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ABSTRACT

In this paper, we consider the problem of joint carrier offset
and code timing estimation for CDMA (code division multiple
access) systems. In contrast to most existing schemes which re-
quire multi-dimensional search over the parameter space, we pro-
pose a blind estimator that solves the joint estimation problem al-
gebraically. By exploiting the noise subspace of the covariance
matrix of the received data, the multiuser estimation is decoupled
into parallel estimations of individual users, which makes compu-
tations efficient. The proposed estimator is non-iterative and near-
far resistant. It can deal with frequency-selective and time-varying
channels. The performance of the proposed scheme is illustrated
by some computer simulations.

1. INTRODUCTION

Initial spreading code and carrier frequency synchronization that
precedes symbol detection is a challenging problem in direct-
sequence (DS) code-division multiple-access (CDMA) systems [1].
A conventional technique is to search serially through all poten-
tial code phases and frequencies for the desired user, meanwhile
treating the multi-access interference (MAI) as noise [1, ch. 5].
This approach, although easy to implement, suffers the MAI, par-
ticularly in a near-far environment [2], [3]. A number of MAI-
resistant synchronization schemes have been introduced recently
(e.g., [2]–[4] and references therein). Most of these schemes, how-
ever, consider only code synchronization, assuming that carrier
synchronization has been achieved at a prior stage. Joint treat-
ment of carrier and code synchronizations acheives better perfor-
mance than that of each estimator used separately, since the op-
timum maximum likelihood (ML) estimator is a joint processor
which yields estimates for all parameters simultaneously. The ML
estimator is mainly of theoretical interest due to its exponential
complexity. For practical applications, suboptimal joint synchro-
nizer/estimators with reasonable complexity are highly desired.
However, very limited studies on joint synchronization are avail-
able. A notable exception is a joint carrier offset and code tim-
ing estimator proposed in [5], where frequency-nonselective and
time-invariant channels were considered. This estimator involves
a multi-dimensional (MD) search over the parameter space, which
is computationally involved and requires accurate initial parameter
estimates that are often difficult to obtain.

In this paper, we consider the problem of joint carrier off-
set and code timing estimation for CDMA (code division mul-
tiple access) systems. We propose an algebraic, blind estimator
which jointly estimates the carrier offset and code timing. The
proposed estimator is computationally attractive since it decouples
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multiuser estimation into parallel estimations of individual users;
furthermore, unlike most existing schemes which require multi-
dimensional search over the parameter space, the proposed esti-
mator is non-iterative. It is a near-far resistant and can deal with
frequency-selective and time-varying channels.
Notation: Vectors (matrices) are denoted by boldface lower (up-
per) case letters; all vectors are column vectors; diag{g} is a di-
agonal matrix with the elements of the vector g placed on the di-
agonal; IM is the M ×M identity matrix; 0 is a vector or matrix
with all zero elements; ‖·‖ denotes matrix/vector Frobenius norm;
superscripts (·)T , (·)H and (·)† denote transpose, conjugate trans-
pose, and pseudo-inverse respectively; and finally E{·} denotes
statistical expectation.

2. DATA MODEL

Consider a baseband asynchronous K-user DS-CDMA system.
The transmitted signal for user k is given by sk(t) =

∑M−1
m=0 dk(m)

ψk(t −mTs), where M is the number of symbols considered for
synchronization, dk(m) and ψk(t) denote the mth data symbol
and spreading waveform, respectively, for user k, and Ts = NTc

denotes the symbol interval, with Tc and N being the chip inter-
val and spreading gain, respectively. Signal sk(t) passes through a
baseband time-varying frequency-selective channel. The received
signal is given by

y(t) =
∑K

k=1

∑Lk
l=1 αk,l(t)sk(t− τk,l)ejΩk(t−τk,l) +n(t), (1)

where Lk denotes the number of paths of user k, Ωk denotes the
carrier frequency offset, αk,l(t) and τk,l denote the time-varying
fading coefficient and code timing, respectively, associated with
path l of user k, and n(t) denotes the noise. We assume that
the delays of a particular user are distinct and remain (approxi-
mately) unchanged during acquisition. We also assume that the
delay spread is within one symbol interval, i.e., τk,l < Ts. This
could be the case when the cell size is small relative to the trans-
mission rate, or due to a prior coarse synchronization which pulls
the timing uncertainty to within a symbol interval [3]. The receiver
front-end is a chip-matched filter (CMF) which outputs samples
y(l) = y(t)

∣∣
t=lTi

, where Ti = Tc/Q is the sampling interval,
with Q ≥ 1 denoting the oversampling factor (an integer). It is
convenient to write τk,l as τk,l = (pk,l + µk,l)Ti, where pk,l de-
notes an integer between 0 and NQ− 1 and µk,l ∈ [0, 1) denotes
the fractional delay.

Let y(m)
�
= [y(mNQ), · · · , y(mNQ + NQ − 1)]T , ck

�
=

[ck(0), · · · , ck(NQ−1)]T , where ck(n) = 1
Ti

∫ nTi

(n−1)Ti
ψk(t)dt.

Due to asynchronism, two adjacent symbols in each path con-
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tribute to y(m) [2]– [5]

y(m) =
K∑

k=1

Σk(ωk)Ak(τ k)βk(m) + n(m), (2)

m = 0, 1, · · · ,M−1 , where ωk
�
= ΩkTi denotes the normalized

carrier offset, τ k
�
= [τk,1, · · · , τk,Lk ]T ,

Σk(ωk)
�
= diag

{
1, ejωk , · · · , ejωk(NQ−1)},

Ak(τ k)
�
= [ak(τk,1), āk(τk,1), · · · , ak(τk,Lk), āk(τk,Lk )],

βk(m)
�
= [βk,1(m), β̄k,1(m), · · · , βk,Lk(m), β̄k,Lk(m)]T ,

βk,l(m)
�
= αk,l(m)dk(m− 1)ejωkmNQ,

β̄k,l(m)
�
= αk,l(m)dk(m)ejωkmNQ,

and n(m) denotes theNQ×1 noise vector. Furthermore, we have
[4]:

ak(τk,l) = Fk(pk,l)µk,l, āk(τk,l) = F̄k(pk,l)µk,l, (3)

where µk,l

�
= [1 − µk,l, µk,l]

T , and Fk(pk,l) [respectively,
F̄k(pk,l)] are NQ × 2 matrices with the first and second column
consisting of the acyclic left shift (resp., acyclic right shift) of ck

by pk,l and pk,l + 1 samples, respectively; see [4, Eqns. (38) and
(39)] for exact expressions of Fk(pk,l) and F̄k(pk,l).

The problem of interest is to estimate the code timing {τ k}K
k=1,

and the carrier offset {ωk}K
k=1 from the received data {y(m)}M−1

m=0 ,
without any knowledge of the transmitted information symbols.
The optimum approach to solving this problem can be formulated
by means of the maximum likelihood (ML) estimation (e.g., [6]).
However, such optimum schemes require a multi-dimensional
search that has a complexity growing exponentially with the size of
the estimation problem. In what follows, we present a scheme that
is computationally efficient with close-to-optimum performance.

3. JOINT CARRIER AND CODE ESTIMATION

Let Ry
�
= E{y(m)y(m)H} denote the data covariance matrix,

and L
�
=

∑K
k=1 Lk the total number of paths of all users. Assum-

ing NQ > 2L, the eigendecomposition of Ry can be expressed
as: Ry = EsΛsE

H
s + σ2

nEnEH
n , where Λs is a diagonal matrix

made from the 2L largest eigenvalues associated with the eigen-
vectors that form Es ∈ C

NQ×2L, and En ∈ C
NQ×(NQ−2L)

contains the eigenvectors corresponding to the smallest eigenvalue
σ2

n with multiplicity NQ − 2L, with σ2
n denoting the variance of

the channel noise. Since En spans the orthogonal complement of
the signal subspace, we have

EH
n Σ(ωk)Ak(τ k) = 0, k = 1, · · · ,K. (4)

Estimates ωk and τ k can be obtained by solving the above non-
linear equation through a search over an (Lk + 1) - dimensional
parameter space, which is computationally involved and suffers lo-
cal convergence. Note that the scheme in [5] may be considered a
special case of the above approach when the channel is frequency-
flat and time-invariant.

To seek an alternative solution, we invoke the theory of poly-
nomial matrices (e.g., [7]). For the lth path of user k, (4) is equiv-
alent to (hereafter, we drop the subscripts k and l for notational
simplicity):

EH
n Σ(ω)a(τ) = 0, EH

n Σ(ω)ā(τ) = 0.
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Fig. 1. Probability of correct acquisition versus SNR in time-
varying two-path fading channel when Q = 2,K = 5,M = 200,
N = 15 and NFR = 10 dB.

Using the notation z
�
= ejω and, hence, Σ(z) = diag{1, z, · · · ,

zNQ−1}, we have [cf. (3)]

Ψ(z)µ = 0, Ψ̄(z)µ = 0, (5)

where Ψ(z)
�
= EH

n Σ(z)F(p) Ψ̄(z)
�
= EH

n Σ(z)F̄(p) are both
(NQ−2L)×2 polynomial matrices in z of orderNQ−1. Eqn. (5)
indicates that µ, which is always non-trivial by definition [cf. (3)],
is a null vector of both Ψ(z) and Ψ̄(z). Therefore, the nullity of
Ψ(z) and Ψ̄(z) is at least one. In effect, since Ψ(z) and Ψ̄(z)
have two columns, we can see that the nullity is exactly one unless
the range spaces of these matrices are trivial, which is possible
only for all-zero spreading sequences. Let

EH
n

�
= [en,1, en,2, · · · , en,NQ] ,

F(p) =




fH
1

fH
2

...
fH
NQ


 , F̄(p) =




f̄H
1

f̄H
2

...
f̄H
NQ


 ,

where en,i is the ith column of EH
n , and fH

i (p), f̄H
i (p) are the

ith rows of F(p) and F̄(p) respectively. The polynomial matrices
Ψ(z) and Ψ̄(z) can then be expressed as:

Ψ(z) =

NQ∑
i=1

en,if
H
i (p)zi−1, Ψ̄(z) =

NQ∑
i=1

en,i f̄
H
i (p)zi−1.

Let

Ψ(z)
�
=

[
ψ1(z), ψ2(z)

]
, Ψ̄(z)

�
=

[
ψ̄1(z), ψ̄2(z)

]
,

where ψ1(z) , ψ2(z) correspond to the first and second columns
of Ψ(z), and ψ̄1(z) , ψ̄2(z) correspond to the first and second
columns of Ψ̄(z). The previous analysis also indicates that ψ1(z)
and ψ2(z) [resp., ψ̄1(z) and ψ̄2(z)] are linearly dependent. Hence,
we can construct projection matrices P⊥

ψ2
(z) and P̄⊥̄

ψ2
(z) that

project to the orthogonal complement of vectors ψ2 and ψ̄2, re-
spectively. That is,

P⊥
ψ2

(z)ψ1(z) = 0, P̄⊥̄
ψ2

(z)ψ̄1(z) = 0. (6)
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To construct P⊥
ψ2

(z) and P̄⊥̄
ψ2

(z), we note that by the Bezout
identity [7, p. 379] (also see [8] for another application), there exist
1 × (NQ− 2L) polynomial vectors gH(z) and ḡH(z) such that

gH(z)ψ2(z) = z−no , ḡH(z)ψ̄2(z) = z−n̄o , (7)

for some appropriate delays no and n̄o. To construct the poly-
nomial vectors gH(z) and ḡH(z), rewrite ψ2(z), ψ̄2(z), gH(z),
and ḡH(z) as:

ψ2(z) =

NQ−1∑
i=0

ψ2,iz
i, ψ̄2(z) =

NQ−1∑
i=0

ψ̄2,iz
i,

gH(z) =

B−1∑
i=0

gH
i z

i, ḡH(z) =

B−1∑
i=0

ḡH
i z

i.

Let

gH
g =

[
gH

B−1, gH
B−2, · · · , gH

0

]
1×B(NQ−2L)

,

ḡH
ḡ =

[
ḡH

B−1, ḡH
B−2, · · · , ḡH

0

]
1×B(NQ−2L)

,

where gH
g , ḡH

ḡ are block vectors of the polynomial vectors gH(z)

and ḡH(z) respectively, and B > (NQ− 1)/(NQ− 2L− 1) is
so chosen to guarantee that the block matrices Υ and Ῡ (shown
below) are both tall matrices. Then the time domain convolution
of (7) is given by

gH
g




ψ2,0 ψ2,1 · · · ψ2,NQ−1 0 · · · 0
0 ψ2,0 ψ2,1 · · · ψ2,NQ−1 · · · 0
...

. . .
...

. . .
...

0 0 · · · ψ2,0 · · · · · · ψ2,NQ−1




︸ ︷︷ ︸
�
= ΥB(NQ−2L)×(NQ+B−1)

= [0, · · · , 1, · · · , 0]︸ ︷︷ ︸
�
= ζ1×(NQ+B−1)

,

ḡH
ḡ




ψ̄2,0 ψ̄2,1 · · · ψ̄2,NQ−1 0 · · · 0
0 ψ̄2,0 ψ̄2,1 · · · ψ̄2,NQ−1 · · · 0
...

. . .
...

. . .
...

0 0 · · · ψ̄2,0 · · · · · · ψ̄2,NQ−1




︸ ︷︷ ︸
�
= ῩB(NQ−2L)×(NQ+B−1)

= [0, · · · , 1, · · · , 0]︸ ︷︷ ︸
�
= ζ̄1×(NQ+B−1)

.

(8)
Notice that ζ and ζ̄ each contains a unit element at the n0th and
the n̄0th location, respectively. The delays n0 and n̄0 can be found
as the numbers at which the only non-zero elements of the n0th,
n̄0th columns and n0th, n̄0th rows of Υ†Υ and Ῡ

†
Ῡ respectively

are equal to one. With the knowledge of n0 and n̄0, gH
g and ḡH

ḡ

can be calculated as

gH
g = ζΥ†, ḡH

ḡ = ζ̄Ῡ
†
,

from which we construct gH(z) and ḡH(z). It follows that

P⊥
ψ2

(z) = z−n0INQ−2L − ψ2(z)g
H(z),

P̄⊥̄
ψ2

(z) = z−n̄0INQ−2L − ψ̄2(z)ḡ
H(z).

(9)

Using (6), along with the projection matrices constructed in (9),
we can obtain an estimate of the carrier offset as follows:

ω̂ = arg min
ω

{‖P⊥
ψ2

(z)ψ1(z)‖2 + ‖P̄⊥̄
ψ2

(z)ψ̄1(z)‖2}, (10)

which need be minimized for all possible values of p. This can
be done by using polynomial rooting, similar to the root-MUSIC
algorithm [9]. Once an estimate of ω is known, Ψ(z) and Ψ̄(z)
are parameterized by the integer delay p. Hence, we may write
them as Ψ(p) and Ψ̄(p). It follows from (5) that we can use the
following criterion to estimate the integer and fractional delay:

{p̂, µ̂} = arg min
p,µ

{‖Ψ(p)µ‖2 + ‖Ψ̄(p)µ‖2}. (11)

In the multipath case, there are Lk solutions corresponding to the
Lk paths of user k, all achieving identically the same minimum of
the cost function, which is zero if En is known exactly (see dis-
cussions next). We remark that the above criterion is equivalent to
the one employed in [2, Eqn. (23)] for code acquisition assuming
no carrier offset. As shown there, it can be efficiently minimized
by a sequence of polynomial rooting.
Remark 1: The ideal noise eigenvectors En have to be estimated
from the observed data. We can use the sample eigenvector es-
timates obtained from the eigendecomposition of the sample co-

variance matrix R̂y
�
= 1

M

∑M−1
m=0 y(m)yH(m). Alternatively,

they may be computed adaptively via subspace tracking algorithms
(e.g., [10]). Due to finite-sample errors in the noise eigenvector es-
timates, (6) holds only approximately in this case. Hence, we seek
code timing estimates as those achieving the smallest minima of
(11).
Remark 2: For the delays and carrier offsets to be uniquely identi-
fiable, it is necessary for the matrices P⊥

ψ2
(z) and P̄⊥̄

ψ2
(z) in (6)

as well as Ψ(z) and Ψ̄(z) in (5) to have nullity exactly equal to
one. The exact identification conditions and their implications are
being investigated and will be reported elsewhere.
Remark 3: A necessary condition for this method to work is to
have NQ > 2L so that En is non-trivial. For large L (e.g., in
overloaded systems and/or with large delay spread), the oversam-
pling factor Q would have to be increased, which, in turn, would
require excess bandwidth to avoid ill-conditioning problems. An
interesting future subject is to compare both training-based and
blind estimators with comparable bandwidth expansion, in order
to determine which of these two different types of methods utilize
bandwidth more efficiently.

4. NUMERICAL RESULTS

We consider an asynchronous DS-CDMA system that uses N =
15 large Kasami codes and BPSK (binary phase shift keying) con-
stellation. We consider a near-fare environment whereby the trans-
mitted power P1 for the desired user is scaled so that P1 = 1,
whereas the power for the K − 1 interfering users in all simula-
tions follows a log normal distribution: Pk/P1 = 100.1P , P ∼
N(10, 100), for k = 2, · · · ,K. Note that all the interfering users
transmit at a mean power level 10 dB higher than that of the desired
user, i.e., the near-far ratio (NFR) is 10 dB for all examples. The
simulated channel is frequency-selective, and time-varying, gen-
erated by the Jakes’ model [11] with a normalized Doppler rate
fDTs of 0.0067 (i.e., carrier frequency = 900 MHz, symbol rate =
10 kHz, and mobile speed = 50 mi/hr) with fD denoting the maxi-
mum doppler rate. The normalized carrier offset is set to ωk = 0.1
for the desired user. The additive noise n(t) is white Gaussian
with zero-mean and power spectral density of N0/2. We compare
the proposed estimator and the multi-dimensional search (MD-
Search) based scheme (4). The latter is initialized by estimates
obtained by the method in [2], assuming zero initial carrier offset,
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Fig. 2. Performance versus SNR in time-varying two-path fading channel when Q = 2,K = 5,M = 200, N = 15 and NFR = 10 dB.
(a) RMSE of τ . (b) RMSE of ω.

and then iterates using the Matlab nonlinear optimization routine
fminsearch till convergence. We show the performance of the
proposed and the MD-Search methods as the SNR varies from 0
to 35 dB, in time-varying, two path Rayleigh fading channel. The
number of users K = 5,M = 200, Q = 2, and NFR = 10 dB.
The information symbols are generated randomly, and then fixed
for all trials. One performance measure is the probability of cor-
rect acquisition (PCA), defined as the probability of the event that
the code-timing estimation error is less than Tc/2. Another per-
formance measure, at a finer scale, is the root mean squared error
(RMSE) of the code timing and carrier offset estimates. Figure
1 shows the PCA for the two method. The MD-Search scheme
is seen to suffer local convergence caused by poor initialization,
yielding a lower PCA, whereas the proposed method shows a high
performance with a small SNR threshold. Figures 2(a) and 2(b)
depict the RMSE of the code timing and carrier offset estimates,
along with the perturbation analysis and the Cramér-Rao bound
(CRB) derived in [12]. The MD-Search yields higher RMSE than
the proposed scheme, due to the initialization problem. Figure 2(b)
also indicates that the (carrier offset) RMSE for the MD-Search
saturates at high SNR, meanwhile the proposed scheme does not
have this problem. As the SNR increases, it is seen that the simu-
lated RMSE, of both carrier offset and code timing, and perturba-
tion results are very close to each other and approach the CRB.

5. CONCLUSION

In this paper, we have considered the problem of joint carrier offset
and code timing estimation for DS-CDMA systems. The proposed
algorithm decouples the multiuser estimation into single user esti-
mations, which makes it computationally attractive; furthermore,
the carrier offset and code timing are estimated algebraically to
avoid the existing non-linear optimization techniques. The pro-
posed scheme is non-iterative and near-far resistant. It can deal
with frequency selective and time-varying channels.
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