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ABSTRACT

Pre-distortion algorithms for the compensation of AM/AM
and AM/PM non-linearities of High Power Amplifiers (HPA)
require a previous estimation of the delay introduced by
the analog chains at the input and output of the amplifier.
This paper presents a coarse time delay estimation (TDE)
algorithm to within one-sample resolution based on a con-
ditional entropy principle. The delay estimate is computed
via one dimensional search on the proposed TDE spectrum.

1. INTRODUCTION

The advent of non constant amplitude modulations for broad-
casting applications such as OFDM in Terrestrial Digital
Video Broadcasting (DVB-T) has placed stringent require-
ments on the linearity of High Power Amplifiers (HPA).
Pre-correction systems® have been extensively studied in
the literature ([2],[3],[4]) to reduce the intermodulation dis-
tortion to acceptable levels according to specifications set
by the standards. The block diagram of such a system may
be observed in the figure, where pre-distortion coefficients
are usually determined via optimization of an input/output
cost function. Processing is performed in base-band by ob-
serving the HPA output.

The analog chains for up- and down-conversion intro-
duce delays which may well be in the order of several tens
of samples at the sampling frequency of the pre-correcction
system. The main contribution to this delay corresponds to
the group delay of the analog filters in the frequency shifting
blocks. Precise compensation of the amplifier non-linearity
requires that the input base-band signal to the amplifier and
its correponding base-band output be time aligned, as the
error signal to drive the adaptive algorithm is to be derived
from these two signals. Although in principle this time-
alignment is not necessary for the compensation of AM/AM
distortion, it is mandatory for the compensation of AM/PM
distortion.

This paper will primarily consider robust coarse time
delay estimation (TDE) of the analog input-output delay
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Figure 1: Block diagram of HPA pre-distortion. The in-
put baseband signal (a) is passed through the adaptive pre-
distorter PD, its output is digital to analog converted and
frequency shifted to the HPA input. The HPA output is
converted back to a digital baseband signal (c). The three
signals (a) to (c) are used for adaptive pre-distortion and
coarse dealy estimation between (b) and (c). The filters
in DA4+UP/C and D/C+AD are mostly responsible for the
time misalignment.

of an amplification chain, regardless of the non-linear char-
acteristic of the amplifier. Mutual Entropy (or Conditional
Entropy) based criteria are considered for this estimation.
Fine time alignment is performed jointly with the adapta-
tion of the pre-distortion coefficients in a later stage.

2. SIGNAL MODEL

AM/AM and AM/PM distortion of an HPA are defined in
terms of a non-linear gain on the input signal. Let u, and
uy be the modulus of the equivalent base-band signals b,
and by corresponding to the input and output of the HPA,
respectively. Non-linear distortion is expressed in terms of,

by () = glua(t))e’™ b, (2)

with g(ue) the real non-linear gain associated with AM/AM
distortion and ¥(u,) the modulus dependent phase shift as-
sociated with AM/PM distortion. When the time delay is
included in the model and assuming residual aliasing in the
discrete domain (non-linear distortion is much more impor-
tant an effect), we can define,

by(nT:+A) = by(nTs — (~A)
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by (nTy) = gl(us(nTy))e’™ =T Db, (nTy)
= Y(uaz(nT5))be (nTs) (1)

As all signals in (1) have undergone no propagation, the
usual assumption in pre-distortion schemes is to deem noise
negligible as compared with non-linear effects. Hence, our
purpose is the derivation of a coarse estimate for A down
to sampling period resolution. The inverse non-linear char-
acteristic is expressed in its turn as,

be(nTs — A) =

b2 (nTs) g (uy (nT2))e™ v TN, (nT)

7' (ty (nT%))by (nT%) (2)
3. CONDITIONAL ENTROPY TDE

The objective of Conditional Entropy TDE is to find that
relative delay for which the mutual information between
input and output is maximized, or for which the conditional
entropy between input and output is minimized. We will
propose a simplified version of these principles for reasons
of computational complexity. From the model previously
exposed (2) we obtain,

by (nT)bg (nT) 7' (uy (nT%)) [by (nT2) |

uy (nTe)y (uy (nT)) ®3)

But thg inverse non-linear gain is unknown and the estimate
of A, A, must be obtained without aprioristical knowledge
of 4'. Nevertherless, it is clear from the previous expression
that for the true delay A, the product b} (nT)b% (nTs) is
solely dependent on u,. Hence, we can construct an op-
timization criterion based on this functional dependence
in the following way: let £(.) be a suitable function of a
complex random variable, where suitability is to be defined
later. Then, we derive the estimate as the maximization of
the mutual information between &(b}b2) and wy,

A¢ =argmax I <§(b;b§) ; uy>
A

so that whenever A does not coincide with the true delay
A, randomness extraneous to the random variable u, is
equivalent to a loss of mutual information. For this to be
a valid criterion, we require the following condition on the
function &(.),

He®td) s w) <T(E0R) s w) @

which is guaranteed when the correspondence between uy
and £(bjbZ2) is one-to-one. The choice of the function &(-)
will solely depend on performance versus complexity trade-
offs in the estimation of the delay. Observe also that the
function u27' (uy) in (3) is invertible as v/ (uy) is, too. Hence,
the following two criteria are equivalent,

31 = argmax I(§(bzbf)§ Uy) (®)
N

As = argmin H(uy|E(b362)) (6)
A

where 32 is obtained via minimization of the entropy of

uy conditioned on £(b3b%). The equivalence between both
criteria is exemplified by the expression,

TEWLE )5 uy) = Hluy) — H(ug [EBIHE))  (7)

so that the independence of H(uy) on A establishes the
equivalence. Both methods do therefore require some kind
of probability density function (pdf) or histogram estima-
tion. The advantage is that only a coarse estimate is nec-
essary so that coarse histogram estimates shall suffice. We
will focus on the Az estimate. For £ the identity function, a
suboptimum approach to the method above consists of per-
forming coarse quantization of the random variables u, and

by, b2 and evaluating the corresponding discrete histograms.

Given that the product b;bf is complex, the number of

necessary histogram bins is quadratic. We prefer to seek a

simpler approach. If this product is expanded, we get,
byby = uyug explj(65 — 0,)]

wyuz expli(0y — 02 — W(ug)]
= uyug exp[—j¥(up)] explj(6 — 62)]  (8)
But from (2) we know that,

o~ o~ o~

A A 1 A=A\ A-A
Uy =g (uy)uy — uz =g (uy ")y
and therefore (8) becomes,
b = (g (™ 2)up ™ expl—i (g (w)u,)] )
expli(0z — 02)] )

with 02 and 6% random variables independent of u5 and
hence of u, for the type of modulations we are consid-
ering (OFDM and M-QAM). In expression (9), modulus-
dependent and phase-dependent variables have been fac-
tored apart and constitute independent random variables.

One possible choice for the £(b}b2) function is the argument

of b;bf, hence,
E(byb2) = arg(byh) = ~ (g (u)uy) + (62 — 62 (10)

with —¥(g'(uy)uy) a constant term independent of A, and
9§ — 02 a perturbation term independent of u5. Hence,
when the g\ifference A — A is sufficiently large, the distrib-
ution of #2 — 65 is uniform (for OFDM modulations) and
as a consequence, so is the distribution of arg(b;b;&), and
independent of u,. Only when the difference A — A is suf-
ficiently small, we get that §(b;b§) ~ —U(g'(uy)uy) which
trar/l\slates to statistical dependence between the phase of
b; b2 and the modulus wuy.

The preference of choosing £(+) as the argument of b;b;&

instead of its modulus is because u, appears as a multi-
plicative factor in (9),

-~ ~

[bybe | = uyg (= Huy ™2 >0
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and statistical dependence between u, and this modulus is
present whatever the difference A—A.

The criteria in (5) and (6) fail when the one-to-one cor-
respondence between £(b3b%) and w, is not fulfiled. Such
is the case in the absence of AM/PM distortion, ¥(u) = 0,
where equation (10) becomes,

~

E0h) = — (g (wy)uy) + (02 = 03) = 07 =02

Note that in this case, the condition required in (4) does not
hold. Then, the alternative conditional entropy criterion to
be applied is as follows,

As =arg min H(S(bzbfﬂuy)
A

where £(b3b5) = 02 — 02 = 0 and H(0|uy) = 0 guarantees
that even in the absence of AM/PM distortion, Az = A.

4. CONDITIONAL ENTROPY ESTIMATION

Conditional entropy is estimated in terms of the data his-
togram and carried out in two different ways: hard his-
togram and soft histogram [5]. The latter provides better
results for the same number of samples and is usually pre-
ferred for short data records. The hard histogram is based
on rectangular activation functions II (+), so that the proba-
bility that samples of the random variable X are contained
in a given bin is estimated as,

~ 1 Tj—C;
P = gyEhan (257) &
with N the number of samples of the data record, ¢; the bin
centroids in the estimation of the probability and 6 the bin
width. In soft histogram estimation, the activation func-
tions are triangular and overlapping, so that the ocurrence
of a given sample contributes to two bins as follows,

~ B 1 N Tri — Cq
pi = Xin ﬁzj:IA (—] 5 ) (12a)

with A (%) expressed in terms of convolution as,

x x x
NOEEANTE
5 ( /2) ’ (5/2)
Although the summation is taken over the number of bins
B, for each sample z; only two triangular functions are

activated. For either histogram and associated bin centers
ci, data are quantized as,

q(z) = Bl all (w ; Ci)

Conditional entropy is then estimated in the following way:
let us construct the N¢ X N, matrix A =[ap,q] over a data
record of N samples where N¢ and N, are, respectively,

the number of bins into which the data £(bjbs) and the
modulus u, are quantized. Each component is defined as,

QAp,q = I/’\(up» €q)

Figure 2: Conditional Entropy TDE Spectrum obtained for
a 2 x 2 grid in the (uy,&) plane. Twenty realizations of
128 samples each are shown. The oversampling factor is 5.
Saleh’s model has been used.

with &, and u, the centroids corresponding to the quantiza-

tion of b}b2 and of u,. The joint pdf p(uy, &) is estimated
according to,

ﬁ(um &) = I/’\(up)ﬁ(gqmp)

where p(up) and p(&,|u,) are obtained from either (11) or
(12a). The conditional entropy estimate becomes then,

A Nu,N¢

H(EDyb)uy) = —Xp e Blup, &) log BEq|us)
= 7255113(“1’)2(];:515(&@?)10g§(£q|“p)

The search for the optimum A will require minimization of

ﬁ(f(b;bf)my) over A. The search time will depend on the
bin resolution and the number of samples. Nevertheless, the
advantage is that the non-linearity is not time-varying and
many samples can be used to obtain a coarse delay estima-
tion. Fine delay estimation is then carried out jointly with
the estimation of pre-distortion coefficients. The number of
bins need not be very high as only a coarse estimation is
needed.

The performance of this scheme is evaluated in terms of
the probability that the estimated conditional entropy pro-
vides a coarse minimum equal to that of the true entropy.
When the data record increases, this probability goes as-
ymptotically to one (law of large numbers).

5. SIMULATIONS

Saleh’s model [1] for TWT (Travelling Wave Tube) ampli-
fiers has been used in determining the performance of the
algorithm. This model is defined in terms of the following
AM/AM and AM/PM distortion curves,

2 Uz
g(ua':) = KAsat ug T Aﬁat
2
s Uu
U(u,) = —— "=
(uz) 3uZ + A2,

The Conditional Entropy TDE spectrum has been obtained
for a number of realizations on the same amplifier. The min-
imum is always obtained to within a one-sample resolution,
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Figure 3: Conditional Entropy TDE Spectrum obtained for
a 4 x 4 grid in the (uy,&) plane. Twenty realizations of
512 samples each are shown. The oversampling factor is 5.
Saleh’s model has been used. The quality of the notch guar-
antees that the algorithm will be capable of determining a
reliable time delay estimate on a low number of samples.

where the true delay has been set to A = 40. The dis-
crimination is quite good, a distinct peak at the minimum
always appears. Results are shown for several bin reso-
lutions. The complexity required of this algorithm is not
very high as a number of bins as low as a 2x2 grid suffices
to obtain very reliable time delay estimations. In order to
guarantee that each bin in the (uy,&) grid activates a suf-
ficient number of times, conditional entropy is evaluated
on a data record thirty-two times the grid size (assuming
equiprobability, each bin would activate 32 times).

Results in figure (5) for high oversampling shows the
sensitivity of the algorithm at low (2x2) grid resolutions.
Differences can be observed over the 20 realizations.
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Figure 4: Conditional Entropy TDE Spectrum obtained for
a 8 x 8 grid in the (uy,&) plane. Twenty realizations of
2048 samples each are shown. The oversampling factor is
5. Saleh’s model has been used. Observe that for such grid
resolutions, the TDE spectrum is practically realization-
independent. Discrimination is very good as shown by the
steepness of the notch. This feature is preserved for higher
oversampling factors (see next figure). Good results are
still obtained when the data block size to grid size ratio is
decreased below 32. The grid margins must be made de-
pendent on the signal dynamic range for best performance
in the quantization of u, and £. Otherwise, the sharpness
of the notch is degraded and a flat minimum may appear
due to poor quantization of u, and &.
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Figure 5: This figures shows the Conditional Entropy TDE
spectra for an oversampling of 25 for the following grid res-
olutions: 2x2 (upper), 4x4 (middle) and 8x8 (lower). It can
be appreciated that the notch width is sensitive to the signal
autocorrelation (oversampling factor) and that the spectra
become less realization-independent for large oversampling
factors.
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