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ABSTRACT

The time-of-arrival estimation of several short delayed repli-
cas of a known signal in a single antenna receiver is an ill-
conditioned problem, which improves if the amplitudes are
not completely static. We present a signal model that in-
cludes slow amplitude variations using a Karhunem\e"
expansion, and the corresponding Maximum Likelihood es-
timator. The results show that a clear performance improve-
ment in the delay estimation can be achieved by including
these variations in the model.

1. INTRODUCTION

In a single antenna receiver, the estimation of the delays
of several static replicas of a known signal becomes an ill-

specifying a generic element with indeor indexep, ¢q. A
centred dot " refers to all possible values of the index. The
range (interval) of values such thats < 2 < bis denoted
by [a,b]. '@’ is the Hadamard (element-by-element) prod-
uct. T and1 denote an identity matrix and a column vector
of ones of proper size, respectivelyn, « n, IS aN1 X N
matrix of ones. (-)! performs the Hermitian (transpose-
conjugate) of a matrix. ¢’ is the Katri-Rao product, (see
equation (19)). X’ is the product defined in (10). Cardinals
are written with a letterVand a mnemonic sub-scrip

is the number of samplesd/; is the length of a vectgg, and

so on.

2. SIGNAL MODEL

Let us consider an scenario in which several replicas of

conditioned problem as the separation among delays de-a known signal arrive with different delays at a receiver
creases [1]. Nevertheless, this scenario is quite usual inequipped with a single antenna. The receiver samples the
satellite navigation and in wireless communications systemsincoming signal al /Ty rate in the interval0, (N — 1)T5].

see [1] and [2]. One factor that improves this situation is the We assume that the delays remain constant during this in-
slow fading which varies the amplitudes of the replicas, as terval, but that the amplitudes vary slowly in it, which is the
long as the signal can be observed for a long enough pe-typical behaviour of a slowly fading channel. The low-pass

riod or in several time slots. In this paper, we assume that
the slow fading does not change the delays of the impinging
replicas during the observation period, but that it changes
their amplitudes due to the rotation of the carrier phase and
to the varying characteristics of the channel. This approxi-

equivalent of the incoming signal is

Nun
y(t) =Y st = m)ar(t) +n(b),

k=1

1)

mation is valid if the carrier frequency is much greater than wheres(t) is the transmitted signahy(¢) is the complex

the signal bandwidth.

In the next section we present a signal model of this sce-
nario, based on two Karhunen-eé expansion, one for the
transmitted signal, and one for the fading amplitudes. This
general model is particularized in section 3 fora DS-CDMA
signal with long spreading code, in which the data modula-

tion has been eliminated using a Decision-Directed scheme.

amplitude of thek-th replica, anda(¢) is a white complex

Gaussian process with variangé. After sampling, we ob-

tain the model

N

Zs(rk) ®ag + n,

k=1

y ()

The estimation is then performed at the output of a bank Where we have defined a vector for each signal in (@)=(

of correlators in order to reduce the problem size. Section
4 presents the Conditional Maximum Likelihood estimator.
Finally, section 5 contains simulaton results.

Notation. '="is used to perform definitions. The notations
[b]n, [B]p,q refer to a column vectob or a matrixB by
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1,...,No,k=1,...,Nu):

[y]n = Y((n - ]-)Ts)7 [S(T)]n = S((n - 1)TS - T):
[ak], = ar((n — 1)), and [n], =n((n — 1)T5).
®)
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Next, we assume that there are two truncated Karhunen-Equations (10) and (11) allow us to achieve a compact model.

Loeve expansions that approximae) anda ; respectively
with negligible error, i.e. we may write

s(1) = (4)

As we will see in the next sectios(r) can be the result of a
linear modulation, withC being a convolution matrix asso-
ciated to the symbols, arnglr) the pulse shape employed.
The expansion o4, can be obtained by sampling the spec-
trum ofay,(¢). Define first the Vandermonde vector

Cg(r), and a; = Kn,,.

[d(f)]n = 27D p =1, ... N, (5)

Assuming thaty (t) has bandwidthB, it can be approxi-
mated by sampling its spectrum( f) at frequencieg, fo,
Cy ka:

[ak]n = fB jQWf(nfl)Tsdf ~

Z 1a(fp)ej>ﬂfp n-T (fp+1 —
Z = a(fp)le(fp)ln(for1 — fp),

For alln and a sufficienfVy, we have

fp) = (6)

Nk

Z a(fp)(fp1

p=1

= fp) o(fp)- Q)

ap =

Thus,a;, belongs to the span @(f1), ...
allows us to model the amplitudes as

[D(f1),. -

»¢(fn). This

a; = Kn,, with K = a¢(ka)]v 8

n,, being an unknown vector parameter. We proceed to sub-

stitute the expansions (4) and (7) in (2):

N,

g

\g

(Cg(7k))

-,q[g(Tk)]q)

© (Kny)) +n =

<
5
= .
Il
0=
Q

Ny
@ (S IK]ofl,) +0 =

kol
#1
mz’ﬁ

I

(Cl., & [K]..) ?:“l[g(m)]q[nk]r n

%
I
-

=
I
-

©)

The signal in this equation is a linear combination of vectors

[Cl..; © [K].,. Thus, we may write (9) in terms of the
following product, ¢ = 1,..., N, r =1,..., Ny):
[C x K] nyr1)49 = [Cl g ©[K].,..  (10)

In the third sum in (9), if we vary andr as in the definition
of ’ x’, we obtain the column vector

Nm
S diag(g(ms), ), g()my. (11)

Define

Gio(m) = diag(g(mi), V), g(n),

G(7) =[Go(11), Go(12), -, Go(7n,,)],  (12)
=Mnt,n5,....,n5,]"
Then, (9) can be written as
= (C x K)G(T)n +n. (13)

We have obtained a signal model with a familiar form in ar-
ray processing [3], but in which several consecutive columns
of G(7) depend on the same elementofThe model with-

out fading would result iK = 1.

3. APPLICATION TO A DS-CDMA SIGNAL WITH
LONG SPREADING CODE

We proceed to apply the model (13) to a DS-CDMA sig-
nal with long spreading code as the ones employed in nav-
igation systems [4], by specifying the factorisatigr) =
Cg(r) from the modulation irs(¢). Then, the estimation
problem will be posed at the output of a bank of correlators
in order to reduce the problem size.

Assume that the transmitted signal is the convolution of
a delta trainc(t), that contains the spreading code and the
data modulation, and a pulse shape of (approximately) finite

durationg(t),
s(t) = c(t) = g(t)-

If 1/T5 is greater than the Nyquist sampling frequency of
s(t), we may representf(t) as a train of sincs,

(14)

(15)

For simplicity, assume that there is one codeword per sym-
bol, and that one codeword is formed by. samples at the
1/Ts sampling rate. Then, i, is thep-th symbol, andv,

the g-th sample of the codeword, the sequence in (15) is
CN.(p—1)+q = ApWq-

Given that the Sampling Theorem holds, the convolu-
tion in (14) can be performed in the discrete domain:

o0

Z c(nTs —rTy)g(rTy — 1).

r=—00

s(nTy — 1) = (16)

Since the pulse is approximately time-limited¢ — 7) can
be regarded as zero outside an intef0a{ N, — 1)T5]. This
makes the sum in (16) finite, allowing us to obtain a fac-
torisation like the one in (4), in whiclC is a convolution
matrix, andg(7) contains the samples @t — 7) inside
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[0,(Ng — 1)T5]. Specifically, the terms in (4) arep (= Using (20), (22) and the join properties of the’’and '’
L,...,Ns, g=1,...,Np), operators, it can be shown thRis andRy follow the for-

mulas
[Cln,g = cn—yg, [8(7T)]q =8(qTs — 7). (17)

_— . . I A Coror Rs = [(Inyxn, x KD (An xn, x K1)] ©
Given that the spreading codes are long, the number of rows

of C is usually gnormogs. In order to ?educe this number, [(Co x Lnv.exn)™(Co x K2)]
we assume that the data modulation has been removed from Ry = [(1Nbeg X Kl)H(lexNg X Kl)] ®
C and that the estimation is performed at the output of a u

bank of correlators. Besides, in order to simplify the im- [(Co X Ineexni)(Co X Lwvioxn)] -
plementation further, we assume that the receiver correlatesith these matrices, we achieve the model

with C x K, K being a version oK that is constant in-

side each codeword. To correlate usigproduces almost Yw = LRsG(7)n + ny, (24)

no performance loss, given that the variation of the ampli- i, \which v, is the whitened correlation bank output the

tudes is negligible in these short periods (slow fading). A Cholesky factor oR !, (LYL = R5!), andn, has covari-
convenient implementation would consist of detecting the ;. .qp,2. N N ¢

data and then eliminating it, (Decision-Directed scheme),
at the output of a bank of correlators matched to a single
codeword. This implementation would be acceptable if the
signal replicas do not block the data detection. Thus, with
these assumptions, the correlators’ outpuis

(23)

4. THE CONDITIONAL MAXIMUM LIKELIHOOD
ESTIMATOR

The Maximum Likelihood estimator af and in (24) is
equivalent to the least squares estimator given that the noise
is white [5]. DefiningS,, (7) = LRsG(7) and suppressing
To put this model in operation requires to calculate before- the ™ dependency, the ML estimation in (24) is
hand the constant matrix in the sngnaI term and the noise [4,#] = argmin ||y, — Swn |- (25)
covariance matrixRg = (C x K)"(C x K) andRy = n.T

~ o = i i
(C x K)*(C x K). Since the data modulation has been o, 4 fixedr, the global minimum s obtainedat= S1 y

removed,C is the convolution matrix of a periodic code.  11g it is only necessary to minimise the cost function
This allows us to calculaiBs andRy in a number of oper- ‘

ations independent d¥. First, define the Katri-Rao prod- L=y, —S«Sly,I* (26)
uct, which is a column-wise Kronecker product. Afand
B have bothV columns andV, andNg rows respectively,
wehave,p=1,...,Nx, ¢q=1,...,Ng, r=1,... N),

y.=(CxKMCxK)G(T)n+ (C x K)'n. (18)

The minimisation can be performed using a variant of
Newton’s method, the Modified Variable Projection (MVP)
Method in [6]. Assuming first that each column®f, de-

AoB B =[A],.[Bl.. 19 pends on a different element-of the MVP method updates
A 0 Blna -+ = [Alnr[Bly (19) thep-th iteration,r(?), using
Then,C has the structure
D) — 7+ MIVL, (27)
T T
C=1[C;,...,Co]" = 1nyxn, ¢ Co, (20) wherep,, adjusts the step length to assure a descendant di-

: . . . rection,
whereC, is the convolution matrix of a single codeword,

and it is possible to extract a compatible structure to this  pp = 2Re{[DH(I - P)D|® [ST y yH(ST 1]}, and
from K: W
VL = —2Re{diag{Sly,y2(I - P)D}}.

w

[K]Nsc(pfl)Jrqﬂ" = 2/ T (Nec(p=1)+0) = (28)
K1 (Kl — K oK (21) In these formulas? = S, St and[D]. ;, = d[Sy]. .+/d7%,
[Kilp,r[Kolor = [Ki 0 Ko]n.cp-1) 4, k =1,...,Nu. Since several consecutive columnsSqf

i } : ‘ depend on the same elementoft is necessary to apply the
In this equation, we have defingid, |, = eZﬂf"T.SN_“(VD Chain Rule toVL andM before using them in (27). This
and[K»],,, = e*™/1:1. K, describes the variation & amounts to adding up into a single element the elements in
inside one codeword. ThUS, we obtdia by SUbStitUting VL that Correspond to the same and’ in the same way,

this matrix by an all ones matrix: to adding up into a single element the elementdIrthat
B correspond to the santey, 7,.) pair,k,r = 1,..., Ny,. The
K=K, ol xn,. (22) resulting vector and matrix can be employed in (27).
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Fig. 1. RMS error and Cramer-Rao Bound versus (a) SNR,
and (b) delay separation. Crosses mark the Cramer-Ra
Bounds.

5. SSIMULATION RESULTS

The signal model has been simulated with a GPS C/A signal
but modulated with Root-Raised cosine pulses, rollsof
0.2. The chip rate was 1023 MChips/sec, one codeword

having 1023 chips. The sampling rate was 2 samples/chip.

There were two signal replicas with delayis= —0.1 chips
andm, = 0.4 chips respectively, and the amplitude of the
second replica was 10 dB below the amplitude of the first

replica. The phases were equal. The first replica was al-
most static: there was a frequency component at 1 Hz and

at -1 Hz 20 dB lower than the component at 0 Hz, the am-
plitude being real. The amplitude of the second replica had
a 3 Hz modulation, being also real. The frequencies in (7)
employed by the model were from -4 to 4 Hz with 1 Hz

%3l

spacing, and the pulse was truncated\ip = 13 samples

to which 8 zero padding samples were added. Figure 1 (a)
shows the performance of the ML estimator in Root-Mean-
Square (RMS) error in a static and fading channels respec-
tively. The inclusion of the fading in the model improves the
performance clearly. Without fading and for low Signal-to-
Noise (SNR) ratios, the ML estimator is not effecient due to
the ill-condition of the problem. In Figure 1 (b) the RMS
error for a SNR ratio of 12 dB has been plotted versus the
delay separation between the signal replicas. In both cases
the problem becomes ill-conditioned as the delay separation
decreases but the RMS error is clearly lower in the fading
case.

6. CONCLUSIONS

We have introduced a model of the slow fading in the prob-
lem of estimating the delays of several replicas of a know
signal in a single-antenna receiver. The results show that the
performance improves with the presence of the slow fading,
if this effect is exploited by the estimator. The ability to
separate closely delayed replicas is improved.
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