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ABSTRACT

A noncoherent reception scheme is developed for joint blind es-
timation of hop timing, hop frequency, and direction-of-arrival
(DOA) of frequency hopped signals over multipath fading chan-
nels. Based on the principle of dynamic programming and 2-
dimensional harmonic retrieval, the method does not require knowl-
edge of users’ hop codes, and it remains operational even with
multiple (unknown) hop rates, frequency offsets, and asynchro-
nism. The model is based on FSK, but the scheme is also evaluated
with GMSK modulation and shown to be robust.

1. INTRODUCTION

Frequency hopped spread spectrum (FHSS) has been widely stud-
ied and mainly used for military applications, such as in SINC-
GARS, due to its low probability of detection and interception,
power-control issues in a peer-to-peer setting, good near-far prop-
erties, etc. Recently, it has also been adopted in commercial wire-
less communications standards, such as IEEE 802.11 and Blue-
tooth. Blind reception of FHSS signals is technically challenging
since not only the hopping codes (hopping sequences), but the di-
rections of arrival of the signals, the bin-width, the hop rate, tim-
ing, symbol rate, etc., may all be unknown in a realistic setting.

Most of the existing methods for synchronization and signal
recovery in frequency hopping systems assume knowledge of the
actual hopping codes at the receiver, which makes them unus-
able in non-cooperative environments or in the presence of un-
known carrier frequency offset. In these scenarios, hop timing
and other unknown parameters must be estimated blindly from
received FH signals. Several methods have been proposed for
blind/semi-blind hop timing and frequency estimation. For exam-
ple, assuming known hop rate, channelized receivers have been
proposed for semi-blind hop timing estimation for the single user
case [6], as well as the multiuser case [1]. However, the perfor-
mance of those receivers degrades rapidly if the channelization is
imperfect, or users have different hop rates.

In [4, 5], hop timing and frequency estimation methods based
on the principle of dynamic programming were developed for blind
tracking of multiple frequency hopped signals, either using serial
procedure [5] or parallel procedure [4]. These methods do not as-
sume knowledge of hop codes or hop frequency grids, and do not
rely on channelization, and hence are robust to frequency offset.

The research in this paper was supported by the ARL Communications
& Networks CTA.

However, all aforementioned methods assume single TX-RX
propagation for each frequency hopped user. When the hopping
bandwidth is greater than the channel coherence bandwidth, chan-
nel effects due to multipath propagation cannot be ignored. Blind
receiver design for frequency hopping systems over multipath chan-
nels is nontrivial since multipath reflections create fictitious sources
in the spatial dimension, as well as unknown delay spread in the
temporal dimension. Few results have been found available in the
literature on the blind parameter estimation for FH signals in mul-
tipath channels, e.g., [2], which need to work on packet-invariant
data set.

In this paper, we propose a blind reception scheme for joint
maximum likelihood (ML) estimation of hop timing, carrier fre-
quency, and DOA of frequency hopped signals over multipath chan-
nels. Hop codes, hop rates, and multipath time delays of the users
are assumed to be unknown. Each user may have distinct hop tim-
ing and rate. Furthermore, hop frequencies of different users may
be chosen from different sets of candidate frequencies. Our pro-
posed method is based on the principle of dynamic programming
(DP) and 2-D harmonic retrieval (2-D HR). The model assumes
FSK modulation, but the algorithm is also evaluated with GMSK
modulation in the simulations.

2. PROBLEM FORMULATION

Consider a frequency hopping communication scenario where there
are d users in the system. The receiver utilizes a uniform linear
array (ULA) of M antennas. Suppose the signal of the k-th user
arrives at the ULA from rk distinct paths due to multipath propaga-
tion, each with DOA αkl, (frequency dependent) path attenuation
βkl, and time delay τkl, where l = 1, . . . , rk.

The baseline separation of the ULA is ∆ wavelengths. The
array steering vector in response to a signal from direction αkl can
be written as

a(θkl) =
[
1, θkl, . . . , θ

M−1
kl

]T

, θkl = ej2π∆sin(αkl). (1)

At time t, the baseband representation of the M×1 received signal
vector at the ULA output is

x(t) =
d∑

k=1

rk∑

l=1

a(θkl)β
p

kle
jωcτklsk(t − τkl) + w(t), (2)

where sk(t) = ej(ω
p

k
t+φk), ωc is the center carrier frequency, and

ωp

k and φp

k are the baseband frequency and initial phase of the

IV - 5920-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡



transmitted signal from the k-th user during its p-th hop. Note
that the p-th hop frequency and the baseline separation ∆ (mea-
sured in wavelength units) are both functions of time; for nota-
tional clarity, we do not explicitly denote this dependence. The
transmitted signals can be fast or slow frequency hopping, with
M-ary FSK modulation. Here the carrier shifts due to hopping or
symbol modulation are treated as conceptually equivalent, albeit of
different magnitude. w(t) is complex white Gaussian noise with
variance σ2.

Suppose received signal (2) is sampled at an (over-)sampling
rate of 1/T , then we have

x(n) =

d∑

k=1

rk∑

l=1

a(θkl)β
p

kle
jωcτklsk (nT − τkl) + w(nT )

=

d∑

k=1

rk∑

l=1

a(θkl)β̃
p

kle
jω

p

k
nT + w(nT ) (3)

for n = 1, . . . , N , where

β̃p

kl = βp

kle
j(ωcτkl+ω

p

k
τkl+φ

p

k
). (4)

Here we assume that the delay spread for a given user is small so
that time delay can be approximated by phase shift, which is a rea-
sonable assumption in practice. This does not require synchronism
across different users. Eqn. (3) can also be written in matrix form

X = [x(0) · · · x(N − 1)]. (5)

Assuming that the total number of paths of all users is known or
estimated, the objective of blind reception is to recover DOAs, hop
timings, frequencies of all users from X without knowledge of hop
codes, rates, and multipath time delays.

3. A 2-D HR PERSPECTIVE VIEW

For simplicity of exposition, let us focus on a FH system where
there are two users, with r1 paths and r2 paths, respectively. As
shown in Fig. 1, the original transmitted signals s1(t) and s2(t)
may have different hop rates and hop timings, and ni, i = 1, . . . , K−
1, are the hop instants (n0 = 0). We assume that during one re-
ceived data block, the total number of hops for all users (but not all
paths) is bounded above by K−1 (such a bound could be deduced
from the spectrogram of the data, and need not be tight).

Between any two system wide consecutive hop instants, e.g.,
ni and ni+1, there are only two temporal frequencies involved.
During such a time segment, the received data is

Xi = [x(ni) x(ni + 1) · · · x(ni+1 − 1)]

= AiBiSi + Wi, (6)

where

Ai = [a(θ11) · · · a(θ1r1
) a(θ21) · · · a(θ2r2

)] ,

Bi = diag
(
β̃p

11, . . . , β̃p
1r1

, β̃q
21, . . . , β̃q

2r2

)
,

Si = [s1 · · · s1 s2 · · · s2]
T : (r1 + r2) × (ni+1 − ni),

s1 =
[
ejω

p
1

niT · · · ejω
p
1
(ni+1−1)T ]T

,

s2 =
[
ejω

q
2

niT · · · ejω
q
2
(ni+1−1)T ]T

,

and Wi is the noise matrix. Here we assume user 1 and user 2 are
in their p-th and q-th hops respectively during this time segment.
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Fig. 1. Frequency hopped signals transmitted from two users.

From (6), it is seen that multipath propagation creates fictitious
sources in the spatial dimension and delay spread in the temporal
dimension, which manifest themselves as DOAs and phase shifts
in Ai and Bi, respectively.

The estimation of DOAs, time delays, and frequencies from
Xi in (6) is in fact a 2-D HR problem, and there are r1 + r2 fre-
quency components along each of the spatial and temporal dimen-
sions. Notice that there are identical frequencies in the temporal
dimension. If a total number of d users are active in the system, a
similar 2-D harmonic mixture model can be obtained except that
the number of frequency components in such a time segment along
each dimension is

∑d

k=1 rk. Recently, improved identifiability re-
sult and algorithms regarding 2-D HR have been developed (see
[3] and references therein). We will use the MDF algorithm in
[3] for this purpose since it achieves the best known identifiability
bound and performs well for a wide range of SNR, but most impor-
tantly, it can deal with such a 2-D harmonic mixture wherein iden-
tical frequencies exist along one dimension. Note that estimates of
elements of the triple

(
θkl, ω

p

k, β̃p

kl

)
are associated automatically

by the MDF algorithm (see [3]).

4. CODE-BLIND RECEPTION OF FH SIGNALS

The key idea behind our proposed code-blind reception scheme
is that between any two hypothesized system-wide hops, the data
follow a 2-D harmonic model. Hence for a hypothesized set of
hops (that is, including all hops of all users in the system), 2-D
HR methods can be used to estimate model parameters, and subse-
quently calculate model fit. If one operates under an upper bound
on the total (system-wide) number of hops, then system stage can
be defined as the number of remaining hops, and state can be de-
fined as the sample instant, hence dynamic programming can be
used to find the optimal hop sequence and associated model pa-
rameters per dwell. Note that this is different from assuming a
bound on the number of hops on a per user basis – the complexity
of the latter is exponential in the number of co-channel users.

In particular, let us define vectors of hop instants, hop frequen-
cies, DOAs, and complex amplitudes as

n = [n1, . . . , nK ] , ω =
[
ω1

1 , . . . , ωP
1 , ω1

2 , . . . , ωQ
2

]
,

α =
[
α1

11, . . . , α
1
1r1

, . . . , αP
11, . . . , α

P
1r1

, α1
21, . . . , α

Q
2r2

]
,

β =
[
β̃1

11, . . . , β̃
1
1r1

, . . . , β̃P
11, . . . , β̃

P
1r1

, β̃1
21, . . . , β̃

Q
2r2

]
,

where P −1 and Q−1 are the total numbers of hops of user 1 and
user 2 in the block, respectively. Now, the joint maximum likeli-
hood estimation of n, α, β, and ω from X amounts to minimizing

J(n̂, α̂, β̂, ω̂) =

K−1∑

i=0

‖Xi − X̂i‖
2
F (7)

IV - 593

➡ ➡



over n̂, α̂, β̂, ω̂, where X̂i is the reconstructed 2-D harmonic mix-
ture based on parameter estimates (i.e., DOAs, complex ampli-
tudes, and carrier frequencies) obtained by applying the MDF al-
gorithm to (6) for a given time segment defined by hypothesized
n̂i and n̂i+1, assuming a 2-D harmonic mixture model for the re-
ceived data during this segment. Thus from the MDF estimates for
the data block in n̂i and n̂i+1, we form

X̂i = ÂiB̂iŜi. (8)

Define Λi[ni−1, ni] as the cost function for the time segment
ni−1 ≤ n < ni

Λi[ni−1, ni − 1] = ‖Xi−1 − X̂i−1‖
2
F . (9)

Furthermore, to solve the minimization problem in (7) by the dy-
namic programming method, we define

Γh(L) = min
n1,...,nh−1

n0=0,nh=L+1

h∑

i=1

Λi[ni−1, ni − 1], (10)

where 0 < n1 < · · · < nh−1 < L. Eq. (10) can be viewed as the
minimization problem of finding the best fit for a subset of the data
of size M × (L+1) when a total number of h−1 hops is allowed.
Hence ΓK(N − 1) is the minimum of J(n̂, α̂, ω̂, φ̂). From (10),
a recursion for the minimum can be developed as (see [5])

Γh(L) = min
nh−1

(
Γh−1(nh−1 − 1) + Λh[nh−1, L]

)
. (11)

where 2h − 1 ≤ nh−1 < L. This says that for a data matrix of
size M × (L + 1), the minimum error for h segments (i.e., h − 1
hop instants) is the minimum error for the first h−1 segments that
end at n = nh−1−1, and the error contributed by the last segment
from n = nh−1 to n = L. The solution of the minimization of
(7) is for h = K + 1 and L = N − 1, which gives the joint ML
estimation of hopping instants, DOAs, frequencies, and complex
amplitudes of all users.

Assuming that the minimum length of a segment is two sam-
ples, the procedure to compute the solution by DP and 2-D Har-
monic Retrieval (DP-2DHR) is summarized in Table 1. Note that
frequencies and complex amplitudes of different segments pertain-
ing to a particular path can be associated via their corresponding
DOA parameters, since for a single segment, frequency, ampli-
tude, and DOA parameters pertaining to one path are paired up
automatically by the MDF algorithm. In addition, different paths
pertaining to a particular user will result in different DOAs but
identical hop frequency sequence and hop timing (recall that time
delay is treated as phase shift), hence paths can be associated to
users by hop sequences, which is a clustering problem and can be
solved by, e.g., calculating the pair-wise distance among all hop
sequences.

The complexity of the DP-2DHR algorithm is O(N 5). In
practical FH systems, frequencies hop at a regular rate, so it is
enough to estimate two parameters: hop timing and hop period.
These can be obtained by applying dynamic programming to a
relatively short portion of a long data record, while DOA, am-
plitude, and frequency estimation for the remaining data can be
accomplished by applying the MDF algorithm to pre-decided hop-
free data blocks delimited by system-wide adjacent hop instants,
provided that the number and directions of multiple paths do not
change over the time interval of interest. This will reduce the com-
plexity significantly.

Table 1. The DP-2DHR Algorithm

1. Initialization
h = 1, compute Γh(L) for L = 1, . . . , N −2K +1 using
(9) and (10), where X̂0 is a reconstructed 2-D harmonic
mixture matrix based on DOAs, amplitudes, and frequen-
cies estimated by applying the MDF algorithm to data ma-
trix X(:, 0 : L).

2. Recursion
Using (11), for 2 ≤ h ≤ K − 1, compute Γh(L) with
L = 2h− 1, . . . , N − 2K + 2h− 1; for h = K, compute
Γh(L) with L = N − 1.

For each L, denote the value of nh−1 that minimizes
Γh(L) as nh−1(L), and denote the corresponding α̂h−1,
β̂h−1, ω̂h−1 as α̂h−1(L), β̂h−1(L), and ω̂h−1(L), re-
spectively.

3. Backtracking
The maximum likelihood estimates of hop instants are
obtained by using the backward recursion, i.e., n̂i =
ni(n̂i+1 − 1), for i = K − 2, K − 3, . . . , 1, initialized
by n̂K−1 = nK−1(N − 1). Similarly, the corresponding
DOA, amplitude, and frequency estimates of each segment
can be obtained by their respective backward recursions.

5. DISCUSSION AND SIMULATION

The proposed method is developed based on an FH-FSK data model,
but it may be applied for signal parameter estimation in other FH
multipath propagation scenarios as well, which are summarized in
the following cases.

i) Slow frequency hopping (SFH) with FSK modulation: Fre-
quency changes due to baseband modulation are usually much
smaller than those due to carrier frequency hopping. Hence
symbol rate and hopping rate can be obtained from the result
of DP, and consequently symbol recovery is possible.

ii) SFH with PSK modulation: During one hop dwell, frequency
is constant, but the complex amplitudes are different from sym-
bol to symbol due to phase modulation (recall that for one hop
dwell, the effect of phase shift on the complex amplitudes due
to time delay is constant). Hence symbol rate and hopping rate
are still distinguishable from the result of DP.

iii) SFH with GMSK modulation: GMSK signal is not a pure ex-
ponential in one symbol period. However, narrow band GMSK
signal can be approximated by exponentials for the purpose of
joint DOA and hop timing estimation.

iv) Fast frequency hopping (FFH): The DP-2DHR method is ap-
plicable for hop timing and hop frequency sequence estima-
tion. However, addition information (e.g., symbol period) is
needed for symbol detection.

In simulation, we tested the blind reception of FH signals trans-
mitted from two users, each hopping with different hop timing and
rate. Suppose one user has two paths at DOA=[6◦, 14◦] with the
second path delayed 0.25 µs, and the other one has a single path at
DOA=25◦. The ULA consists of M = 6 antennas, with separation
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Fig. 2. Test 1 (FH-FSK): Hop timing and frequency estimation.

Table 2. Test 1 (FH-FSK): DOA estimation results for three paths.

Estimated DOA
True DOA

1st Seg. 2nd Seg. 3rd Seg.

Path 1-1 6◦ 5.38◦ 5.98◦ 5.73◦

Path 1-2 14◦ 12.56◦ 17.56◦ 13.9◦

Path 2-1 25◦ 24.43◦ 24.67◦ 24.88◦

of half a wavelength at center frequency fc = 1GHz. A hopping
band of 8MHz bandwidth is occupied by 32 frequency channels.
At the receiver, the baseband signal is sampled at a rate of 8MHz,
and N = 32 samples are collected at each antenna.

Test 1 (FH-FSK, SNR=12dB): In this test, each FH-FSK user
hops once during the data block period; hence, there are three time
segments with three temporal frequencies present in each (two are
identical). Table 2 gives the results of DOA estimation for those
three segments, and Fig. 2 depicts the corresponding hop timing
and frequency estimation for the three paths, where “Path 1-2” de-
notes the 2nd path of user 1. We assume that mobility-induced
changes in DOA are negligible within the analysis window (which
is 4 µs long in this example). Thus, (varying hop) frequencies are
associated with different paths via their corresponding (window
invariant) DOA parameters. The results show that DOA, hop tim-
ing and frequency estimates are close to the respective true values.
Fig. 2 also indicates that path 1 and 2 pertain to the same user
since they have identical hop timing and frequency sequence.

Test 2 (FH-GMSK, SNR=15dB): In this test, the two users are
GMSK modulated. Typical results shown in Fig. 3 implies that
the DP-2DHR algorithm is able to deal with GMSK modulations
despite the associated model mismatch.

Test 3: We define timing estimation error as a situation where
an estimated hop instant deviates from its true value by more than
10% of the symbol period. The probability of timing estimation
error Pe is obtained via Monte Carlo simulation of the FH-FSK
case. For each realization, hop timings are randomly generated,
and frequencies are also randomly selected from the 32 candidate
bins. Fig. 4 plots Pe vs. SNR, which indicates that the DP-2DHR
algorithm performs well for a wide range of SNR values, given the
fact that the signals are tracked in a situation where hop code, rate,
timing, and multipath delay are all unknown.
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