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ABSTRACT modulations [2]. Approximate ML estimation techniques can also
be used in non-decision directed methods if the symbols are treated
as random variables with known statistics [1].

Sequential Monte Carlo (SMC) techniques [3] (also referred
to asparticle filtering methods) are powerful tools for Bayesian

This paper addresses joint estimation of the timing epoch and
detection of the transmitted symbols in a digital communication
system. Most timing recovery techniques found in the literature

are either approximately or heuristically derived, since optimal estimation that employ discrete measures with random supports

estimators are analytically intractable. ~Our approach to the for representing posterior distributions of unknowns of interests
problem relies on modeling the symbol timing as an autoregressive P 9p L N
Recently, SMC has been successfully applied in communications

process. In this way, the digital communication system can be. . o . : : X
mathematically represented by a dynamic system in state-spacénCIUdIng to joint estimation and decoding of space-tlme_trelhs
form and the sequential Monte Carlo (SMC) methodology can codes_[4] and equal{zanon [, 6]. The_ SMC approach s a_llso
be applied. SMC algorithms are powerful tools for Bayesian potentially useful for joint symbol detection and synchronization

estimation that are based on representing the posterior distributionz gﬁ%lgstgrsltw%rgxlii;c? s\(/)vl?}t/iofs r;grrrlfé'tc‘ggy dgﬂ\%%m:n;pgg"al
of the system state by a discrete measure with random support 7]. In order to apply common SMC algorithms, e.g., se uyentialy
This representation can be updated recursively, as new information[ ’ pplYy 9 » €.9., S€d

becomes available, allowing for optimal estimation of both, the Importance sampll_ng (SIS), _the observed signal needs to be
transmitted symbols and their timing. written as a dynamic system in state-space form. Several authors

have addressed the problem of symbol detection with SMC
methods, but under the assumption of perfect knowledge of the
1. INTRODUCTION synchronization parameters [8]. However, as we have already
o ] ) ) discussed, the actual values of some of the system parameters
The fundamental goal of a digital receiver is the detection of (hrgpagation delay, phase and frequency offsets) are completely
transmitted symbols with maximum reliability. However, the partially unknown, and they must be estimated.
signal observed at the receiver is distorted due to the effect of |, ihis paper we propose a method based on particle filtering
the transmission channel. For accurate symbol detection, severgja; jointly detects the transmitted symbols and measures their
physical parameters must be estimated and compensated for PliO%fiming. The algorithm is derived by considering an extended
to the detection, and they include the symbol timing, the carrier dynamic system where the symbol delay and the transmitted
frequency, and the carrier phase. The generalized synchronizatioympols are state variables. Specifically, the delay is modeled
problem deals with the estimation of these parameters from the,g j first-order autoregressive (AR) stochastic process, while the
signals collected at the receiver front end. i transmitted symbols are independent and identically distributed
Different techniques have been proposed for solving the (jj 4 ) random variables from a discrete uniform distribution. In

synchronization problem, but most of them are based on s ay, both symbols and their delays can be optimally estimated
approximate and heuristic methods because optimal estlmatlorhsing a particle filter.

of the parameters of interest is analytically intractable (see

[1] for a review of the subject). ~Broadly speaking, the 2 describes the system model. The proposed algorithm for joint

synchro_nlz;tlond te_chnlq(l;_es f?jund dm th% I(;terat(l;re an .b_e symbol detection and timing estimation is presented in Section 3.
categorized as decision directed (or data-aided) and non-decisionj, trative computer simulations are shown in Section 4. Finally,
directed (or non-data-aided) [1]. Decision directed SChemesSectionScontains our conclusions

depend on the availability of reliable symbol estimates for

obtaining parameter estimates and, therefore, they usually require

training signals. The most common decision-directed schemes are 2. SIGNAL MODEL

derived from (approximate) maximum-likelihood (ML) estimation

theory. Unlike data-aided techniques, non-data-aided methods ddConsider a digital communication system where symbpls,},

not require knowledge of the transmitted symbols and, instead,from an arbitrary alphabet are transmitted in frames of leddth
they exploit the statistics of the digitabaveforms, such as  The noisy received complex envelope for any linearly modulated
the second order cyclostationarity, which is exhibited by digital signal has the form

The remaining of the paper is organized as follows. Section
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whereg(t) is the modulation pulsevaveform, T is the symbol
period,0 < 7(¢) < T is the time-varying symbol delay, andw

the symbol vectors due to ISI, we can combine (2) and (1) to obtain
the following state-space representation of the communication

are the carrier phase and the carrier frequency offsets, respectivelysystem:

andu(t) is complex additive white Gaussian noise (AWGN).
The equivalent discrete-time signal model after sampling is
given by

M-1
Yk = Z smg(kTs — mT + Tk)ejeejl%k” + v
m=0

wherey, = y(kTs), v = v(kTs), k = 0, ..., K — 1 denotes the
sample discrete-time inde¥; is the sampling periodN; = Tl
is the number of samples per symhwl= 3-T is the normalized
frequency offset, and, = 7(kTs). Note that, after sampling, the
noise termu(kTs) remains white with variance?.

Without loss of generality, let us assume thét) is a causal
pulse with finite duration. This happens in practical situations due

to the use of truncated Nyquist pulses (i.e., time-shifted raised-

cosines with limited duration).
received signal as

Therefore, we can express the

k
i 2m
Y = Z smg(kTs —mT + 1)/ N 4y
m=k—L

whereL + 1 is the Inter-Symbol Interference (ISI) span with the
assumption thal. < M. Using vector notation, we arrive at the
convenient representation

1)

i T
yr =€’ sg gr(Tk, V) + v,

wheresy, = [sk—L, ..., sk]T isan(L + 1) x 1 vector, and
g(kTs — (k — L)T + i)’ No ¥

g(kTs — (k — L+ 1)T + 1)’ N *
8k(Th,v) = .

g(KTs — KT + 1)’ ¥

isan(L + 1) x 1 vector that represents the channel.

In general, the objective is to jointly estimate the transmitted
symbols,s,,, m = 0 : M — 1, the signal timing,7, the phase
rotationd, and the frequency offset, using the received signal,
yo:x—1. For clarity of presentation, however, in this paper we

restrict ourselves to the problem where only the symbols and the

delays are unknown.

3. PARAMETER ESTIMATION USING PARTICLE
FILTERING

Following [9], we can model the symbol timing as a first order AR
process,

Tk = aTk—1 + Uk (2)
where the perturbation variabley, is assumed to be a zero-mean
Gaussian with variance?. The values of: ando? depend on the
transmitter and receiver timing jitter. For negligible Doppler shifts
and stable local oscillators at both ends, the value sfiould be
set close to one, angf should be chosen very small [9].

In the sequel, we assume that the carrier phase and frequency

offsets,§ and v respectively, are correctly compensated for and
that the received signal is sampled at the symbol rate7i.e:,T.

Tk = aTk—1+ uk .
s — Ss_+d, } state equation
yr = sy g(1e) + vk observation equation
whereg(7x) = [9(LT + %), (L = DT + 7%,...,g(rs)] ",
0 1 0 0
0 0 1 0
S=1: 1 :
0 0 O 1
0 0 O 0

isan(L + 1) x (L + 1) shifting matrix anddy, = [0,...,0, sx] "

is the (L + 1) x 1 perturbation vector that contains the new
symbol, s. Note that the system state at tinkeis given by
(sk, 7). The model parameters, o2, o2 and L, are assumed
fixed and known, and we focus on the joint estimation of the
symbols, so:nr—1 = {so,...,sm—1}, and the delay process,
Tom-1 = {70,...,7m—1}, from the available observations
yo:v—1 = {Yo, .-, Yym—1}-

From a Bayesian perspective, all information relevant for
the estimation of{ sg.x, 701} IS contained in the joint posterior
probability distribution of the system Stét@(so:k,ro:k|y0:k).
Unfortunately, the estimation of the latter density is analytically
intractable and, thus, it is not possible to obtain estimates
(e.g., minimum mean squared error or maximanposteriori
probability) of the state sequence in closed-form. Therefore, we
resort to the sequential importance sampling (SIS) methodology
[10]. The basic idea behind SIS is to approximate the posterior
distribution by means of a discrete measure with random support
that can be recursively updated as new observations become
available. More specificallyp(so:x, 7o:x|yo:x) IS approximated
using a set ofV particles,{(so.x, 70:x)™ }A=1, with associated
importance weightsw,i"). The particles are samples from an
importance functions(so:x, 70:x), With the same support as the
true posterior distribution, and the weights are computed as

(S0:k; To:k |Y0: k)

w™
k ﬂ-(so:k77_0:k)

It can be shown [7] that the estimate

N
P(Sok, Toklyok) = D wi8((S0:k, To:k) — (So:k, Tok) ™)

n=1

whered(-) is Dirac’s delta function, converges in mean squared
error top(so:k, 7o0:k|yo:x) @SN — oo.

The most salient feature of SIS methods is the possibility to
recursively update the particles and weights at tkhwehen a new
observationy;.+1, is available. Indeed, if the importance density
is factorized as

k
w(So:k, Tok) = Hm(si, Ti)
=0

INotice that estimatings., given yq., is completely equivalent to

Under these assumptions and taking into account the structure obstimatingsy., given the same observations.
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then the particles and weights are updated as probabilities to the symbols i§ and derive the probability mass

function
(n)
Sk > Tk ~ T Sk s Tk n
- ( +1)| ng(( i +|1()n) o) M) = plowrs = Sils” i yen)
(n) (")P Yk+1 Sk+1’ k+1 p Sk+1 k+1 s
w o< w , (3 (n) :
k+1 7"k+1(5k+1 Tk+1) ) _ N(Nkﬁ—l(s) 0'12;) @
. |  TsesN (14 (8),03)

hence the sequentiality of the algorithm. ses Hria v

The efficiency of SIS algorithms largely depends on the choice n) )
of. the importance function. The optimal importance functionis o' » = 1,..., N. Therefore, we draw,/, ~ p"™(sx+1) and

build sfc_gl = [s,(C"_)LH, . 51(;21]
— (n) _(n) )
Tt (Sha1s Te1) = P(Sken Thalsi T Yk 3. Weight update. Once the new particles have been drawn, the
o p(sk+1|s§f), Tht1, Ykt+1) importance weights are updated. Substituting (6), (7) and (5) into
n 3) yields
x Pl Y1), 4 @)y

. L . . (n) (n)p(yk+1|sk+17Tlgi)l)p(sl(cZ)l’ Tlgi)1|s(n) Tlgn))
which can be shown to minimize the variance of the importance W SYRO) ) ()
weights [7]. Unfortunately, the last factor in (4) is difficult to deal P (s )p(Talm™)
with, hence we propose to use _ (n) Z N (Nl(;;)l )P(SI(CTQJSI(:))

ses
41 (Sk1, Thp1) o p(Skaa[sy™, hat, vt )p(riga|m™) W™ SN ()
(5) x DN (mh(s

instead. The SIS algorithm for joint timing estimation and symbol Ses

detection using the importance function (5) is described below: (n)

where we have used thdf”; andr,"; are independent gives]"’

1. Initialization. We assume knowledge of the prior distribution andT,E”). In practice, the weights are computed as

of the state, i.ep(s—1, 7—1). This is reasonable in practice. The ) (n)

priori density of the symbol delay is uniform (3-7°/2,7/2) or, Wiy = wk Z N ( iy ( )

equivalently, in(0, T') [1]. Also, in digital communication systems ses

where symbols are transmitted in frames, waveform preceding NG 5

the first information symbol is a system design parameter and,and then ”0rma|'zed4’k+1 = (Zi:l wk+1) Wy i1

therefore, is known by the receiver (e.g., tiad bits in normal o ) ] )

GSM bursts). Therefore, the vector; is known in practice. 4. Estimation. The particle filter can be used to approximate any
As a consequence, the SIS algorithm is initialized at —1 kind of e_stlmator o_f the state variables _at tifher 1,' or the full

aSS(fl) — s, andrf’;) ~ U0, T)n =1,2,...,N. All the state trajectory at tim@/. Here, we consider the minimum mean

) ) L square error (MMSE) estimate of the delays,
particles are equally weighted, i.e:,"; = 1/N.

2. Importance sampling. At time k, the discrete measure To:k+1 = ZTO k+1wk+1

of the particle filter computed via the SIS algorithm is

{si, 7™ w{™IN_,.  When y;41 is observed, the state is  and maximuma posteriori(MAP) of the symbol estimates,
propagated one time step using the importance function (5).

Sampling from this function is practically achieved in two steps. { }

_ (n)
First, the delay is sampled according to So:k+1 = aIg s Z 8(sgy k+1 S0:k-+1) Wy Y
n=1

T,E") ~ N(aT(") o2) : ;
+1 koo Pu 5. Resampling. It can be shown that the variance of the
. . o ) importance Weightsw(") , can only increase stochastically over
where N (u, 02) is the Gaussian dls;nbutlon with mean time [7]. This meansktJFllat, after a few time steps of the standard
and varianceaz Then, the vectors(”, is sampled from  sis algorithm as described so far, the majority of the normalized
p(sk+1|sk' Tk+17 yk+1). Since the transmitted symbols are importance weights have negligible values and only a few of the
ii.d. dlscrete uniform random variables, the latter density can be particles in the filter have significant weights, i.e., only a few
decomposed as particles are reallyuseful The usual solution to thls problem
is to resample the existing particles [7]. Intuitively, resampling
consists of discarding those particles with negligible weights and
replicating those with higher weights. In multinomial resampling,

p(srrlsy” mi0 k) o p(yrslsisr, sy, )

= N(Mwl(Skﬂ),ffﬁ) (6) for instance, N new trajectories are created by sampling the
discrete se{(sk+1, 7r+1) ™}, with probabilitiesw."?,. The
where p,(c’fl(skﬂ) = [s}c"jLH,...,si"),skH]Tg(T,gi)l). resampled trajectories are all equally weighted (i.e., allimportance

weights are reset tb/NV).
The recursive steps of the proposed algorithm are summarized
in Table 1.

Notice that, glvers(") we only need to draw the new symbol,

s,(c+)1 in order to bundsfg_fl. LetS = {S1,...,5s} be the
modulation alphabet. According to (6), we can assign posterior
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Fork = 0 to M (total number of symbols)
Forn = 1to N (total number of particles)
DraWT,E”) ~ ./\/'(aT,gi)l, Ou)
Draws\™ ~ p(™ (s1) oc N (™ (s1), 02)
Builds{™ = [s{™, ... ™7
Update weightsi\” = w\™, ¢ s
Normalize weightsy\™ = (Zf.vzl W

H _ 1
Resample ifV, 5 = W < N/2

n=1
Timing recovery and symbol detection
~ _ N (n) (n)
To:M—1 =D et Tomr—1War—1

~ _ N (n)
S0:M—1 = arg MaXsg. pr_ g anl 6(50;M—1 —So:m—1)

Ny,

y

ngv/[l)—1

j

Table 1. SIS with resampling algorithm.

4. COMPUTER SIMULATIONS

We have verified the performance of the proposed algorithm by
computer simulations of a system with BPSK modulation, I1SI span
L + 1 = 3 and time-limited causal raised-cosine pulses with a
roll-off factor « = 0.7. The coefficient of the AR procesa,
used to model the dynamics of the symbol timing@.899, and the
variance of the additive noigg is o2 = 0.0001.

Figure 1 depicts the Bit Error Rate (BER) attained by the
proposed algorithm for different values of the Signal-to-Noise
Ratio (SNR) when the number of particles used to obtain the
estimates isN = 50. It is apparent that the achieved BER
with unknown symbol timing is very close to the BER obtained
considering the same particle filtering method but with known
symbol timing. We have also compared the proposed algorithm
with the optimal detector givegy.as and knownr. It is clear that

the performance of the proposed method is very close to this lower

bound.

Figure 2 shows one realization of the actual variation of the
normalized symbol timing error and the corresponding estimates
for a2 dB and 12 dB SNRs. As seen from the figure, the
proposed algorithm tracks the variation of the symbol timing quite
accurately.

107 . . . . . .
2 3 4 5 7 9 10 11 12
SNR (dB)

Fig. 1. BER as a function of SNR for known and unknown symbol
timing.
5. CONCLUSIONS

A new algorithm for joint symbol detection and timing estimation
based on patrticle filtering is proposed. Our computer simulation

experiments show an adequate performance both in terms of BER
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Fig. 2. Actual and estimated for two different SNRs.

0 L L L L
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and tracking of the symbol timing. The method reported in
this paper is limited to problems where only the symbol delay
is unknown. A logical continuation of this work will include
research on symbol detection when additional parameters in
synchronization problems are unknown. The proposed algorithm
is computationally intensive. However, SMC methods, and
specifically SIS, are highly parallelizable and suitable for VLSI
implementation.
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