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ABSTRACT

In wireless communications the fading multipath channel
attenuates and distorts the transmitted signal. This makes
equalization of the frequency selective channel of utmost
importance. To exploit the full diversity provided by the
multipath channel, maximum likelihood (ML) decoding is
usually employed, which is computationally complex. In
this paper we show that a specific linear zero-forcing equal-
izer is capable of benefitting from maximum multipath di-
versity in systems where the transmitted blocks are sep-
arated by zero guard intervals of length greater than the
channel length (the well-known trailing zeros approach [6]).
Furthermore, we exploit the banded Toeplitz structure of the
channel matrix to reduce the complexity of the equalization
process, and quantify the reduction in complexity. Simula-
tions corroborate our resullts.

1. INTRODUCTION AND SYSTEM M ODEL

In wireless communications multipath propagation causes
the transmitted signal to be distorted due to the superposi-
tion of delayed and attenuated version of the same signal. In
adigital communication system, this effect can be captured
through a discrete-time equivalent tapped delay line model
that relates the matched filtered samples of the received sig-
nal z[n], and the transmitted symbols s[n] through a well-
known convolution relationship[2]: z[n] = Zfzo hll]s[n—
[] where h]l] is the channel impulse response which rep-
resents the convolution of the transmitter pulse, the physi-
cal channel and the matched (to the transmitter pulse) filter,
sampled at multiples of the baud rate. It is well-known that
by blocking the information symbols into blocks of length
N, and appending L > L zeros at the end of each block we
obtain the following matrix-vector relationship between the
blocked input and blocked output [6]:

x[i] = Hsli] + v[i] , @
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wherex[i] := [z[iP],...,z[iP+ P —1]]7, the white Gaus-
san noise v[i] := [v[iP],...,v[iP + P — 1]]T, satisfies
E[v[i]v[i]®] = 021, s[i] := [s[iN],...,s[iN + N — 1]]7,
and H isa P x N banded Toeplitz matrix whose first col-
umn is given by [h[0] ... A[L]]%. In other words, the (p, n)
element of H isgivenby [H],, , = h[p —n], if p > n and
[H],, =0if p < n. Weasonotethat P = N + L.

It isimportant to notice that, due to the banded Toeplitz
structure of H, there always existssa N x P leftinverse G
suchthat GH = I [8] (unlessof course h[l] = 0 VI).

Thefollowing decompositionof H will be useful in con-
structing a zero-forcing equalizer and can easily be verified:

H=F/DO, 2

whereF isa P x P DFT matrix with (k,1) element [F];; =
N-1/2¢=327kl/P ' jsa P x P diagonal matrix whose
(p, p) lementisgivenby [D], , := H(e=3272/P) = 371
h[lle=2™P!/P and © consists of the first N columns of F.
We see that (2) provides a channel that is very similar to
that seen in OFDM systems, with the major difference that
the zero-padding approach does not suffer from peak to av-
erage ratio problems. Let h := [h[0]...R[L]]T, be the
vector consisting of the (L + 1) channel taps. In [8] it
is shown that if the covariance matrix of the channel taps
Ry, := E[hh] isfull rank, then it is possible to obtain
maximal (i.e., (L + 1) order) multipath diversity with using
maximum likelihood decoding at the receiver. We provein
the Section 2 that maximum multipath diversity (MMD) is
possible even with linear block equalization. In Section 3
we quantify the equalizer complexity; Section 4 illustrates
our results with simulations and concludes the paper.

2. PAIRWISE ERROR PROBABILITY ANALYSIS

In this section we derivethe pairwise error probability (PEP)
for the zero-padded transmission with the assumption that
the decoding processis composed of zero-forcing linear equal-
ization followed by elementwise quantization. In what fol-
lows, we drop the block index i in (1), since we will be
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analyzing block-by-block decoding. Under the assumption
of linear, zero-forcing equalization (1) becomes *:

§=Gx=s+Gv=s+n, 3

where G denotes any left inverse of H (not necessarily the
unique pseudo-inverse), and n := Gv. For the PEP analy-
sis, wewill belooking at the probability that ablock of sym-
bols s; is sent but another block s, # s; is received. For
this purpose, following [3, pp. 160] let us define d j;, =||
s — s; || to be the distance between s; and si, ejr =
(sj—sk)/ || sk —s; || aunit vector representing the normal-
ized difference, and z := n'’e;;. Then the pairwise error
probability that s is transmitted and incorrectly decoded as
sk, can be expressed as:

P[sj—>sk|h]:P[22%} . 4

Noticethat z is a Gaussian random variable with mean zero
and variance given by
Elz|* = Eln"ej|* =07 || GMey | . ®)

Hence, the conditional PEP, that depends on the channel co-

efficients h can be expressed as:
P[s; — si/h] = Q dit (6)
’ ViAo [GHe P )

where Q(-) istheerror function. Assuming that h isaGaus-
sian vector with afull rank covariance matrix, we now prove
that for a specific left inverse of H (which we will soon de-
fine), the PEP in (6) averaged over the distribution of h will
yield (L + 1) order multipath diversity.

Toward thisend, let x := {p1,...,pr } bethe set of in-
dices corresponding to the smallest L channel responses so
that if p € k and q ¢ & |H (e 727P/P)| < |H (e 7274/ F)),
and the indices in « are ordered so that | H (e —72771/P)| <
... < |H(e 7?mrL/P)|. Noticethat because the channel can
have at most I zeros, if p ¢ , then |H (e =727/ F)| > 0.

Now we would like to introduce a specific zero-forcing
equalizerto H. Let D, be adiagona matrix that can be ob-
tained by thefollowing definition: [D ], , = 1/H (e 7277/ F)
ifp¢ rxand[D,],, = 0if p € . Please note that the defi-
nition of x insures that the denominator in the definition of
D, is nonzero. We aso define ®, following a three step
procedure: (i) remove all rows of @ that has indices be-
longing to « to obtainan N x N matrix A ; (ii) Compute
the A ;! (note that the inverse exists because of the Van-
dermonde structure of A , which isinherited from ®); (iii)
Insert L zero columnsto A ;! with columns that have in-
dices belonging to « to obtain an N x P matrix ® .. We
now define a left inversefor H asfollows:

G :=©,D,F. @)

lwe assume that the channel is known throughout the paper

It is now straightforward to verify that GH = 1. Itisim-
portant to stress however, that even though H hasinfinitely
many left inverses, G, as defined in (7) isunique, and is not
necessarily the pseudoinverseof H. Thereason we consider
G in (7) as opposed to the pseudoinverse is because the de-
pendence of G on h isvery explicit, and this will enable us
to average (6) with respect to h. Infact, in [5] we show that
the pseudoinverse of H can aso be shown to offer MMD,
in a similar context where linear precoding together with
OFDM is used.

In order to calculate the average (over the channel) PEP,
we need to average (6) with respect to the distribution of h.
We first observe the well-known fact that the PEP can be
upper bounded as follows:

djk 1 —d3,
<—-exp|l =—755—5 | -
“ <,/—402 TGl ||2> =37 <802 [Ges P

We now state our main theorem establishing that linear block
equalization offersMMD.

Theorem: Wth G defined asin (7) it is possible to upper
bound the right hand side of (8) with an expression of the
formexp(—SNR || h ||? K), where K is a constant inde-
pendent of h, and SNR := d;;,/o?. Furthermore, if Ry,
has rank r, then ZF equalization with G provides " order
diversity gain.

Proof: We first need to upper bound the argument of the
exponentia in (8) with amultiple of || h ||?. Towards this
goal, wefirst express || GHe;y, ||? as

| GPejy ||*=ef;©,D,.DFO e . 9)

Let usnow definec,, := ©e;;,, wherein defining c,., we
have dropped the dependence on codeword indices j and
k for convenience. Recalling the definition of D ,;, we can
now express (9) as

P-1
| GPeji 117="_ lew(p)|P|H (e 2™/ 7|2,
p=0

(10)

where ¢, (p) is the pt” entry of c,.. Notice that c.(p) = 0
whenever p € « because ©® has zero rows in indices be-
longing to x. We would now like to find an upper bound to
(10). Let p := argmax,|c,(p)|*|H (e 72™/F)| 2. Note
that p ¢ « because c,,(p) = 0 whenever p € x. Further-
more, it is straightforward that (10) is upper bounded by
Ny (po) |?| H (e>7Pe/P)| =2, This means that the right hand
side of (8) is upper bounded by

1 <—d§k|H(62”p°/P)|2>
[S) .

— 11
2 P\ T80 cn(po) PNV (11)

Now, let

H, := [H(e 720/ PYH (e=72mP1/P)  H(e72mr/P)T
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H,; can be obtained from h through alinear transformation:

H,.=V,h, (12)
where [V ]m: = exp(—jpml/P) is Vandermonde. Let
Amin(+) denote the minimum eigenvalue. Then using (12),
and a standard result from matrix theory [4, pp.534]
Amin(VEV,) || h ||?<|| H,, ||? holds. This can be used to
show that

Amzn(VNHVH) || h ||2 *J27",Dl/P |

AN
NMH

< @+ Dy
because |H (e =270/ P)| > |H(e=72™1/P)| 1 = 1,..., L.
Thisleads usto conclude that
|H(e=72Po/ P> > L—Amm(VHV )1 h? . (13)

We can finally use (13) along with (11) to upper bound (11)
as

—d2 Amin(VEV,) || h |2
! <k (VEVa) ||>, ”

L )
2 P\ T80 en(po) PN (L + 1)

which is also an upper bound to (8). We would like to aver-
age (14) over the channel statistics. The terms that depend
on the instantaneous realization of the channel are h, V.,
and ¢, (pp). But since V; is aways full rank (recall that it
is a Vandermonde matrix) A, (VZV,) > 0, regardiess
of theindicesin . Similarly, |c,(po)| < oo for any set of
indices k because @ is Vandermonde, implying that A will
always be full rank. We can then conclude that (14) can be
further upper bounded by

1 —djkAmin || B |”
1 _ 15
g P ( 802CN(IL +1) )’ (19

where A yin = min(Apin (VEV,)), and C = max(|c, (po)|?)

with the minimization and maximization taken over « rang-
ing over al subsets of {0,...,P — 1} with L elements.
Hence we have proved the first part of the theorem with
K := Apnin/(8CN(L + 1)), which is evidently indepen-
dent of h.

We are now ready to average (15) with respect to the
distribution of h, which is assumed to be zero-mean Gaus-
sian with correlation matrix Ry,. Let A;,1 = 0,..., L bethe
eigenvaluesof R.,. It iswell-known that

En [exp (~KSNR || h |?)] < (K SNR)~ (H m) B ,

where Ey,[-] means expectation with respect to the distribu-
tion of h. Hence we have shown that the linear equalizer
proposed in (7) provides full multipath diversity, given by
the rank of the channel covariance matrix which concludes
the proof. Notice that if the channel hasiid taps, than the
diversity ordersisr = (L + 1).

3. EQUALIZER COMPLEXITY AND
PERFORMANCE

The complexity of abrute force ML receiver for the I/O re-
lationshipin (1) isO(MN) where M isthe size of the con-
stellation transmitted in each entry of the vector s[i]. This
is prohibitively complex for reasonable values of IV, which
motivates our linear equalization scheme as a viable alter-
native.

The computation of the equalizer output Gx entails cal-
culating ®,,D,Fx for each block index i. This means we
need to compute the P point FFT of x, to obtainy := Fx,
which reguires Plog P operations. Computation of D
and multiplication by it entails sorting |H (e =/277/P)| to
identify x which requires 2N real multiplications, whichis
equivalent to N complex multiplications (since the subtrac-
tions and comparisons involved in sorting | H (e ~7277/F)|
is negligible, we ignore them in the computational count).
Then the pt" element of vector z is calculated as [z], =
[y]p/H(e=727/PY if p ¢ k and [z], = 0 otherwise. This
requires N division operations and givesus z = D ,Fx.
We next need to solve the linear system of equation given
by (I,0®)$8 = z, whereI,; is adiagona matrix with zeros
and ones adong the diagonal with [I:],, = 1if p ¢ &,
and [I;],, = 0 otherwise. Since ® is a Vandermonde ma-
trix, the solution of this equation can be found efficiently
in 5N2/2 operations [1, pp. 185]. Hence the linear equal-
ization of the data has a complexity given approximately by
5N/2+ (P/N)log P + 2 per symbol (whichis obtained by
adding the complexity associated with each stage and nor-
malizing the result with the block length N). Please note
that, for reasonable constellation sizes and channel lengths,
this is much less than the complexity of the Viterbi algo-
rithm (which is O(M 1)), or the calculation of the pseudo-
inverse of H (whichis O(NN2) per symbol). Notice that the
complexity count we have just performed for the proposed
algorithm is the worst-case complexity, where the solution
to the Vandermonde system of equations is performed for
every block. If the channel is approximately the same across
blocks, so that x has not changed, the complexity can fur-
ther be reduced, relying on the computations used in the
previous block.

However, the equalizer G in (7), despite its maximum
diversity at high SNRs, does not perform very well at low
SNRs. The primary reason for this is that A ,; has a very
large condition number when L, the cardinality of &, is
large, resulting in a @, with large elements. This results
in an equalizer that greatly amplifies the noise, not because
of the fading channel, but because ® ,, obtained from A *
haslarge entries. One approach to overcoming this problem
is to redefine k to have fewer than L elements so that ®,,
will not beill conditioned. It can be shown that this will re-
sult inareductionin the diversity gain, but theimprovement
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of performance over the low-medium SNR range. We next
illustrate these pointsin the ssimulations.

4. SIMULATIONS AND CONCLUSIONS

The main result of this paper is that an increase in number
of multipath componentswill improvethe performanceover
fading channels even when linear zero-forcing equalization
is used. We see thisin Figure 1, where the pseudoinverse
equalizer is used, and the Frame Error Rate performancefor
L = 0and L = 3 (aone-tap and a four-tap channel respec-
tively) is shown. We observe the performance improvement
when the average power of the channel || h || is fixed, but
the number of taps is increased. Hence, the gains in per-
formance with increase in multipath diversity is evident in
Figure 1 when the pseudoinverse equalizer is utilized. That
the pseudoinverse equalizer achievesMMD is shownin[5],
inasimilar context, by using thefact that (7) achievesMMD
and that the pseudoinverse has the minimum norm property.

As mentioned in the previous section, the performance
of G in (7) degrades rapidly as the cardindity of «, |k
increases. This problem can be overcome by keeping |«|
small. So instead of defining  to betheindices correspond-
ing to the L smallest channe! frequency responses, we rede-
fine k to have the m smallest channel frequency responses,
where m < L. We show the frame error rates correspond-
ing to these results in Figure 2. We observe that having
|| = 0, which corresponds to using an equalizer given by
O©'D'F, providesno diversity for both L = 0,and L = 3.
On the other hand, when || is increased to 1, we see that
the performance is better due to the increased slope of the
curve, when L = 3. When |&| = 2 (not shown), the per-
formance degrades due to the ill-conditioning of A ., for
the SNR range shown in the figure. We also observe that
the equalizers in Figure 2 do substantially worse than the
pseudoinverse equalizer in Figure 1. This motivates |0ok-
ing investigating the implementation of the pseudoinverse
of H exploiting its banded Toeplitz structure using asimilar
approach to that usedin G.
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