the white Gaus-
sian noise ���� �� ����	 �� 
 
 
 � ���	 � 	 � ���� , satisfies
����������� � � 
��, ���� �� ����� �� 
 
 
 � ���� �� � ���� ,
and � is a 	 �� banded Toeplitz matrix whose first col-
umn is given by ����� 
 
 
 ������ . In other words, the ��� �	
element of � is given by ������ � ��� � ��, if � � � and
������ � � if � � �. We also note that 	 � � � ��.

It is important to notice that, due to the banded Toeplitz
structure of �, there always exists a � � 	 left inverse �
such that �� � � [8] (unless of course ���� � � ��).

The following decomposition of�will be useful in con-
structing a zero-forcing equalizer and can easily be verified:

� � ���� � (2)

where� is a 	�	 DFT matrix with ��� �	 element ������ �
�������	�
���� , � is a 	 � 	 diagonal matrix whose
��� �	 element is given by ������ �� ����	�
��� 	 �

��
���

�������
���� , and � consists of the first � columns of �.
We see that (2) provides a channel that is very similar to
that seen in OFDM systems, with the major difference that
the zero-padding approach does not suffer from peak to av-
erage ratio problems. Let 	 �� ����� 
 
 
 ������ , be the
vector consisting of the �� � �	 channel taps. In [8] it
is shown that if the covariance matrix of the channel taps

� �� ��		� � is full rank, then it is possible to obtain
maximal (i.e., ����	 order) multipath diversity with using
maximum likelihood decoding at the receiver. We prove in
the Section 2 that maximum multipath diversity (MMD) is
possible even with linear block equalization. In Section 3
we quantify the equalizer complexity; Section 4 illustrates
our results with simulations and concludes the paper.

2. PAIRWISE ERROR PROBABILITY ANALYSIS

In this section we derive the pairwise error probability (PEP)
for the zero-padded transmission with the assumption that
the decoding process is composed of zero-forcing linear equal-
ization followed by elementwise quantization. In what fol-
lows, we drop the block index � in (1), since we will be
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analyzing block-by-block decoding. Under the assumption
of linear, zero-forcing equalization (1) becomes 1:


� � �� � ���� � �� � � (3)

where � denotes any left inverse of � (not necessarily the
unique pseudo-inverse), and � �� ��. For the PEP analy-
sis, we will be looking at the probability that a block of sym-
bols �	 is sent but another block �� �� �	 is received. For
this purpose, following [3, pp. 160] let us define � 	� ��
�� � �	 � to be the distance between �	 and ��, �	� �
��	���	� � ����	 � a unit vector representing the normal-
ized difference, and � �� ���	�. Then the pairwise error
probability that �	 is transmitted and incorrectly decoded as
�� can be expressed as:

	 ��	 � ���	� � 	

�
� �

�	�
�

�

 (4)

Notice that � is a Gaussian random variable with mean zero
and variance given by

����� � �����	��
� � 
� � ���	� �

� 
 (5)

Hence, the conditional PEP, that depends on the channel co-
efficients 	 can be expressed as:

	 ��	 � ���	� � �

�
�	��

�
� ����	� ��

�
� (6)

where���	 is the error function. Assuming that 	 is a Gaus-
sian vector with a full rank covariance matrix, we now prove
that for a specific left inverse of � (which we will soon de-
fine), the PEP in (6) averaged over the distribution of 	 will
yield ��� �	 order multipath diversity.

Toward this end, let � �� 	��� 
 
 
 � ���
 be the set of in-
dices corresponding to the smallest �� channel responses so
that if � � � and � �� � �����	�
��� 	� � �����	�

�� 	�,
and the indices in � are ordered so that �����	�
���� 	� �

 
 
 � �����	�
����� 	�. Notice that because the channel can
have at most � zeros, if � �� �, then �����	�
��� 	� � �.

Now we would like to introduce a specific zero-forcing
equalizer to�. Let�� be a diagonal matrix that can be ob-
tained by the following definition: ������� � ������	�
��� 	
if � �� � and ������� � � if � � �. Please note that the defi-
nition of � insures that the denominator in the definition of
�� is nonzero. We also define �� following a three step
procedure: (i) remove all rows of � that has indices be-
longing to � to obtain an � �� matrix 
�; (ii) Compute
the 
��

� (note that the inverse exists because of the Van-
dermonde structure of 
� which is inherited from �); (iii)
Insert �� zero columns to 
��

� with columns that have in-
dices belonging to � to obtain an � � 	 matrix ��. We
now define a left inverse for � as follows:

� �� ����� 
 (7)
1we assume that the channel is known throughout the paper

It is now straightforward to verify that �� � �. It is im-
portant to stress however, that even though� has infinitely
many left inverses,�, as defined in (7) is unique, and is not
necessarily the pseudoinverse of�. The reason we consider
� in (7) as opposed to the pseudoinverse is because the de-
pendence of � on 	 is very explicit, and this will enable us
to average (6) with respect to 	. In fact, in [5] we show that
the pseudoinverse of � can also be shown to offer MMD,
in a similar context where linear precoding together with
OFDM is used.

In order to calculate the average (over the channel) PEP,
we need to average (6) with respect to the distribution of 	.
We first observe the well-known fact that the PEP can be
upper bounded as follows:

�

�
�	��

�
� ����	� ��

�
�

�

�

��

�
���	�

�
� � ���	� ��

�

 (8)

We now state our main theorem establishing that linear block
equalization offers MMD.
Theorem: With � defined as in (7) it is possible to upper
bound the right hand side of (8) with an expression of the
form 
������� � 	 �� �	, where � is a constant inde-
pendent of 	, and ��� �� �	��


�. Furthermore, if 
�

has rank �, then ZF equalization with � provides � �� order
diversity gain.
Proof: We first need to upper bound the argument of the
exponential in (8) with a multiple of � 	 ��. Towards this
goal, we first express ����	� �

� as

����	� �
�� ��	������

�
� �

�
� �	� 
 (9)

Let us now define �� �� ��
� �	� , where in defining ��, we

have dropped the dependence on codeword indices � and
� for convenience. Recalling the definition of ��, we can
now express (9) as

� ���	� �
��

����
���

�����	�
������	�
��� 	��� � (10)

where ����	 is the ��� entry of ��. Notice that ����	 � �
whenever � � � because ��

� has zero rows in indices be-
longing to �. We would now like to find an upper bound to
(10). Let �� �� ������������	�

������	�
��� 	���. Note
that �� �� � because ����	 � � whenever � � �. Further-
more, it is straightforward that (10) is upper bounded by
� ������	�

������
���� 	���. This means that the right hand
side of (8) is upper bounded by

�

�

��

�
���	������
���� 	��

�
�������	���

�

 (11)

Now, let

�� �� �����	�
���� 	����	�
���� 	 
 
 
 ����	�
����� 	�� 
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�� can be obtained from 	 through a linear transformation:

�� � ��	 � (12)

where ������� � 
���������	 	 is Vandermonde. Let
 �����	 denote the minimum eigenvalue. Then using (12),
and a standard result from matrix theory [4, pp.534]
 �����

�
� ��	 � 	 �

����� �
� holds. This can be used to

show that

 �����
�
� ��	 � 	 �

� �

���
���

�����	�
���� 	��

� ���� �	�����	�
���� 	�� �

because �����	�
���� 	� � �����	�
���� 	�� � � �� 
 
 
 � ��.
This leads us to conclude that

�����	�
���� 	�� �
�

��� �
 �����

�
� ��	 � 	 �

� 
 (13)

We can finally use (13) along with (11) to upper bound (11)
as

�

�

��

�
���	� �����

�
� ��	 � 	 �

�

�
�������	������� �	

�
� (14)

which is also an upper bound to (8). We would like to aver-
age (14) over the channel statistics. The terms that depend
on the instantaneous realization of the channel are 	���,
and �����	. But since �� is always full rank (recall that it
is a Vandermonde matrix)  �����

�
� ��	 � �, regardless

of the indices in �. Similarly, ������	� � 
 for any set of
indices � because � is Vandermonde, implying that 
 will
always be full rank. We can then conclude that (14) can be
further upper bounded by

�

�

��

�
��	� ��� � 	 �

�

�
�!����� �	

�
� (15)

where  ��� � ���� �����
�
� ��		, and! � ����������	�

�	
with the minimization and maximization taken over � rang-
ing over all subsets of 	�� 
 
 
 � 	 � �
 with �� elements.
Hence we have proved the first part of the theorem with
� ��  ������!���� � �		, which is evidently indepen-
dent of 	.

We are now ready to average (15) with respect to the
distribution of 	, which is assumed to be zero-mean Gaus-
sian with correlation matrix
�. Let  �� � � �� 
 
 
 � � be the
eigenvalues of 
�. It is well-known that

��
	

��



����� � 	 ��

��
� �� ���	��

�
���

���

 �

���
�

where ����� means expectation with respect to the distribu-
tion of 	. Hence we have shown that the linear equalizer
proposed in (7) provides full multipath diversity, given by
the rank of the channel covariance matrix which concludes
the proof. Notice that if the channel has iid taps, than the
diversity orders is � � ��� �	.

3. EQUALIZER COMPLEXITY AND
PERFORMANCE

The complexity of a brute force ML receiver for the I/O re-
lationship in (1) is ��"� 	 where " is the size of the con-
stellation transmitted in each entry of the vector ����. This
is prohibitively complex for reasonable values of � , which
motivates our linear equalization scheme as a viable alter-
native.

The computation of the equalizer output�� entails cal-
culating ������ for each block index �. This means we
need to compute the 	 point FFT of �, to obtain � �� ��,
which requires 	 ���	 operations. Computation of ��

and multiplication by it entails sorting �����	�
��� 	� to
identify � which requires �� real multiplications, which is
equivalent to � complex multiplications (since the subtrac-
tions and comparisons involved in sorting �����	�
��� 	�
is negligible, we ignore them in the computational count).
Then the ��� element of vector � is calculated as ���� ��
���������	�
��� 	 if � �� � and ���� � � otherwise. This
requires � division operations and gives us � � ����.
We next need to solve the linear system of equation given
by ����	
� � �, where �� is a diagonal matrix with zeros
and ones along the diagonal with ������� � � if � �� �,
and ������� � � otherwise. Since � is a Vandermonde ma-
trix, the solution of this equation can be found efficiently
in ����� operations [1, pp. 185]. Hence the linear equal-
ization of the data has a complexity given approximately by
����� �	��	 ���	 �� per symbol (which is obtained by
adding the complexity associated with each stage and nor-
malizing the result with the block length � ). Please note
that, for reasonable constellation sizes and channel lengths,
this is much less than the complexity of the Viterbi algo-
rithm (which is ��"�	), or the calculation of the pseudo-
inverse of � (which is ��� �	 per symbol). Notice that the
complexity count we have just performed for the proposed
algorithm is the worst-case complexity, where the solution
to the Vandermonde system of equations is performed for
every block. If the channel is approximately the same across
blocks, so that � has not changed, the complexity can fur-
ther be reduced, relying on the computations used in the
previous block.

However, the equalizer � in (7), despite its maximum
diversity at high SNRs, does not perform very well at low
SNRs. The primary reason for this is that 
� has a very
large condition number when ��, the cardinality of �, is
large, resulting in a �� with large elements. This results
in an equalizer that greatly amplifies the noise, not because
of the fading channel, but because �� obtained from 
��

�

has large entries. One approach to overcoming this problem
is to redefine � to have fewer than �� elements so that ��

will not be ill conditioned. It can be shown that this will re-
sult in a reduction in the diversity gain, but the improvement
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of performance over the low-medium SNR range. We next
illustrate these points in the simulations.

4. SIMULATIONS AND CONCLUSIONS

The main result of this paper is that an increase in number
of multipath components will improve the performance over
fading channels even when linear zero-forcing equalization
is used. We see this in Figure 1, where the pseudoinverse
equalizer is used, and the Frame Error Rate performance for
� � � and � � � (a one-tap and a four-tap channel respec-
tively) is shown. We observe the performance improvement
when the average power of the channel � 	 � is fixed, but
the number of taps is increased. Hence, the gains in per-
formance with increase in multipath diversity is evident in
Figure 1 when the pseudoinverse equalizer is utilized. That
the pseudoinverse equalizer achieves MMD is shown in [5],
in a similar context, by using the fact that (7) achieves MMD
and that the pseudoinverse has the minimum norm property.

As mentioned in the previous section, the performance
of � in (7) degrades rapidly as the cardinality of �, ���
increases. This problem can be overcome by keeping ���
small. So instead of defining � to be the indices correspond-
ing to the �� smallest channel frequency responses, we rede-
fine � to have the # smallest channel frequency responses,
where # � ��. We show the frame error rates correspond-
ing to these results in Figure 2. We observe that having
��� � �, which corresponds to using an equalizer given by
������, provides no diversity for both� � �, and� � �.
On the other hand, when ��� is increased to 1, we see that
the performance is better due to the increased slope of the
curve, when � � �. When ��� � � (not shown), the per-
formance degrades due to the ill-conditioning of 
�, for
the SNR range shown in the figure. We also observe that
the equalizers in Figure 2 do substantially worse than the
pseudoinverse equalizer in Figure 1. This motivates look-
ing investigating the implementation of the pseudoinverse
of� exploiting its banded Toeplitz structure using a similar
approach to that used in �.
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