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ABSTRACT

Given a noisy sequence of (possibly shifted) integer multiples of a
certain period, it is often of interest to estimate the period (and off-
set). With known integer regressors, the problem is classical linear
regression. In many applications, however, the actual regressors
are unknown; only categorical information (i.e., the regressors are
integers) and perhaps loose bounds are available. Examples in-
clude hop timing estimation, Pulse Repetition Interval (PRI) anal-
ysis, and passive rotating-beam radio scanning. With unknown re-
gressors, this seemingly simple problem exhibits many surprising
twists. Even for small sample sizes, a Quasi-Maximum Likeli-
hood approach proposed herein essentially meets the clairvoyant
CRB at moderately high SNR - the latter assumes knowledge of
the unknown regressors. This is quite unusual, and it holds de-
spite the fact that our algorithm ignores noise color. We outline
analogies and differences between our problem and classical lin-
ear regression and harmonic retrieval, and corroborate our findings
with careful simulations.

Keywords: Period estimation, timing offset, harmonic analy-
sis, synchronization, hop timing, Pulse Repetition Interval (PRI)
analysis, deinterleaving

1. INTRODUCTION
Consider the following observation model
T(n):¢+ﬁ(n)T+w(n)> n:177N> (1)

where ¢ is an unknown shift, x(n) € Z is a generally unknown
sequence of ordered integers, 7" is the unknown period, and w(n)
is additive white Gaussian (AWG) noise, with variance o2. The
problem is to estimate ¢ and 7" from {7(n)}._, . In practice, there
are many situations wherein the only information that can be as-
sumed about the regressors is that x(n) € Z, and perhaps also
loose upper and lower bounds on T', or qualitative information of
the type “lengthy gaps are rather rare”.

1.1. Overview

The model in (1) is reminiscent of two well-known problems. In
the special case that k(n) = n, n = 1,--- N, the problem is
classical line regression; if the integers {m(n)}i:]:1 are known,

then a standard linear regression problem appears. If the regressors
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{m(n)}f:1 are unknown integers, then a non-standard regression
problem emerges.

On the other hand, the problem in (1) is closely related to har-
monic retrieval. That is, raising the data in (1) to the exponent

2(n) 1= &7 = UM FGTRMD) LN

which is a harmonic retrieval problem with missing samples in
non-Gaussian multiplicative noise. Note, however, that raising the
data to the exponent is not a reversible operation, hence the prob-
lems are generally not equivalent.

The classical (single-) harmonic retrieval problem has been
thoroughly investigated in the literature, including optimal (peri-
odogram) and suboptimal linear-complexity solutions. The latter
achieve near-optimal performance at moderate SNR or moderate
samples and above. Interestingly, Tretter [11, 4] has shown that a
computationally attractive solution can be obtained by casting the
frequency estimation problem as a line regression problem in the
phase domain. At high SNR, phase noise can be approximated by
additive white Gaussian noise, and the problems become essen-
tially equivalent [11, 4]. Another related approach to the problem
of frequency estimation involves working with zero-crossings or
higher-order zero-crossings of the observation [5].

The harmonic retrieval problem with missing samples has also
been considered [7]. Early approaches were periodogram-based
(the periodogram often works reasonably well with mild multi-
plicative noise) but parametric techniques were also developed [8].
In most cases, a simple Bernoulli miss model is adopted [10, 8],
or else it is assumed that missing samples occur periodically with
known outage period. Harmonic retrieval in multiplicative noise
has been dealt with, (see, e.g., [3]) but, to the best of our knowl-
edge, harmonic retrieval in multiplicative noise and a deterministic
unknown model for the missing samples has not been addressed in
the literature.

The baseline for the present research is mostly the work of
Sadler and Casey [2, 9], who also considered period estimation
from the model in (1) with missing observations. Their work is
based on modifications of the Euclidean algorithm for the compu-
tation of the greatest common divisor. Relative to that baseline,
our work offers a quasi-ML algorithm that attains much improved
performance (particularly for small sample sizes), plus additional
insights into the model and its properties.

A word about applications is in order. Our particular moti-
vating application is hop period and timing offset estimation in
the context of Frequency-Hopped (FH) radios. Therein, one may
often observe only part of the spread FH bandwidth, because the
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true FH band may be unknown or non-contiguous; and also for
noise considerations (opening up the receiver bandwidth includes
more noise energy). Another application with missing observa-
tions is passive rotating-beam radio scanning. In this case obser-
vations (period multiples) are periodically missing only if the scan
period is harmonically related to the sought period. In addition, the
correct scan period may be unknown. Another situation wherein
deterministic unknown modeling of missed observations may be
appropriate could be a multi-tasked best-effort surveillance pro-
Cessor.

2. ALGORITHM

Given estimates of 7' and {x(n)}’_,, the estimation of the shift

n=1"

¢ is easy. As a first step towards simplifying the problem, we may

N
take pairwise differences. We can take up to { 2 | such differ-

ences; this produces many more data points, at the expense of col-
oring the noise sequence, which is analogous to smoothing for line
spectrum estimation. Here, we begin with simple adjacent-sample
differences of non-overlapping pairs of samples. This yields a
model that is independent of the shift ¢, at the cost of halving
the available sample size and a 3dB loss in terms of noise amplifi-
cation (note that in this case the noise is still white). This yields

t(n) =k(n)T +v(n), n=1,--- M :=|—],

2
where t(n) := 7(2n) —7(2n—1),k(n) := k(2n) —k(2n—1) €
Z, v(n) := w(2n) — w(2n — 1). In vector form and with obvious
notation,

t=kT+v.

If the only assumption on {k(n)}*"  is that k(n) € Z, and the

noise after taking differencesis AWG, then the maximum-likelihood

(ML) principle yields the following least-squares (LS) problem

min |t — kT||§.
reR,, keZ™

This problem is linearly separable, and the cost function can be
concentrated with respect to k; this yields

min ||t — T round (t/T)||§
TeR,

This latter minimization can be accomplished via simple line search
on T'. However, Fig. 1, which depicts a typical plot of the concen-
trated cost function, immediately points to two pitfalls:

o In the noiseless case, if a certain 7" is a zero-cost solution,
so is 7' divided by an arbitrary integer. This is because one
may counter-scale the k(n) sequence. This yields infinitely
many solutions to the problem in the noiseless case.

e In the noisy case, smaller 7" corresponding to 7T divided by
a large integer yield finer granularity, which in turn allows
expressing almost anything as a multiple of small enough
T inthe noisy case, these rescaled minima of the cost func-
tion are increasingly deep as one moves closer to zero.

These issues arise because the problem is not well-posed. The
ambiguity is analogous to aliasing in the context of frequency esti-
mation, or scale ambiguity in blind system identification. In order
to have a well-posed problem, we need to impose a lower bound

(a) Cost(T).

zoom about true value
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(b) Zoom about true T (= ).

Fig. 1. Typical plot of concentrated cost(7") at moderate SNR.

on T, just like we need to impose an upper bound on frequency
in order to prevent aliasing in the context of frequency estimation.
A coarse upper bound is also needed to limit the search, hence the
problem becomes

. 2
L?lz}ilu”t — T'round (¢/7)||3, (2)
which can be solved by line search over (L,U). We will refer
to this as the SLS2 algorithm, which stands for Separable Least
Squares Line Search.

2.1. Smoothing and Noise Whitening

If overlapping pairs or smoothing is used to extend the available
sample size after differencing, then noise whitening is needed in
order to maintain ML optimality of LS. Note that if the original
additive noise is AWG, then the color of the noise after differenc-
ing is known, because it is induced by our processing of the data.
Hence we end up with a modified data model after differencing
and whitening, which reads

t = WkT + AWGN.

where W is the whitening matrix. For this model, however, the in-
teger vector parameter k isno longer linearly separable, due to the
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premultiplication by the whitening matrix W'; hence the cost func-
tion cannot be concentrated with respect to k. Although it is possi-
ble to adopt an iterative LS approach, in which T is first estimated
and then k is updated in a conditional LS fashion using enumer-
ation or more sophisticated “almost optimal” integer LS solvers
(such as sphere decoding [1], or semidefinite relaxation [6]), this
would be computationally very demanding for the application at
hand. The recommended work-around is to simply ignore noise
color at this stage, and use plain LS. This will not matter much at
high SNR.

3. ESTIMATION OF ¢ AND ITERATIVE LEAST
SQUARES

Once T has been estimated, we can go back to the original data and
estimate ¢ via another LS line search. Specifically, conditioned on
a given estimate 7', the conditional LS estimate of ¢ is given by

¢ _A¢1 — round (t _A¢1>
T T

where 1 is a vector of unit entries. Having obtained an estimate
of ¢, T' can now be re-estimated via line search from the original
data (without differencing). This procedure can then be repeated
till convergence. Convergence in fit is assured, because each step
is a LS line search. However, we note that the first estimate of ¢ is
very sensitive to mismatch in the original estimate of 7". This can
be appreciated by considering the much simpler case wherein k is
known. Given an estimate 7 of T, define ¢ := 7' — T Given T
and k, for AWGN ¢ is estimated using ¢ = mean(t — kT'). This
yields a systematic error term (bias) equal to +7sum(k), where M
is the length of k. Without missing observations, this is already
equal to Mjle; the situation is further aggravated with missing
observations, for then sum(k) grows faster with M. When k is
unknown, the task of estimating ¢ is further compounded. The
net result is that iterative LS estimation only makes sense in terms
of improving the quality of the estimates at very high SNR. In
that regime, the improvement is probably not worth the associated
complexity, unless very accurate synchronization is required. For
this reason, we do not pursue this further here.

2

’
2

bors = arg ngn

4. SIMULATIONS

Choosing pairs: SLS2 can be applied to non-overlapping adjacent-
pair differences (getting rid of ¢ but reducing the sample size by
one half), or overlapping adjacent-pair differences (preserving the

N
sample size), or even to data comprising all { 2 ) pairwise dif-

ferences that can be extracted from the available sample - thus
quadratically expanding the sample size. We will refer to these
three options as SLS2-NOVLP, SLS2-ADJ, and SLS2-ALL, re-
spectively. The SLS2 line search has complexity O(¥xL M),
where M is the SLS2-input sample size and A is the desired step-
size accuracy. Aside from noise coloring considerations, SLS2-
ALL has M = O(N?), which makes complexity quadratic in the
original sample size. As we shall see, SLS2-ALL is well-worth
this additional computational effort, especially for small sample
sizes - which is the norm in many applications. As a sneak preview,
we note that SLS2-ALL vastly outperforms SLS2-ADJ, which in
turn outperforms SLS2-NOVLP, despite ignoring noise color.

Implementation of line search: Throughout our experiments,
the SLS2 line search is implemented in two steps. The first is
a “coarse” uniform grid search over 10* points spanning lower
bound L to upper bound U (see (2)). L is set to 0.557 or an es-
timate thereof, as noted on each experiment. U is less critical (it
does not affect identifiability), and is always set to the maximum
value in the input sample. One could also use U = 2L to further
limit the search, since it is assumed that L > T'/2, hence also
2L > T. This first coarse localization search is followed by a
refined search in the optimum bin. In this second step, quadratic
interpolation of the cost function (finely sampled over 10* equis-
paced bin points) is used to localize the minimum.

SNR considerations: Defining an appropriate measure of
SNR turns out to be unexpectedly complicated for the simple model
in (1). We skip the details due to space considerations, and state
our chosen measure (cf. [2, 9]): SNR := 201log;, % which is a

measure of “jitter”. Here, o2, denotes the variance of the AWGN
in (1). In the simulations, we have chosen to parameterize perfor-
mance via percent jitter, which is defined as 3"771" x 100% because
this measures the essential support of the error density over the
period to be estimated.

Clairvoyant CRB: The conditional CRB for T" assuming that
{x}Y_, in (1) is known (¢ is unknown) is CRB(T) =

N&2!
2

where o := + S k% (n)— (% >N n(n)) is the “sample
variance of k”. We have shown that adjacent-sample differencing
does not affect this CRB; proof of this claim is omitted due to
space considerations.

Comprehensive Monte Carlo (MC) experiments: In all of
our simulations, k is drawn from a simple Bernoulli miss model
with miss probability 0.5; it is drawn once and remains fixed for
the entire MC simulation. The numerical results depend on the
particular realization of k, but qualitative conclusions remain valid
for different k, as verified by further simulation. Throughout,
T = 1 is used for the true value of the period. We used 50, 000
MC runs per datum reported, and the z-axis is percent jitter, go-
ing from smaller to higher jitters. Four compound plots are pre-
sented in Figures 2(a-b), and 3(a-b) for N = 10, and N = 30
samples, respectively. These depict relative efficiency (RE - esti-
mation variance measured with respect to (wrt) the (clairvoyant)
CRB for the given k), and absolute bias. We compare SLS2-ALL
and SLS2-ADJ with several other benchmark algorithms and the
clairvoyant CRB. Six variants of MEA [2, 9] are evaluated. The
suffix I, R, E denotes internal initialization, random initialization,
and exact initialization. LS and LSW denote the least-squares and
least-squares with whitening solutions. Internal MEA initializa-
tion was via the gradient/clustering procedure described in Sadler-
Casey, yielding Tvz4. The random initialization was based on
Tinit := T(1 4 0.2 x sign(randn)). We also include a Fourier
transform (FT) method as yet another baseline. For SLS2-ADJ,
L = 0.55 x Thvrpa was used; for SLS2-ALL, L = 0.55T was
used. Recall that L > T'/2 is necessary for identifiability, to avoid
aliasing. Further note that SLS2-ADJ with L = 0.55T performs
better than with L = 0.55 x T g4, but still considerably worse
than SLS2-ALL with L = 0.55T". SLS2-ALL clearly outperforms
all other algorithms by a significant margin; for N = 30, it attains
the clairvoyant CRB for jitter < 20%. The SLS2-ALL efficiency
breakpoint is a function of sample size N - it shifts to the right
(higher jitter) with increasing IV, as seen by comparing the results
in Figures 2(a), and 3(a). We have verified via other simulation
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results (not included here) that SLS2 has RE close to unity for all
values of IV (with jitter below threshold). We note that for NV > 50
MEA-LSWI also approaches RE=1 without requiring careful fine-
tuning of internal initialization parameters.

N N=10 pmiss=0.5 MCRuns=50000 Ib=0.54725 ub=1.9403 dt=0.01 T=1 dTr=0.2
10 T T T T

~7- MEA-I
~&- MEA-LSI
- MEA-LSWI
4| —+ MEA-LSR
= MEA-LSWR
-4~ MEA-LSWE
-6~ Hist
J|=FT

- SLS2-adj
—# SLS2-all

realtive efficiency

0 5 10 15 20 25
percent jitter

(a) Relative Efficiency wrt clairvoyant CRB.

o N=10 pmiss=0.5 MCRuns=50000 Ib=0.54725 ub=1.9403 di=0.01 T=1 dTr=0.2
10

~7- MEA-I
~&- MEA-LSI
- MEA-LSWI
—+ MEA-LSR
3| =+ MEA-LSWR
-4~ MEA-LSWE
-6~ Hist

- FT

8. || = sLs2-adj
—# SLS2-all

realtive |bias|

percent jitter

(b) Absolute Bias.

Fig. 2. Simulation results for N = 10.

5. CONCLUSIONS

For moderate SNR and above, and even small sample sizes (e.g.,
N = 10), SLS2-ALL turns out to be “super-efficient”, in the sense
that it achieves the clairvoyant CRB - quite a surprise. We are
currently investigating pertinent Barankin bounds and associated
asymptotic analysis. In the presence of outliers, robust regression
techniques can also be adopted. Perhaps the simplest way to en-
dow SLS2 with a measure of robustness to outliers is to switch
from ¢, to ¢, regression. This can be derived from the joint ML
principle for Laplacian noise, and it simply changes the norm that
is involved in the line search. Results will be reported elsewhere.
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