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ON CHANNEL ESTIMATION USING SUPERIMPOSED TRAINING AND

ABSTRACT

Channel estimation for single-input multiple-output
(SIMO), possibly time-varying, channels is considered using
only the first-order statistics of the data. The time-varying
channel is assumed to be described by a complex ex-
ponential basis expansion model (CE-BEM). A periodic
(non-random) training sequence is arithmetically added
(superimposed) at a low power to the information se-
quence at the transmitter before modulation and transmis-
sion. Recently superimposed training has been used for
time-invariant channel estimation assuming no mean-value
uncertainty at the receiver. We propose a different method
that explicitly exploits the underlying cyclostationary na-
ture of the periodic training sequences. It is applicable to
both time-invariant and time-varying systems. Unlike ex-
isting approaches we allow mean-value uncertainty at the
receiver. Illustrative computer simulation examples are pre-
sented.

1. INTRODUCTION

Consider a time-varying SIMO (single-input multiple-
output) FIR (finite impulse response) linear channel with
N outputs. Let {s(n)} denote a scalar sequence which is
input to the SIMO time-varying channel with discrete-time
impulse response {h(n;l)} (N-vector channel response at
time n to a unit input at time n — ). The vector channel
may be the result of multiple receive antennas and/or over-
sampling at the receiver. Then the symbol-rate, channel
output vector is given by

L

x(n) =Y h(n;l)s(n —1). (1)

=0

In a complex exponential basis expansion representation [6]
it is assumed that

Q
h(n;l) = > hy(l)e’ ™ (2)
q=1
where N-column vectors hy (1) (for g = 1,2, -+, Q) are time-

invariant. Eqn. (2) is a basis expansion of h(n;!) in the time
variable n onto complex exponentials with frequencies {wq }.
The noisy measurements of x(n) are given by

y(n) =x(n) +v(n) 3)

A main objective in communications is to recover s(n)
given noisy {x(n)}. This requires knowledge of the chan-
nel impulse response. In training-based approach, s(n) =
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¢(n) = training sequence (known to the receiver) for (say)
n =1,2---,M and s(n) for n > M is the information
sequence (unknown apriori to the receiver) [5]. Therefore,
given ¢(n) and corresponding noisy x(n), one estimates the
channel via least-squares and related approaches. For time-
varying channels, one has to send training signal frequently
and periodically to keep up with the changing channel. This
wastes resources. An alternative is to estimate the chan-
nel based solely on noisy x(n) exploiting statistical and
other properties of {s(n)} [5]. This is the blind channel
estimation approach. In semi-blind approaches, there is a
training sequence but one uses the non-training based data
also to improve the training-based results: it uses a com-
bination of training and blind cost functions. This allows
one to shorten the training period. More recently [1]-[3]
have explored a superimposed training based approach for
time-invariant systems where one takes s(n) = c(n) + b(n),
{b(n)} is the information sequence and {c(n)} is a non-
random periodic training (pilot) sequence. Exploitation of
the periodicity of {¢(n)} allows identification of the channel
without allocating any explicit time slots for training, un-
like traditional training methods. There is no loss in infor-
mation rate. In this paper we consider both time-invariant
and time-varying systems: if Q@ =1 and w1 = 0, we have a
time-invariant system. [1]-[3] dealt with only time-invariant
systems.
Superimposed Training Let

s(n) = b(n) + c(n) (4)

in (1) where {b(n)} is the information sequence and c(n) =
¢(n + mP) Ym,n is a non-random periodic sequence (su-
perimposed training) with period P.

Assume the following;:

(H1) The time-varying channel {h(n;l)} satisfies (2)
where the frequencies wq (¢ = 1,2,---,Q) are dis-
tinct and known with wq € [0, 27).
(H2) N >1.
(H3) {b(n)} is zero-mean, white with E{|b(n)|*} = 1.
(H4) {v(n)} is nonzero-mean (E{v(n)} = m), white,
uncorrelated with {b(n)}, with E{[v(n + 7) —
m][v(n) — m]¥} = ¢2In6(7). The mean vector
m is unknown.
(H5) ¢(n) = c¢(n+ mP) Vm,n is a non-random periodic
sequence with period P.

As in [1]-[3] we will exploit the first-order statistics of the
received signal. The corresponding time-invariant model in
[1]-[3] does not include an unknown constant term (d.c. off-
set) in the measurement equation (m in (H4)) — it should
if we exploit E{y(n)} to estimate the channel. In practice,
linear systems arise because of linearization about some op-
erating (set) point — “bias” in BJT/FET amplifiers, e.g.
These set points are typically unknown (at least not known
precisely) a priori, and one does not normally worry about
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them since unknown means are estimated and removed be-
fore processing (blocked by capacitor-coupling etc.) and
they are not needed in any processing. However, if (time-
varying) mean E{y(n)} is what we wish to use, then we
must include a term such as nonzero m.

As noted earlier [1]-[3] deal with time-invariant systems
with zero m in their model. [3] proposes the choice ¢(n) =
>, ad(n — kP) where 6(n) is the Kronecker delta func-
tion. As noted in [2], the choice of [3] leads to a poor peak-
to-average power ratio of the transmitted signal which is
highly undesirable if the transmit power amplifier has some
nonlinearity. In [2] a more general approach is provided
where general periodic superimposed training sequences are
considered. A method to synthesize “optimal” channel-
independent training sequences is provided in [2]; these
training sequences of [2] yield the same channel estima-
tor performance independent of the underlying unknown
channel. The training sequence can be selected to yield a
peak-to-average power ratio much better than that of [3].

In this paper we follow the basic ideas of [1]-[3] but pro-
pose a different method (it explicitly exploits the underlying
cyclostationary nature of the periodic training sequences)
which works for nonzero m in (H4) as well as for time-
varying systems described by a CE-BEM (complex expo-
nential basis expansion model) (2).

2. SUPERIMPOSED TRAINING-BASED
SOLUTION

By (1)-(3) and (H5), we have

E{y(n)} = E{x(n)} + m

Q L
= Z th(l)ejw""c(n — 1)+ m. (5)

g=1 1=0
Since {c¢(n)} is periodic, we have
P-1

e(m) = 3 ene®™™ Vi, ay=2em/P. (6)

m=0

where
P

-1
Cm = 1 Zc(n)e_ja’”n. (7)
n=0

ol

The coefficients ¢,,s are known at the receiver since {c(n)}
is known. Assume that ¢, # 0 Vm. Therefore, we have

Q P-1 L
Blym}=> > lz cmhq(Z)eﬂ'aml] I (@atam)n

g=1m=0 L1=0

=:dmgq

+m. (8)
Suppose that we pick P to be such that (wq + am)s are
all distinct for any choice of m and g. Then E{y(n)} is
(almost) periodic 7] with cycle frequencies (wq + am), 1 <
g<Q,0<m< P—1. A consistent (mean-square (m.s.)
sense and in probability (i.p.)) estimate dmq of dymg, for
wq + am # 0, follows as [7]

T

3 1 —Jj(w Qam )1

Ay = 72 3y (eI rtamn, (9)
n=1

S|

As T — 00, dmg — dmg m.s. and i.p. if wg + am # 0
and dog — dog + m m.s. and i.p. if wg + am = 0. In the
time-invariant system case wq + amm = 0 is true iff m = 0.

We now establish that given dy,q for 1 < ¢ < Q and 1 <
m < P — 1, we can (uniquely) estimate hy(l)s if P > L+ 2
and wq + am # 0. Since m is unknown, we will omit the
term m = 0 for further discussion. For 1 < m < P —1
define (an NQ-column vector)

Dm = [d’71;117 dz;ﬂ: Ty dﬁQ]T (10)
and for 0 < < L, define (an NQ-column vector)

Then we have

L
Dy =Y cme *"'H, 0<m<P-1.  (12)

=0

Omitting the term m = 0, (12) leads to

c1lng leNQe_jal leNQe_jalL
c2lng calnge 7?2 CQINQG_]QQL
cp—1Ing cp-_1lnge 7OP-1 ep—1Inge 7oP—1t
=:C
Hy D:
H; D-
x = (13)
Hp Dp1
=:H =D

Since ams are distinct and ¢, # 0 Vm, rank(C) = NQ(L +
1) if P > L + 2; hence, we can determine hg(l)s uniquely.
Define

Dm = [d’71;117 dz;ﬂ: T dﬁQ]T (14)
and define D as in (12) with d,,gs replaced with d,nes. Then
we have the channel estimate

H=(c"c)"'cHD. (15)

We summarize our method in the following Lemma:
Lemma. Under (H1)-(H5), the channel estimator (15)
is consistent in probability if the periodic training sequence
is such that ¢, # 0 Vm, P > L 4+ 2 and P is such that
wg+am Z0Vgand m #0. e
Remark 1. For time-invariant channels (Q = 1 and
w1 = 0), any P satisfies wq + am # 0 Vg and m # 0. O
Remark 2. Precise knowledge of the channel length L is
not required; an upperbound L, suffices. Then we estimate
H; for 0 < i < L, with H; — 0 i.p. for i > L+ 1 (=true
channel length) as record length ' — co. O
Remark 3. We do not need ¢, # 0 for every m. We need
at least L 4+ 2 nonzero c¢,»s. This can be accomplished by
picking a “large” P and a suitable {c¢(n)} (picked to satisfy
a peak-to-average power constraint, e.g.). O
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Fig. 1. Example 1: Normalized channel MSE (19) based
on T' =144 symbols per run, 100 Monte Carlo runs, P = 6.
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method for different DCAC ratios are overlaid (very close).

The curves for the proposed

3. SIMULATION EXAMPLES
3.1. Example 1: Time-Invariant SISO Channel
Take N =1, Q =1 and w; =0 in (2) to get

y(n) =Y hDb(n—1) +c(n -] +v(n).  (16)
=0

Let L. be the upper bound on channel length L. We take
L, = 4. We consider a randomly generated channel in each
Monte Carlo run with random channel length and random
channel coefficients. The input information sequence {b(n)}
is i.i.d. equiprobable 4-QAM (quadrature amplitude modu-

lation) taking values (14 j)/v/2. The channel length was
picked randomly as L € {0, 1,2} with equal probability.
For a given channel length, the elements of h(l), 0 <1 < L,
were taken to be mutually independent complex random
variables with independent real and imaginary parts, each
uniformly distributed over the interval [—1,1].

The training sequence was chosen to have P = 6 with
{¢(n)} as in [2], namely

{e(n)}¥o_o = {2.01,-0.87,0.35, —0.14,0.08,1.02}.  (17)

Let 02 and o2 denote the average power in the information
sequence {b(n)} and training sequence {c(n)}, respectively.
As in [2] define a power loss factor
2
T
== 18
0= (18)

and power loss -10log(a) dB, as a measure of the informa-
tion data power loss due to the inclusion of the training
sequence. Here

of = E{lb(m)*}, ol =5 lem)”.

The training sequence was scaled to achieve a desired power
loss. Complex white zero-mean Gaussian noise was added
to the received signal and scaled to achieve a desired signal-
to-noise (SNR) ratio at the receiver (relative to the contri-
bution of {s(n)}). A mean-value m was added to the noisy
received2 signal to achieve a specified DCAC power ratio

m
E{ly(n)—v(n)[?}"

Normalized mean-square error in estimating the channel
impulse response averaged over 100 Monte Carlo runs, was
taken as the performance measure for channel estimation.
It is defined as (before Monte Carlo averaging)

NCMSE := > o \2|h(l) — h(D)|?
S IR

The results of averaging over 100 Monte Carlo runs are
shown in Fig. 1 for various SNRs and DCAC power ratios
for a record length of T=144 symbols and a power loss of
2dB. Our proposed method (using L = L,, = 4 in (15)) and
that of [2] were simulated. The method of [3] does not apply
to this model. It is seen that the proposed method is insen-
sitive to the presence of the unknown mean m whereas the
method of [2] is very sensitive. For m = 0, the performance
of our method is slightly inferior to that of [2].

(19)

3.2. Example 2: Time-Invariant SISO Channel

This example is exactly as Example 1 except for the train-
ing sequence which was taken to an m-sequence (maximal
length pseudo-random binary sequence) of length 7 (=P)

{e(m)¥s_o={1,-1,-1,1,1,1,-1}. (20)

The peak-to-average power ratio for this sequence is one
(the best possible). The results of averaging over 100 Monte
Carlo runs are shown in Fig. 2 for various SNRs and DCAC
power ratios for a record length of T=140 symbols and
a power loss of 2dB. Our proposed method and that of
[2] were simulated. The method of [3] does not apply to
this model. It is seen that as for Example 1, the proposed
method is insensitive to the presence of the unknown mean
m whereas the method of [2] is very sensitive. Unlike Ex-
ample 1, for m = 0, the performance of our method is now
slightly superior to that of [2].

3.3. Example 3: Time-Varying SISO Channel
In (2) take N =1, Q =2 and

w1 =0, wz=27/50. (21)

We consider a randomly generated channel in each Monte
Carlo run with random channel length L € {0, 1,2} picked
with equal probabilities and random channel coefficients
hq(l), 0 <1 < L, taken to be mutually independent com-
plex random variables with independent real and imagi-
nary parts, each uniformly distributed over the interval
[—1,1]. Normalized mean-square error (MSE) in estimat-
ing the channel coefficients hq(1), averaged over 100 Monte

IV - 626




Carlo runs, was taken as the performance measure for chan-
nel identification. It is defined as (before Monte Carlo av-
eraging)

&5 lhg(m) = Ry(m)]* |
o Do g (m) 2

The training sequence was taken to be an m-sequence of
length 7 specified by (20). The input information sequence
{b(n)} is i.i.d. equiprobable 4-QAM.

Our proposed method using L = L, =4 in (15) was ap-
plied for varying power losses due to the training sequence.
The power loss is defined in Example 1 as -10log(c) dB

NCMSEy, := { (22)

2
where o = 020—*’2 Fig. 3 shows the simulation results.
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Fig. 2. Example 2: Normalized channel MSE (19) based
on 7' =140 symbols per run, 100 Monte Carlo runs, P = 7.
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