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ABSTRACT 
 
In this paper, we consider a direct-sequence code-division 
multiple-access system operating in downlink. We propose to 
improve the performances of a conventional delay tracking 
algorithm, i.e. the early-late algorithm, by means of prefiltering 
of the received signal. This concept has been studied by 
D’Andrea and Luise in [1] for the clock recovery scheme 
proposed by Gardner [2]. Our main contribution is to extend this 
concept in a multi-user CDMA context. In this extension, we 
have to treat multiple-access interference and to deal with the 
two “timing scales”, i.e. symbol and chip duration, due to spread 
spectrum. The analysis shows improved tracking performances 
in comparison to the standard early-late algorithm. 
 

1. INTRODUCTION 
 
The code tracking performance of the Early-late synchronizer 
[3] [4] is affected by the presence of intersymbol interference 
(ISI) and multiple-access interference (MAI) in the received 
signal.  
 

Guenach and Vandendorpe [5] proposed an interference 
cancellation receiver. They derived the likelihood function for 
delay estimation in a multi-user context and mentioned an early-
late implementation with the interference mitigation term. 
Interference mitigation requires the knowledge of all user’s 
symbols.  

We resort to a different approach based on the standard 
early-late algorithm. A new early-late implementation is 
proposed in which the ISI and MAI terms are taking into account 
by using the concept of prefiltering, which needs only the 
knowledge of one user symbols (we choose user one by 
convention). The concept of prefiltering has been developed for 
the first time for the analog receivers and then adapted to digital 
receivers. It consists in inserting a filter in the loop and 
computing the optimal filter’s coefficients which minimizes the 
timing variance (due to noise and ISI). We will generalize this 
approach to the early-late receiver in the context of multi-user 
DS-CDMA signal. 

This paper is organized as follows : in section 2, a multi-
user transmission model is proposed. The standard early-late 
algorithm is described in section 3 and its improved version with 
the prefilter is described in section 4. Numerical results are 
presented in section 5, and conclusions are given in section 6. 
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Fig. 1. Multi-user system. 
 

2. MULTI-USER TRANSMISSION MODEL 
 
The continuous-time baseband representation (complex 
envelope) of the received signal is modeled as (see Fig. 1.): 

 , (1) ( ) ( ) ( )0
1

K

k k
k n

r t Ts a n s t nTs w tτ
=

= − −  ∑∑ +
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where ak[n] are the BPSK symbols transmitted by the k-th source 
at the “symbol times” nTs. K is the number of users. The 
transmitted symbols are stationary, with zero-mean and power 
A2, considered to be uncorrelated temporally, from one user to 
another, and also uncorrelated with the additive noise. 
sk(τ) = (ck*he)(τ) is the signature of the k-th user, which results 
from the convolution between the k-th spreading code and the 
half Nyquist he (square root raised cosine filter). The codes of 
different users are made from Q binary entities named chips. 
The impulse response of one code for the k-th user is defined by  

 , (2) ( ) ( )
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Q

k k
q

c c q qτ δ τ
−

=

= −  ∑
where Tc = Ts/Q is the chip duration. w(t) is a baseband additive 
white complex gaussian noise, with two-sided power spectral 
density N0/2. 
 

We consider the following context of downlink multi-user 
communication [6]: 
- The number of users K is less than or equal to the spreading 

factor Q. 
- The K active codes (taken among a set of Q known codes) 

are assumed to be known at the receiver. 
- All K users share the same propagation channel hc(τ). 
- The baseband channel is supposed to be a single path 

(AWGN) with a delay factor τ0 : hc(τ) = δ(τ-τ0) 
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3. THE EARLY-LATE RECEIVER 
 

The early-late receiver is a closed-loop clock synchronizer. Its 
purpose is to estimate the channel delay τ0 in order to provide an 
estimation of the optimum time sampling mTs+τ0. The estimate 
of τ0 is updated at a symbol rate by an error signal e[m] filtered 
by the loop filter g[m]. The recursive equation of the early-late 
loop is thus defined as : 
 
 ( )0 0ˆ ˆ1 *m m g eτ τ+ = +          m , (3) 
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where  is the estimate of τ0ˆ mτ    0 at instant mTs and g[m] is the 
impulse response of the loop filter. For calculation simplicity 
and without loss of generality, we choose g[m] = µ δ[m], with δ 
the Kronecker function, to obtain a first order loop recursive 
equation. 

 
The loop error signal e[m] is computed as follows :  

*
1 0 0ˆ ˆ ˆRe

2
Tc Tce m a m y mTs m y mTs mτ τ

    = + + − +                  
   

where : (4) 
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− 
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 { }0ˆe m E e m m N mτ= +               . (6) 

- y(t) is the output of the matched filter s1
H(τ) when r(t) is 

applied, i.e. : y(t) = (r*s1
H )(t). By using (1), it can be written 

as : 

 , (5) ( ) ( ) ( )1 0
1

K

k k
k n

y t Ts a n t nTs n tτ
=

= Γ − −  ∑∑
where Γk1(τ) = (sk*s1

H)(τ) is the global cross-correlation 
function between user 1 and k, and n(t) is the filtered version 
of w(t). By convention, the exponent (.)H represents 
hermitian transform i.e. f H(τ) = f*(-τ) for a given function f.  
 

- â1[m] is the estimation of a1[m]. For Decision-Directed 
operating mode, estimated symbols are supposed available 
and possible estimation errors are also neglected. 

 
Here we consider a fully digital implementation of the 

early-late receiver with non synchronous sampling since it is 
quite feasible given the today’s technology. Effects of 
interpolation errors can be neglected by choosing an optimal 
parabolic interpolation [7]. 

  
The signal r(t) is passed through an anti-aliasing filter 

(AAF) before being sampled at a rate of two samples per chip. 
This sampling rate allows to have no loss of information in the 
case of signals having an excess bandwidth less than 100%. The 
sampling clock is fixed and independent from the transmitter 
clock. The interpolator is controlled by the loop output to 
provide the samples at the desired interpolation instants. the 
early late samples ( )0ˆ / 2y mTs m Tcτ+ ±  

±

 are then computed 

by applying the cross-correlation between the interpolated signal 
and the code of user #1 shifted by Tc/2. They are used by the 
Timing Error Detector (TED) to generate the loop error signal 
e[m] as shown in Fig. 2. 

 
 
 

 
Fig. 2. Standard early-late receiver (without the prefilter 
hp[i]) or improved early-late receiver (with hp[i]). 

 
 
The loop error signal can be decomposed to the sum of the 

conditional expectation { }0ˆE e m mτ        and a random term 

N[m]:  

The first term, called the S-curve, is a function of the timing 
error: 
 { } ( )0 0 0ˆE e m m S mτ τ τ= − ˆ           , (7) 

and the second term, called the loop noise, is defined as:  
 ( )0 0ˆN m e m S mτ τ= − −           . (8) 

 
In the context of small fluctuations of the timing error, it is 

possible to linearize the S-curve arround its stable equilibrium 
point [8]: 
 ( ) ( )0 0 0 0ˆS m Dτ τ τ τ− = − ˆ m       , (9) 

where D is the slope of the S-curve at the stable equilibrium 
point. 
 

The computation of the timing variance shows that [9] it 
depends on the autocorrelation of the loop noise N lΓ    : 

 ( )2
2

2 1 lL
N

l

B Ts l D
D

σ
+∞

=−∞

= Γ −  ∑ µ , (10) 

where BLTs is the normalized equivalent noise bandwidth of the 
loop. BLTs is given by [9]: 

 
( )2 2L

DB Ts
D

µ
µ

=
−

. 

The computation of the loop noise autocorrelation will 
constitute a first step in the calculation of the timing variance. 
 
4. IMPROVEMENT OF THE EARLY-LATE LOOP 

 
We insert a prefilter of finite impulse response in the early-late 
loop between the interpolator and the cross-correlator (see Fig. 
2.). It works at a rate of two samples per chip. For the same 
reasons as those developed in [1], we choose a symmetric 
prefilter noted hp[i], i=-Np,…0,…,Np. 
 

This section is organized as follows. The first step is the 
computation of the timing variance, which depends on the 
prefilter coefficients. Then the timing variance is minimized 
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with respect to the prefilter coefficients. Next we propose a more 
compact form of the timing variance by introducing a matrix 
formulation. This will enable us to find an analytic solution to 
the minimization problem.  
 

The following notations will be used in this section: 

 ( )
2 2

Tc Tcf t f t f t∆   = + − −  
  




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2 2

u Tc Tcf t f t u f t u  = + + −  
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



, 

 ( ) ( ) ( ) ( ),

2 2
u p u uTc Tcf t f t p f t p  = + + −  

  





, 

where f represents any desired function. 
 

The new error signal can be expressed as: 

*
1 0 0ˆ ˆ ˆRe
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where  (11) 
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Inserting (5) in (12) yields: 
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 ∑ − 

0

. (15) 

 
Now, remembering that if 0ˆ mτ τ=   , then e[m]=N[m]; the 

loop noise autocorrelation takes the form: 

 { }*
N l E e m e m lΓ = −           . (16) 

Substituting (11) in the above expression yields:  
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∆

∆
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′− − +  

 (17) 

We develop the product of the two real parts by using the 
equality of Re{z} Re{z’} = Re{zz’+zz’*}/2, where z and z’ are 
two complex numbers and z* is the complex conjugate of z. By 
substituting (13) in (17) and after some calculations we obtain 
the expression of the loop noise autocorrelation : 
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and  for l≠0, ( ) (2 4
11 11N l Ts A lTs lTs∆ ∆′ ′Γ = Γ − Γ  

where 

( ) *
0 112

2

p p

p p

N N

n p
u N p N

Tci N u p i h p h u′
=− =−

 Γ = Γ − + p        
 ∑ ∑     is the 

expression of the autocorrelation of n’(t) sampled at a rate of 
two samples per chip. 
 

The loop noise autocorellation in l=0 consists of three 
terms. The first term corresponds to the ISI, the second term is 
due to the MAI and the third one represents thermal noise. In a 
multi-user context, the terms where l≠0 can be neglected. Under 
these conditions, considering N(m) as a white noise is a good 
approximation. The variance is thus evaluated as: 

 2
2

2 0L
N

B Ts
D

σ = Γ    . (19) 

Then (18) can be written in matrix notation as a quadratic 
form : 
 0 , (20) t
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2 4Ts A= +ISIΓ Γ

 is the vector of prefilter 

coefficients and  the 
matrix containing the three interference terms. 

2 4 2
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ΓISI and ΓMAI are defined as : 

 1, 1,
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Now let us consider the following matrix : 
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L

, (23) 

 
ΓTN is given by : 0 2= −TNΓ B B . (24) 
 

In the following we will minimize the timing variance with 
respect to h. We have to introduce a constraint to avoid the 
trivial solution where each coefficient equals zero. We choose 
the constraint to obtain the same slope of the S-curve at the 
stable equilibrium point as in the absence of the prefilter. The 
constraint can be written as D(h) = D. Taking the expectation of 
the error signal gives the expression of the S-curve. Then we 
compute the derivative of the S-curve and we obtain the 
constraint, expressed in matrix notation:  
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Fig. 3: Normalized timing variance for different values of Np 
 
 
 
 , (25) ( )11 0t ∆= Γx h &

where ( ) ( ) ( ) ( ) ( ),, 1
11 11 110 0 pNt ∆∆∆ = Γ Γ Γ  

x & & &L 0

)

.  

The dot is used for the time derivative. 
 

To minimize the timing variance with the constraint defined 
above, we introduce a Lagrange multiplier λ and we define the 
function F:  
 

 . (26) . (26) ( ) ( ) ( )(2
11, 0tF λ σ λ ∆= + −Γh h x h &

  
We minimize F with respect to both variables h and λ and 

we find the expression for the optimal coefficients : 
We minimize F with respect to both variables h and λ and 

we find the expression for the optimal coefficients : 

  
( )( )11 1

1

0
t

∆
−

−

Γ
=opth Γ x

x Γ x

&
. (27) 

 
 

5. NUMERICAL RESULTS 
 
In this section, we present a numerical analysis of the results 
obtained in the previous section. We use Hadamard codes of 
length Q=16. The chip shaping filter is a square-root raised 
cosine with the roll-off factor of 0.22. The loop bandwidth is 
such that BLTs=5*10-3. We consider a downlink communication 
with K=9 users. Fig. 3. shows the normalized timing variance as 
a function of Eb/N0 for 3, 5, 7, 9 and 11 prefilter coefficients. 
We also calculate the timing variance of the standard early-late 
(without prefiltering). The Modified Cramer-Rao Bound 
(MCRB) [10] is used as a lower limit to the timing variance. It is 
seen that the standard early-late has a floor timing jitter due to 
the ISI and MAI terms. The prefilter contributes to mitigate the 
interference terms and as a result, the performance curve of the 
improved early-late approaches to the MCRB. When the number 
of coefficients increases, the timing variance becomes much 
closer to the MCRB.  
 

There is another point to be mentioned about the number of 
coefficients. If we increase the number of the coefficients 

beyond Np=7, we obtain a neligible improvement in the 
performance. Hence, a small number of coefficients would 
represent the best compromise between cost and performance. 
Regarding this compromise, the best choice for the prefilter 
length is to be less than 1/4 of the code length (the prefilter 
works with samples taken at time intervals of Tc/2). 
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6. CONCLUSION 

 
In this paper, the symbol timing recovery is studied for multi-
user DS-CDMA. A novel improved early-late structure with 
prefiltering is proposed, together with an analytical solution for 
calculating the prefilter coefficients. The proposed structure is 
tested by simulations, considering 9 users with Hadamard codes 
of length 16. In order to evaluate the resulting synchronization 
performances, we compared them with the performances of the 
classical early-late algorithm for different signal-to-noise ratios. 
The results show considerable improvements for a small number 
of coefficients, which represents a prefilter length inferior to 1/4 
of the code length. 
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