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ABSTRACT Throughout the paper, we use the following notation. The set

. ) . ) _ of n x n matrices with real entries is denoted B} *". Ma-
We study signal reconstruction with the aid of second order statis-trices are written in uppercase (boldface) and vectors in lower-

tics (SOS) in some Bayesian multi-user setups. Under a Bayesiarn,qe (boldface). The symbalg”, det(-), ® andI,, denote the
framework, the unknown mixing channel matrix is a random ob- tanspose operator, the determinant, the Kronecker product and
ject. Furthermore, it is well known that the SOS of the received hey, x n identity matrix, respectively. The notatic®lL (n, R),

data can solve the channel matrix up to an orthogonal factor, which@(n) ={Q: QTQ = I,} andL(n), stand for the grofjps of
now becomes a random object. That is, the prior for the original ,,  }; non-singular, orthogonal and lower triangular matrices with
channel matrix contracts to another prior for the residual orthogo- positive diagonal entries, respectively. The cone of positive def-

nal mixing matrix. This paper shows how to exploit this new prior inite matrices of sizer x n is represented b(r). Additional
over the orthogonal group in two different applications: blind sepa- gtation is introduced as needed.

ration of binary users and semi-blind channel identification. Com-
puter simulations assess the benefits of our proposed solutions over

some classical “textbook” solutions. 2. DATA MODEL AND ASSUMPTIONS

We work under the following data model for an instantaneous mix-
1. INTRODUCTION ture of M signals:

In the past years, blind source separation (BSS) has been subject xz[n] = As[n] + w[n]. 1)
to intense research activity [1]. A possible application is found Here, z[n]
in Space Division Multiple Access (SDMA) networks for wire- '
less communications. When the mixing space-time channel is
unknown at the receiver, BSS techniques are needed to recon
struct each of the transmitted signals [2, 3, 4, 5]. Commonly, the
first step to take is to use the SOS of the received data to solve
the unknown channel matrix up to an orthogonal factor [1, 6, 7].
Some alternatives which solve for the residual mixing matrix can
be found in [2, 3, 5, 6, 7]. These methods, however, are not base
on Bayesian frameworks.

Contribution. Under a Bayesian framework, the original chan-

?hel rggtgx IS mo?eledl ast"’r‘] randI(()m object with a I;n_own Ft)df' st where ¢[k] denotes the discrete time Kronecker delta. We also
the | ?ant on ésto ve (ihun nﬁwn m|X|rt1rg]1 ma ml( fupto a?) O" assume that the noise correlation matiy, = E {w[njw[n]"}
ogona factor. But, now, the unknown orthogonal 1actor Obeys oy . Under a Bayesian framewot,is regarded as a random

a staiistical model: the quglnal prior contracts to a Pdf over the object with an associated pdf reflecting our a priori knowledge of
group of orthogonal matrices. We show how to exploit this infor- the mixing channel

mation to improve the performance of some BSS techniques. It is well known that the SOS ak[n] partially solve the chan-

Paper organlzatlpn. In SeCt'On 2, we introduce the data mpdel nel matrix A through a prewhitening mechanism. Consider the
and discuss the choice of the prior pdf for the channel matrix. We denoised correlation matrix of the observations:

analyze how this prior contracts to a pdf in the group of orthogonal

matrices, through two distinct channel pre-whitening methods: PQ R=R.— Ry, =E {w[n]w[n]’f} — R, =AA". (3
(polar) and LU. In section 3, we study an application for the pdfs

obtained in section 2 based on blind source separation of binaryNotice thatR is available becaus®, can be estimated through
users. In section 4, we explore another application, semi-blind its sample mean estimator

channel identification. Section 5 concludes our paper.

= (z1[n], z2[n], ..., zm[n])" represents the vector

of observationsA is the M x M unknown mixing matrixs[n] =
(s1[n], s2[n], ..., sm[n])" is the vector ofM source signals and
w[n] denotes additive observation noise. We also take the follow-
ing standard assumptions. The channel ma#tixs assumed to

be invertible, i.e. A € GL (M, R). We assume tha{[n] denotes

an uncorrelated wide sense stationary process, with a correlation
dnatrix given by

R.[K] :E{s[n]s[n—k]T} = I.,0[K), @)

N
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by the PQ (polar) decomposition of. Write A = PQ, where

P € P(M)andQ € Q(M). Using (3), we haveR = P?. Thus,

R revealsP. The other decomposition is the LU decomposition.
Write A = LU, whereL € L(M) andU € O(M). We have
R = LLT andL is revealed througlR as its Cholesky factor. An

interpretation for this algebra is based on the degrees of freedom

contained in the problem. The channélhasdimGL (M, R) =

M? unknowns. Through either the PQ or LU decomposition, ex-
actly dimP(M) = dimL(M) = M(M + 1)/2 unknowns are
revealed byR. In either casedimO(M) = M (M — 1)/2 un-
knowns are left unsolved. But, since in a Bayesian sedufs
random, both the missing facto€@ or U are random also. It is
important to know their associated pdfs for subsequent optimum
signal processing. From particular results in [8], it can be shown
that

§P.Q) =etr (-1Q¥Q"P ) g(P) ()

(6)

whereetr {Y'} = exp {tr(Y")}, for some functiong : P(M) —
Randh : L(M) — R. Inthe sequel, we discuss some applica-
tions where this knowledge can be exploited.

p(L,U) = etr (—%U\P’lUTLTL) h(L)

3. BLIND SOURCE SEPARATION OF BINARY USERS

Here, we consider the problem of blindly separating binary users
mixed by an random channel matrix from a given set of observa-
tions. We work under the data model (1), as{d] is a vector of
M binary i.i.d. sources. The prior oA is based on the indepen-
dent Rayleigh fading assumptiod ~ N(0, Iy ® ¥), where
the dispersion matrix is known at the receiver. Notice that the
Rayleigh assumption is commonly adopted in multi-antenna se-
tups [9]. For simplicityaw[n] is considered to be spatio-temporal
white Gaussian noisey[n] ~ N (0,0 I ).

The problem at hand consists in estimating the source sig-
nalsS = [s[1] s[2] --- s[IV]] given the observation matriX =
[z[1] [2] --- «[N]], whereN is the number of available data
samples, in the matricial data model

X=AS+W. @)

The classical solution is given by the maximum a posteriori (MAP)
estimator
p(S1X), ®

Svap = argmax

S € Buxn
whereBa x v denotes the set &V binary matrices. This solu-
tion leads to
Swmap = argmax f(S), 9)
S € Buxn

where we have the equality
f(S)

andAs = §ST +02® 1. Solving forSmap is, however, infea-

L (XSTAglsXT) — Mlog (det As) (10)
ag

sible due to the exhaustive search required over a set of cardinality

#Buxn = 2M7 . An alternative approach consists in estimating
both A (nuisance parameter) aiffl This leads to a computation-
ally feasible scheme. We have

—

(Aa S)MAP

p(A,8[X).

arg max
A€ GL(M,R),S € Buxn
(11)

This leads to the following locally-convergent iterative algorithm:
given an initial estimated (| let

g+ arg max p(A(k)7 S| X)
S € Buxn

A(kJrl) arg max P(Ay S(kJrl) | X)
A € GL(M,R)

After some calculus, we have the feasible iterations:

2
S~ argmin HX - A(k)S” (12)
S € Buxn
A+ XS(k+1)TA;(1k,+1). (13)

Notice that computings**) does not require a search over a
set of high cardinality, since it can be obtained columnwise. The
main problem is to provide accurate initial poin$® for the al-
gorithm defined by (12) and (13). One possibility would be to try
the maximum a priori estimate oA, A®) = argmaxa p (A).
But this is useless since it leadsA3® = 0. We could try to use
A = argmaxa p(A|X) but this leads to an intractable prob-
lem basically for the same reasons involving the solution of (10).
In the sequel, we consider two feasible alternatives. The first is
a random initialization taken from the prig(.A). Our own al-
ternative puts the SOS into use. More precisely, we propose to
initialize (12) with A(®) = PQ, whereP is revealed through the
SOS of the received data and where

Q= p(Q| P = P).

arg max (14)

Q € O(M)

That is, we construct the missing orthogonal factor as the most
probable realization of) given thatP = P. Using (5) we have

@ = argmin tr (Q\IJ_IQTIAJQ) ,
Q € O(M)

(15)

which can be solved in closed-form as follows.Rf= VAVT
is the eigenvalue decomposition & (eigenvalues sorted in in-
creasing order) an® = ZD Z7 is the eigendecomposition &
(eigenvalues sorted in decreasing order), Bea V Z7 [10].

We conducted some computer simulations to test the efficiency
of the two different initializations: random and SOS-based. We
considerM = 2 binary users and packets with = 200 data sam-
ples. We performed000 statistically independent Monte Carlo
runs of the algorithm for SNR'’s ranging fromto 15 dB with a
spacing of2.5 dB. The SNR is given by the expression SNR =
E {||As[n]||2} /E {||'w[n]||2} = ||A||?*/Ma*. An independent
realization ofA, S and W was generated for each Monte Carlo
run. The dispersion matri was fixed at the outset as

\p:c[g HCT, (16)
where (x/6) —sin(x/6)
| cos(m/6) —sin(w/6

= [ sin(r/6)  cos(r/6) ] (17)

Figures 1 and 2 represent the BER of user 1 and user 2, respec-
tively, as a function of the SNR. The solid lines represent the re-
sults after] = 1 iteration of the proposed algorithm, whereas
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the dashed lines correspond fo= 2 iterations. The lines with 10 ‘, * * * * * * * *
diamonds correspond to the random initialization. The line with e
circles corresponds to our proposed initialization using the PQ de- P
composition and the one with squares to the LU decomposition
(the two curves coincide). The line with stars denotes the perfor-
mance of the maximum likelihood (ML) decoder, assuming that
the channel matrix is known.

10
SNR(dB)

Fig. 3. MSE of channel estimate versus SNR

the assumptions taken in section 3 are maintained. The difference
now is that the receiver knows the fiBtsymbols in the sequence
ol sent by each source. We shall de_note_the rr_1atrix composed by t_hese
SNR(B) symbols byS. The problem now is to identify the channel matrix
A given all the available observations. A classical approach would
Fig. 1. BER of userl versus SNR be to find the MAP estimator (which in this case would be the same

as the MMSE estimator since all the variables are Gaussian):

W Ayap = arg max p(A|X), (29)
A € GL(M,R)

whereX is the set of observations which correspond to the known
packet header. After some calculations, we can verify that this
estimator is given by the expression

Ayap = xs'as !, (20)

with A s defined in (10). Notice that considering a MAP estimator

that takes into account all observations leads to an infeasible prob-

lem (computationally intractable). This is due to the fact that the

prior on the channel matrix would have to be integrated against all

possible source signal sequences. Our own solutlon agaln exploits

] the SOS of the received data. We estimAte= PQ whereP is
recovered through the SOS anIS given by

SNR(dB)

Fig. 2. BER of user2 versus SNR Q= argmax p(Q|X,P=P). (21)

Q € O(M)

Figure 3 represents the mean square error (MSE) of the chan-
nel matrix estimate as a function of the SNR. The lines follow the That is, we reconstruct the missing orthogonal factor as the most
same definitions, except that the bound corresponds to the stochagXfobable realization of) given the header of observatioAs and
tic Cramér-Rao bound for the MSE of the channel matrix. Itis thatP = P. This leads to
given by R . ) a2 e -
MSE(A) > o’ Mtr (As™"), (18) Q= aég&;\% tr (Q p QAs) —2tr (Q pPxs ) :
whereA is an estimate for the channel matrix ands ! is de- @ (22)
fined as in (10). We can clearly see that our solution outperforms This problem has no closed-form solution but allows for fast, ef-
the random initialization always with significant gains. The results ficient solvers, e. g., iterative geodesic descent methods. Due to

also improve as the number of iterations increases. paper length constraints, details are omitted.
To assess the efficiency of our solution, we carried out some
4. SEMI-BLIND CHANNEL IDENTIFICATION computer simulations. Figure 4 shows a scenario \@ifth= 2

users,N = 200 data samples anB = 8 known header symbols.
As our second application, we study channel identification basedThe matrix¥ is the same as in (16). The MSE of both channel es-
on known data preambles (pilot symbols). The data model (1) andtimates is plotted against SNR’s ranging from 0 to 20 dB in steps
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10
SNR(dB)

Fig. 4. MSE of channel estimate fd¥/ = 2 users

of 2.5 dB. For each SNR, 5000 statistically independent Monte
Carlo runs were performed. The solid line with plus signs is ob-

10
SNR(dB)

Fig. 5. MSE of channel estimate fa¥/ = 3 users
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