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ABSTRACT

The time-of-arrival estimation of several short delayed repli-
cas of a known signal in a single antenna receiver is an ill-
conditioned problem, which improves if the amplitudes are
not completely static. We present a signal model that in-
cludes slow amplitude variations using a Karhunen-Lo`eve
expansion, and the corresponding Maximum Likelihood es-
timator. The results show that a clear performance improve-
ment in the delay estimation can be achieved by including
these variations in the model.

1. INTRODUCTION

In a single antenna receiver, the estimation of the delays
of several static replicas of a known signal becomes an ill-
conditioned problem as the separation among delays de-
creases [1]. Nevertheless, this scenario is quite usual in
satellite navigation and in wireless communications systems;
see [1] and [2]. One factor that improves this situation is the
slow fading which varies the amplitudes of the replicas, as
long as the signal can be observed for a long enough pe-
riod or in several time slots. In this paper, we assume that
the slow fading does not change the delays of the impinging
replicas during the observation period, but that it changes
their amplitudes due to the rotation of the carrier phase and
to the varying characteristics of the channel. This approxi-
mation is valid if the carrier frequency is much greater than
the signal bandwidth.

In the next section we present a signal model of this sce-
nario, based on two Karhunen-Lo´eve expansion, one for the
transmitted signal, and one for the fading amplitudes. This
general model is particularized in section 3 for a DS-CDMA
signal with long spreading code, in which the data modula-
tion has been eliminated using a Decision-Directed scheme.
The estimation is then performed at the output of a bank
of correlators in order to reduce the problem size. Section
4 presents the Conditional Maximum Likelihood estimator.
Finally, section 5 contains simulaton results.

Notation. ’�’ is used to perform definitions. The notations
����, ������ refer to a column vector� or a matrix� by

specifying a generic element with index� or indexes�� �. A
centred dot ’�’ refers to all possible values of the index. The
range (interval) of values� such that� � � � � is denoted
by ��� ��. ’�’ is the Hadamard (element-by-element) prod-
uct. � and� denote an identity matrix and a column vector
of ones of proper size, respectively.������

is a�� ���

matrix of ones. ���� performs the Hermitian (transpose-
conjugate) of a matrix. ’�’ is the Katri-Rao product, (see
equation (19)). ’�’ is the product defined in (10). Cardinals
are written with a letter� and a mnemonic sub-script:��

is the number of samples,�� is the length of a vector�, and
so on.

2. SIGNAL MODEL

Let us consider an scenario in which several replicas of
a known signal arrive with different delays at a receiver
equipped with a single antenna. The receiver samples the
incoming signal at�	
� rate in the interval��� ��� � ��
��.
We assume that the delays remain constant during this in-
terval, but that the amplitudes vary slowly in it, which is the
typical behaviour of a slowly fading channel. The low-pass
equivalent of the incoming signal is

���� �

���
���

	��� ���
���� � ����� (1)

where	��� is the transmitted signal,
���� is the complex
amplitude of the
-th replica, and���� is a white complex
Gaussian process with variance��. After sampling, we ob-
tain the model

� �

���
���

������ �� � 	� (2)

where we have defined a vector for each signal in (1), (� �
�� � � � � ��� 
 � �� � � � � ��):

���� � ����� ��
��� ������� � 	���� ��
� � ���

����� � 
����� ��
��� and �	�� � ����� ��
���

(3)

IV - 6080-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡



Next, we assume that there are two truncated Karhunen-
Lòeve expansions that approximate���� and�� respectively
with negligible error, i.e. we may write

���� � 
����� and �� � ���� (4)

As we will see in the next section,���� can be the result of a
linear modulation, with
 being a convolution matrix asso-
ciated to the symbols, and���� the pulse shape employed.
The expansion of�� can be obtained by sampling the spec-
trum of
����. Define first the Vandermonde vector

������� � 
���	����	
� � � � �� � � � � ��� (5)

Assuming that
���� has bandwidth�, it can be approxi-
mated by sampling its spectrum
���� at frequencies��, ��,
� � �, ���

:

����� �
�
�

���
���	����	
��� ����

��� 
����

���	�����	
����
� � ��� ����

��� 
���������������
� � ����

(6)

For all� and a sufficient��, we have

�� �

���
���


�������
� � ��������� (7)

Thus,�� belongs to the span of������ � � � ������
�. This

allows us to model the amplitudes as

�� ���� with � � ������� � � � ������
��� (8)

�� being an unknown vector parameter. We proceed to sub-
stitute the expansions (4) and (7) in (2):

� �
���
���

�
������� ������ � 	 �

���
���

��
���
���

�
�������������� �
���
���

������������� � 	 �

���
���

���
���

��
���� � �������
���
���

�������� ����� � 	�

(9)
The signal in this equation is a linear combination of vectors
�
���� � ������. Thus, we may write (9) in terms of the
following product, (� � �� � � � � ��� � � �� � � � � ��):

�
�����������	
� � �
���� � ������� (10)

In the third sum in (9), if we vary� and� as in the definition
of ’�’, we obtain the column vector

���
���

��
��������
���� � � ���������� (11)

Equations (10) and (11) allow us to achieve a compact model.
Define

������ � ��
��������
���� � � ��������

��� � � ��������������� � � � �������
���

� � ��
� ��


� � � � � ��



��

�
�

(12)

Then, (9) can be written as

� � �
������ �� � 	� (13)

We have obtained a signal model with a familiar form in ar-
ray processing [3], but in which several consecutive columns
of��� � depend on the same element of� . The model with-
out fading would result if� � �.

3. APPLICATION TO A DS-CDMA SIGNAL WITH
LONG SPREADING CODE

We proceed to apply the model (13) to a DS-CDMA sig-
nal with long spreading code as the ones employed in nav-
igation systems [4], by specifying the factorisation���� �

���� from the modulation in	���. Then, the estimation
problem will be posed at the output of a bank of correlators
in order to reduce the problem size.

Assume that the transmitted signal is the convolution of
a delta train����, that contains the spreading code and the
data modulation, and a pulse shape of (approximately) finite
duration����,

	��� � ���� 	 ����� (14)

If �	
� is greater than the Nyquist sampling frequency of
	���, we may represent���� as a train of sincs,

���� �

��

����

��	���

�
�� �
�

�

�
� (15)

For simplicity, assume that there is one codeword per sym-
bol, and that one codeword is formed by� � samples at the
�	
� sampling rate. Then, if�� is the�-th symbol, and��

the �-th sample of the codeword, the sequence in (15) is
�������	
� � ���� .

Given that the Sampling Theorem holds, the convolu-
tion in (14) can be performed in the discrete domain:

	��
� � �� �

��
����

���
� � �
�����
� � ��� (16)

Since the pulse is approximately time-limited,���� �� can
be regarded as zero outside an interval��� ������
��. This
makes the sum in (16) finite, allowing us to obtain a fac-
torisation like the one in (4), in which
 is a convolution
matrix, and���� contains the samples of��� � �� inside
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��� ��� � ��
��. Specifically, the terms in (4) are, (� �
�� � � � � ��� � � �� � � � � ��),

�
���� � ���� � ������� � ���
� � ��� (17)

Given that the spreading codes are long, the number of rows
of 
 is usually enormous. In order to reduce this number,
we assume that the data modulation has been removed from

 and that the estimation is performed at the output of a
bank of correlators. Besides, in order to simplify the im-
plementation further, we assume that the receiver correlates
with 
 � ��, �� being a version of� that is constant in-
side each codeword. To correlate using�� produces almost
no performance loss, given that the variation of the ampli-
tudes is negligible in these short periods (slow fading). A
convenient implementation would consist of detecting the
data and then eliminating it, (Decision-Directed scheme),
at the output of a bank of correlators matched to a single
codeword. This implementation would be acceptable if the
signal replicas do not block the data detection. Thus, with
these assumptions, the correlators’ output�� is

�� � �
� �����
������ �� � �
� ����	� (18)

To put this model in operation requires to calculate before-
hand the constant matrix in the signal term and the noise
covariance matrix:
� � �
 � �����
 ��� and
� �

�
 � �����
 � ���. Since the data modulation has been
removed,
 is the convolution matrix of a periodic code.
This allows us to calculate
� and
� in a number of oper-
ations independent of��. First, define the Katri-Rao prod-
uct, which is a column-wise Kronecker product. If� and
� have both� columns and�� and�� rows respectively,
we have, (� � �� � � � � ��� � � �� � � � � ��� � � �� � � � � � ),

�� ���������	
��� � ������������� (19)

Then,
 has the structure


 � �


� � � � � �




� �

 � ��	���

�
�� (20)

where
� is the convolution matrix of a single codeword,
and it is possible to extract a compatible structure to this
from�:

����������	
��� � 
��	�
���������	
�	 �

�������������� � ��� �����������	
����
(21)

In this equation, we have defined������� � 
��	�
��������	

and ������� � 
��	�
��. �� describes the variation of�
inside one codeword. Thus, we obtain�� by substituting
this matrix by an all ones matrix:

�� � �� � ������
� (22)

Using (20), (22) and the join properties of the ’�’ and ’�’
operators, it can be shown that
� and
� follow the for-
mulas


� �
�
���	���

����
����	���

����
�
��

�
� � �������
���
� ����

�
�


� �
�
���	���

����
����	���

����
�
��

�
� � �������
���
� � �������

�
�
�

(23)

With these matrices, we achieve the model

�� � �
���� �� � 	�� (24)

in which�� is the whitened correlation bank output ,� the
Cholesky factor of
��

� , (��� � 
��
� ), and	� has covari-

ance���.

4. THE CONDITIONAL MAXIMUM LIKELIHOOD
ESTIMATOR

The Maximum Likelihood estimator of� and� in (24) is
equivalent to the least squares estimator given that the noise
is white [5]. Defining���� � � �
���� � and suppressing
the� dependency, the ML estimation in (24) is

���� �� � � 
�����
���


�� � ���

�� (25)

For a fixed� , the global minimum is obtained at� � �����.
Thus, it is only necessary to minimise the cost function

� � 
�� � ���
�
���


�� (26)

The minimisation can be performed using a variant of
Newton’s method, the Modified Variable Projection (MVP)
Method in [6]. Assuming first that each column of�� de-
pends on a different element of� , the MVP method updates
the�-th iteration,� ��	, using

� ��
�	 � � ��	 � ���
����� (27)

where�� adjusts the step length to assure a descendant di-
rection,

� � ��
������������ �������
�
���

�
��

��
� and

�� � ���
���
��������
�
�������

�

(28)
In these formulas,� � ���

�
� and������ � � �������	���,


 � �� � � � � ��. Since several consecutive columns of��
depend on the same element of� , it is necessary to apply the
Chain Rule to�� and� before using them in (27). This
amounts to adding up into a single element the elements in
�� that correspond to the same�� and, in the same way,
to adding up into a single element the elements in� that
correspond to the same���� ��� pair,
� � � �� � � � � ��. The
resulting vector and matrix can be employed in (27).
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Fig. 1. RMS error and Cramer-Rao Bound versus (a) SNR,
and (b) delay separation. Crosses mark the Cramer-Rao
Bounds.

5. SIMULATION RESULTS

The signal model has been simulated with a GPS C/A signal
but modulated with Root-Raised cosine pulses, roll-off� �
���. The chip rate was 1023 MChips/sec, one codeword
having 1023 chips. The sampling rate was 2 samples/chip.
There were two signal replicas with delays�� � ���� chips
and�� � ��� chips respectively, and the amplitude of the
second replica was 10 dB below the amplitude of the first
replica. The phases were equal. The first replica was al-
most static: there was a frequency component at 1 Hz and
at -1 Hz 20 dB lower than the component at 0 Hz, the am-
plitude being real. The amplitude of the second replica had
a 3 Hz modulation, being also real. The frequencies in (7)
employed by the model were from -4 to 4 Hz with 1 Hz

spacing, and the pulse was truncated to�� � �� samples
to which 8 zero padding samples were added. Figure 1 (a)
shows the performance of the ML estimator in Root-Mean-
Square (RMS) error in a static and fading channels respec-
tively. The inclusion of the fading in the model improves the
performance clearly. Without fading and for low Signal-to-
Noise (SNR) ratios, the ML estimator is not effecient due to
the ill-condition of the problem. In Figure 1 (b) the RMS
error for a SNR ratio of 12 dB has been plotted versus the
delay separation between the signal replicas. In both cases
the problem becomes ill-conditioned as the delay separation
decreases but the RMS error is clearly lower in the fading
case.

6. CONCLUSIONS

We have introduced a model of the slow fading in the prob-
lem of estimating the delays of several replicas of a know
signal in a single-antenna receiver. The results show that the
performance improves with the presence of the slow fading,
if this effect is exploited by the estimator. The ability to
separate closely delayed replicas is improved.
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