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ABSTRACT

We study signal reconstruction with the aid of second order statis-
tics (SOS) in some Bayesian multi-user setups. Under a Bayesian
framework, the unknown mixing channel matrix is a random ob-
ject. Furthermore, it is well known that the SOS of the received
data can solve the channel matrix up to an orthogonal factor, which
now becomes a random object. That is, the prior for the original
channel matrix contracts to another prior for the residual orthogo-
nal mixing matrix. This paper shows how to exploit this new prior
over the orthogonal group in two different applications: blind sepa-
ration of binary users and semi-blind channel identification. Com-
puter simulations assess the benefits of our proposed solutions over
some classical “textbook” solutions.

1. INTRODUCTION

In the past years, blind source separation (BSS) has been subject
to intense research activity [1]. A possible application is found
in Space Division Multiple Access (SDMA) networks for wire-
less communications. When the mixing space-time channel is
unknown at the receiver, BSS techniques are needed to recon-
struct each of the transmitted signals [2, 3, 4, 5]. Commonly, the
first step to take is to use the SOS of the received data to solve
the unknown channel matrix up to an orthogonal factor [1, 6, 7].
Some alternatives which solve for the residual mixing matrix can
be found in [2, 3, 5, 6, 7]. These methods, however, are not based
on Bayesian frameworks.

Contribution. Under a Bayesian framework, the original chan-
nel matrix is modeled as a random object with a known pdf. Still,
the SOS can only solve the unknown mixing matrix up to an or-
thogonal factor. But, now, the unknown orthogonal factor obeys
a statistical model: the original prior contracts to a pdf over the
group of orthogonal matrices. We show how to exploit this infor-
mation to improve the performance of some BSS techniques.

Paper organization. In section 2, we introduce the data model
and discuss the choice of the prior pdf for the channel matrix. We
analyze how this prior contracts to a pdf in the group of orthogonal
matrices, through two distinct channel pre-whitening methods: PQ
(polar) and LU. In section 3, we study an application for the pdfs
obtained in section 2 based on blind source separation of binary
users. In section 4, we explore another application, semi-blind
channel identification. Section 5 concludes our paper.
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Throughout the paper, we use the following notation. The set
of � � � matrices with real entries is denoted by���� . Ma-
trices are written in uppercase (boldface) and vectors in lower-
case (boldface). The symbols���� , ������, � and�� denote the
transpose operator, the determinant, the Kronecker product and
the� � � identity matrix, respectively. The notation�� �����,
���� �

�
� � ��� � ��

�
and����, stand for the groups of

��� non-singular, orthogonal and lower triangular matrices with
positive diagonal entries, respectively. The cone of positive def-
inite matrices of size� � � is represented by����. Additional
notation is introduced as needed.

2. DATA MODEL AND ASSUMPTIONS

We work under the following data model for an instantaneous mix-
ture of� signals:

���	 � ����	 
���	� (1)

Here,���	 � �����	� ����	� � � � � �� ��	�� represents the vector
of observations,� is the��� unknown mixing matrix,���	 �
�����	� ����	� � � � � �� ��	�� is the vector of� source signals and
���	 denotes additive observation noise. We also take the follow-
ing standard assumptions. The channel matrix� is assumed to
be invertible, i.e.,� � � � �����. We assume that���	 denotes
an uncorrelated wide sense stationary process, with a correlation
matrix given by

����	 � �
�
���	���� �	�

�
� ��Æ��	� (2)

whereÆ��	 denotes the discrete time Kronecker delta. We also
assume that the noise correlation matrix�� � �

�
���	���	�

�
is known. Under a Bayesian framework,� is regarded as a random
object with an associated pdf reflecting our a priori knowledge of
the mixing channel.

It is well known that the SOS of���	 partially solve the chan-
nel matrix� through a prewhitening mechanism. Consider the
denoised correlation matrix of the observations:

� � �� ��� � �
�
���	���	�

�
��� � ��� � (3)

Notice that� is available because�� can be estimated through
its sample mean estimator

����	 �



�

��
���

���	���	� (4)

and�� was assumed to be known.
Throughout the paper, we consider pre-whitening mechanisms

based on two distinct matricial decompositions. The first is given
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by the PQ (polar) decomposition of�. Write� � ��, where
� � ���� and� � ����. Using (3), we have� � � �. Thus,
� reveals� . The other decomposition is the LU decomposition.
Write� � 	
 , where	 � ���� and
 � ����. We have
� � 		� and	 is revealed through� as its Cholesky factor. An
interpretation for this algebra is based on the degrees of freedom
contained in the problem. The channel� has����� ����� �
�� unknowns. Through either the PQ or LU decomposition, ex-
actly ������� � ������� � ��� 
 
�	� unknowns are
revealed by�. In either case,������� � ��� � 
�	� un-
knowns are left unsolved. But, since in a Bayesian setup� is
random, both the missing factors� or 
 are random also. It is
important to know their associated pdfs for subsequent optimum
signal processing. From particular results in [8], it can be shown
that
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where��� �� � � ��� ����� ��, for some functions� � �����
� and� � ���� � �. In the sequel, we discuss some applica-
tions where this knowledge can be exploited.

3. BLIND SOURCE SEPARATION OF BINARY USERS

Here, we consider the problem of blindly separating binary users
mixed by an random channel matrix from a given set of observa-
tions. We work under the data model (1), and���	 is a vector of
� binary i.i.d. sources. The prior on� is based on the indepen-
dent Rayleigh fading assumption,� 	 
 ��� �� � ��, where
the dispersion matrix� is known at the receiver. Notice that the
Rayleigh assumption is commonly adopted in multi-antenna se-
tups [9]. For simplicity,���	 is considered to be spatio-temporal
white Gaussian noise,���	 	 
 ��� 
����.

The problem at hand consists in estimating the source sig-
nals� � ���
	 ���	 � � � ��� 		 given the observation matrix
 �
���
	 ���	 � � � ��� 		, where� is the number of available data
samples, in the matricial data model


 � �� 
� � (7)

The classical solution is given by the maximum a posteriori (MAP)
estimator ����� � ������

� � ����

 �� �
� � (8)

where���� denotes the set of��� binary matrices. This solu-
tion leads to ����� � ������

� � ����
����� (9)

where we have the equality

���� �
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��
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�
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� �


�



�� ��� ������� (10)

and�� � ��� 

����. Solving for����� is, however, infea-
sible due to the exhaustive search required over a set of cardinality
����� � ��� . An alternative approach consists in estimating
both� (nuisance parameter) and�. This leads to a computation-
ally feasible scheme. We have

��������� � ������
� � �� ������ � � ����


 ���� �
� �

(11)

This leads to the following locally-convergent iterative algorithm:
given an initial estimate���	, let

�
��
�	 � ������

� � ����

����	�� �
�

�
��
�	 � ������

� � �������

������
�	 �
��

After some calculus, we have the feasible iterations:

�
��
�	 � ������

� � ����

���
 ����	
�

���� (12)

�
��
�	 � 
�

��
�	�
�
��

������
� (13)

Notice that computing���
�	 does not require a search over a
set of high cardinality, since it can be obtained columnwise. The
main problem is to provide accurate initial points���	 for the al-
gorithm defined by (12) and (13). One possibility would be to try
the maximum a priori estimate of�, ���	 � ������� 
 ���.
But this is useless since it leads to���	 � �. We could try to use
���	 � ������� 
���
� but this leads to an intractable prob-
lem basically for the same reasons involving the solution of (10).
In the sequel, we consider two feasible alternatives. The first is
a random initialization taken from the prior
���. Our own al-
ternative puts the SOS into use. More precisely, we propose to
initialize (12) with���	 � �� ��, where�� is revealed through the
SOS of the received data and where

�� � ������
� � ����


�� �� � �� �� (14)

That is, we construct the missing orthogonal factor as the most
probable realization of� given that� � �� . Using (5) we have

�� � ������
� � ����

��
	
��

��
�
� �� �



� (15)

which can be solved in closed-form as follows. If�� � � �� �

is the eigenvalue decomposition of�� (eigenvalues sorted in in-
creasing order) and� � ���� is the eigendecomposition of�
(eigenvalues sorted in decreasing order), then�� � � �� [10].

We conducted some computer simulations to test the efficiency
of the two different initializations: random and SOS-based. We
consider� � � binary users and packets with� � ��� data sam-
ples. We performed���� statistically independent Monte Carlo
runs of the algorithm for SNR’s ranging from� to 
� dB with a
spacing of��� dB. The SNR is given by the expression SNR =
�
�

����	
�

�
	�

�

���	
�

�
� 
�
�	�
�. An independent

realization of�, � and� was generated for each Monte Carlo
run. The dispersion matrix� was fixed at the outset as

� � �

�
� �
� 




�
� � (16)

where

� �

�
�����	�� � �����	��
�����	�� �����	��



� (17)

Figures 1 and 2 represent the BER of user 1 and user 2, respec-
tively, as a function of the SNR. The solid lines represent the re-
sults after� � 
 iteration of the proposed algorithm, whereas
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the dashed lines correspond to� � � iterations. The lines with
diamonds correspond to the random initialization. The line with
circles corresponds to our proposed initialization using the PQ de-
composition and the one with squares to the LU decomposition
(the two curves coincide). The line with stars denotes the perfor-
mance of the maximum likelihood (ML) decoder, assuming that
the channel matrix is known.

5 6 7 8 9 10 11 12 13 14 15
10

−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

Fig. 1. BER of user
 versus SNR
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Fig. 2. BER of user� versus SNR

Figure 3 represents the mean square error (MSE) of the chan-
nel matrix estimate as a function of the SNR. The lines follow the
same definitions, except that the bound corresponds to the stochas-
tic Cramér-Rao bound for the MSE of the channel matrix. It is
given by

� ����� � 
����
�
��

��� � (18)

where �� is an estimate for the channel matrix and��
�� is de-

fined as in (10). We can clearly see that our solution outperforms
the random initialization always with significant gains. The results
also improve as the number of iterations increases.

4. SEMI-BLIND CHANNEL IDENTIFICATION

As our second application, we study channel identification based
on known data preambles (pilot symbols). The data model (1) and
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Fig. 3. MSE of channel estimate versus SNR

the assumptions taken in section 3 are maintained. The difference
now is that the receiver knows the first� symbols in the sequence
sent by each source. We shall denote the matrix composed by these
symbols by�. The problem now is to identify the channel matrix
� given all the available observations. A classical approach would
be to find the MAP estimator (which in this case would be the same
as the MMSE estimator since all the variables are Gaussian):

����� � ������
� � �� �����


�� �� �� (19)

where� is the set of observations which correspond to the known
packet header. After some calculations, we can verify that this
estimator is given by the expression

����� � �����
��� (20)

with�� defined in (10). Notice that considering a MAP estimator
that takes into account all observations leads to an infeasible prob-
lem (computationally intractable). This is due to the fact that the
prior on the channel matrix would have to be integrated against all
possible source signal sequences. Our own solution again exploits
the SOS of the received data. We estimate�� � �� �� where�� is
recovered through the SOS and�� is given by

�� � ������
� � ����


�� �� �� � �� �� (21)

That is, we reconstruct the missing orthogonal factor as the most
probable realization of� given the header of observations� and
that� � �� . This leads to

�� � ������
� � ����

��
	
�
� �� �

���



� � ��

	
�
� �����
 �

(22)
This problem has no closed-form solution but allows for fast, ef-
ficient solvers, e.g., iterative geodesic descent methods. Due to
paper length constraints, details are omitted.

To assess the efficiency of our solution, we carried out some
computer simulations. Figure 4 shows a scenario with� � �
users,� � ��� data samples and� � ! known header symbols.
The matrix� is the same as in (16). The MSE of both channel es-
timates is plotted against SNR’s ranging from 0 to 20 dB in steps
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Fig. 4. MSE of channel estimate for� � � users

of 2.5 dB. For each SNR, 5000 statistically independent Monte
Carlo runs were performed. The solid line with plus signs is ob-
tained with the estimator (20). The solid line with stars is a bound
calculated considering that we know the header�. The two curves
are almost equivalent because (19) is precisely the estimator that
attains this bound. The dashed line with circles corresponds to
our method of estimating� with the iterative algorithm initialized
near the optimum point. The solid line with circles corresponds
to the iterative algorithm initialized under the assumption that the
SNR is not low. This means that�� � ��

� and allows to al-
ter (22) to

�
��	 � ������

� � ����
��
	
�
� �����
 � (23)

which has a closed form solution (not shown here). We can see
that our algorithm always performs better than the classical solu-
tion. This is due to the fact that the set of all observations are
taken into account through the use of SOS to obtain the� fac-
tor, whereas the other solution does not take all observations into
account because, as was mentioned, it leads to a computationally
infeasible scheme. We can also see that our heuristic initialization
method (23) presents reasonably similar results to the optimum ini-
tialization. Figure 5 shows the same results but for� � " users.
The matrix� is now considered to be

� ��

�
� � � �

� # �
� � 


�
��� � (24)

where� � ���� was randomly generated. We can make the
same conclusions as before, although the MSE increases for all
estimates. This is due to the fact that we are estimating more vari-
ables based on the same amount of data samples.

5. CONCLUSIONS AND FUTURE WORK

We studied two different applications where SOS improved the
performance of non-SOS based estimators in some Bayesian con-
texts: blind source separation of binary users and semi-blind chan-
nel identification. SOS solve the channel matrix up to an orthogo-
nal factor. We have exploited the distribution of this residual ma-
trix over the Lie group of orthogonal matrices to improve certain
standard signal processing schemes.
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Fig. 5. MSE of channel estimate for� � " users
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