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ABSTRACT 
 
This paper presents a non-data-aided (NDA) carrier 
frequency offset estimation algorithm for GMSK 
modulation. A nonlinearity of the GMSK signal is shown 
to be a sine wave with frequency related to the carrier 
frequency offset. Based on that, a single frequency 
estimation method with large estimation range and low 
computational complexity is used to compute the carrier 
frequency offset. The estimator has a feedforward 
structure and is suitable for burst mode transmission. Its 
estimation accuracy is good and the estimation range is a 
quarter of the symbol rate, which is illustrated by 
simulation results. 
 

1. INTRODUCTION 
 

Continuous phase modulation (CPM) is attractive for its 
high bandwidth efficiency and constant envelope. As a 
type of CPM, Gaussian minimum shift keying (GMSK) 
modulation has been adopted in many wireless 
communication standards such as the global system for 
mobile (GSM). 

Knowledge of carrier frequency offset caused by 
oscillator instability and Doppler effects is necessary for 
both coherent demodulation and differential demodulation 
of GMSK signal[1]. Carrier frequency estimation methods 
for GMSK modulation are typically categorized in data-
aided (DA) methods and non-data-aided (NDA) methods. 
This paper focuses on the later.  

Some NDA methods for carrier frequency offset 
estimation [1][2][3][4] do not need the aid of timing clock 
estimation and thus are called non-clock-aided (NCA). 
The NDA carrier frequency offset detector proposed in 
reference [1] is based on the Laurent approximation of 
CPM signals [8] and maximum likelihood (ML) frequency 
estimation. Reference [2] shows that the change of the 
continuous signal phase over any one-symbol time 
interval is not larger than 2/π . Based on that, [2] 
proposes an NDA frequency difference detector (FDD) 
and frequency compensation structure that is suitable for 
one-bit differential demodulation. The estimation range of 
the FDD is a quarter of the symbol rate. The feed-forward 

frequency estimator proposed in [3] extracts the carrier 
frequency offset from the phase of the nonlinearity 

, where x(t) is the received GMSK 
signal, T is the symbol interval, T

)()( sDTkTxkTx −∗

s is the sampling time 
interval and D is a time delay parameter related to the 
estimation range and variance. The bigger D is, the 
smaller the estimation range and variance are. In [4], a 
frequency synchronization algorithm based on fourth 
order cyclic statistics is proposed. The algorithm works 
well in a time-selective fading channel.  

Some other frequency estimation algorithms [5][6] are 
clock-aided (CA), i.e. they require timing recovery be 
previously accomplished. Reference [5] approximately 
converts GMSK modulation to a linear modulation by 
means of keeping only the most significant item of the 
Laurent approximate expression [8]. Based on that, [5] 
shows that a non-linearity of the GMSK signal can 
generate a sine wave at frequency related to the carrier 
frequency offset. Then, the Rife and Boorstyn (R&B) [7] 
method is used to estimate the frequency of the sine wave. 
The estimation range of the algorithm is a quarter of the 
symbol rate. In [6], a frequency offset estimation method 
based on the fourth order cyclic statistics is proposed. 

In this paper, a sine wave is obtained from a GMSK 
signal in the same way as in [5]. Based on that, a single 
frequency estimation method with large estimation range 
and low computational complexity is used to compute the 
carrier frequency offset. 

The paper is organized as follows. Signal model and 
basic notations are introduced in section 2. Section 3 
describes the frequency estimation algorithm. Section 4 
gives the simulation results that illustrate the 
performances of the proposed scheme. Some conclusions 
are given in Section 5. 

 
2.  SIGNAL MODEL  

 
The complex envelope of a GMSK signal can be written 
as 

( )),(exp)( αtjts φ=             (1) TntnT )1( +≤≤
where 

∑ −=
i

i iTtqaht )(),( πφ α                   (2) 
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is the information bearing phase, α  is a binary 
information sequence, T is the symbol period. In (2), h 
denotes the modulation index and it equals 0.5 for GMSK 
modulation. q(t) is the phase pulse and  

{ }ia= { } )(2exp)( 2 mfmTjAmR γπ +∆⋅=             (13) 
where )(mγ  is the noise term.  

Clearly, the frequency f∆  can be extracted from the 
phase of R(m). As is shown in [10], the phase of R(m) 
with bigger m( 2/Nm ≤ ) is less affected by noise. Using 
the autocorrelation R(N/2), [10] gives an estimator ∫ ∞−

=
t

dtthtq )()(                          (3) 

The frequency pulse h(t) is limited to the interval [0, LT] 
and gives πTNNRf /)]2/(arg[ˆ =∆                  (14) 

The estimator in (14) has a poor estimation range 
. That is resulted by the phase wrapping introduced 

by the operation arg[
NT/1

]⋅ . To enlarge the estimation range, 
phase unwrapping technique has to be adopted. 

∫ =
LT

dtth
0

1)(                              (4) 

where L is an integer. 
It is shown in [8] that a GMSK signal can be 

approximately expressed by If the noise term in (13) is ignored, we have 
{ } SπfmTπmR ⋅−∆= 22)(arg                (15) ∑ −≈

n
n nTthats )()( 0,0                      (5) 

where  
][ fmTS ∆=                             (16) where  
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in aja
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exp π                       (6) and [  denotes the integer that is most close to x. Thus a 
new estimator of 

]x
f∆  can be written as 

πTmSπTmmRfnew 2/2/)](arg[ˆ +=∆         (17) 
∏
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L

l
lTtpth                        (7) The calculation of  is the key of phase unwrapping.  S

Consider the discrete Fourier transform (DFT) of z(k) 
( 10 −<≤ mk ). Let S

~  ( 2/
~

2/ mSm ≤<− ) denote the 
sequence number of the largest spectral line. When noise 
is ignored, we have 

and 
[ ]








≤<−
≤≤⋅

=
else,0

2),2(
0,2/)(sin

)( LTtLTtLTp
LTttq
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π

            (8) 

][~ mTfS ⋅∆=                              (18) Assume that s(t) is transmitted over an AGWN 
channel, the complex envelope of the received GMSK 
signal in a digital implementation is modeled as 

From (16) and (18), it can be seen that S S
~

= . Let 
m=N/2. The following estimator of ∆  can be derived 
from (17)  

f

{ } )()()2(exp)( 0,0 s
n

snses kTnnTkThakTfjkTx +∑ −+= θπ       (9) 
DFTnew fff ˆˆˆ +∆=∆                         (19) 

where πTNSfDFT /~ˆ =  is the frequency of the largest 
spectral line. The carrier frequency offset estimator for 
GMSK modulation is 

where  and ef θ  denote the carrier frequency offset and 
phase respectively. The sampling rate 1/Ts is a multiple P 
of the symbol rate 1/T. n(kTs) is the filtered Gaussian 
noise. 

Define a non-linearity of the received signal 2/)ˆˆ(2/ˆˆ
DFTnewe ffff +∆=∆=              (20) 

)
2

1()1()( 2
ss

k PTLkPTxkz +
+−=            (10) When noise is ignored, we can see from (11) that  

can be correctly computed only if the sampling rate of z(k) 
is larger than 

DFTf̂

f∆2 , which means that the estimation range 
of the estimator in (19) is | . Hence the 
estimation range of the estimator in (20) is T/4. 

2/| Tf <∆

Reference [5] shows that z(k) is approximately a discrete 
time sine wave whose frequency and sampling rate are 

 and 1/T respectively. z(k) can be written as f∆

{ } )(22exp)( kwfkTjAkz ++∆⋅≈ θπ            (11) 
  When carrier frequency offset  takes some values 

so that 
ef

2/NTf ⋅∆  is very close to [ 5.0]2/ ±⋅ NT∆f , the 
sequence number of the largest spectral line may be 

1]2/[ ±⋅∆ NTf  instead of  because of the 
existence of noise. That will lead to a wrong phase 
unwrapping and thus wrong frequency estimation. 

]NT 2/[ f ⋅∆

where , and w(k) is the noise 
term. Therefore the estimation of carrier frequency offset 

 turns to the estimation of a sine wave’s frequency. 

eff 2=∆ { }{ 2
0 )(max thA = }

ef
 

3. FREQUENCY ESTIMATION  
 

As a solution to this problem, we compute the DFT of 
N samples of z(k) and denote the spectral lines by 0,1,… 
N-1. Let S ′  denote the sequence number of the largest 
spectral line. If S ′  is even, 2/~ SS ′= . If S ′  is odd, we 
need to determine whether S

~  equals to 2/)1( +′S  or 
2/)1( −′S .  From (15), it can be seen that the sign of 

Consider the m-lag autocorrelation of z(k) 

11)()(1)(
1

* −≤≤−
−

= ∑
+=

Nmmkzkz
mN

mR
N

mk

     (12) 
where N is the number of available data. From (11), it can 
be seen that 
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)]2/(arg[ NR
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 indicates which range ∆  is in. If 
, i.e. ∆ , we have 
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0≥ 0≥f
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−′= SS

0
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As is computed using a high time lag autocorrelation, 
the sign of  has a reasonable reliability. Hence we take 
it as a measure to determine the value of . In short, S

~ is 
computed as 

′
′

2
2

S
S

       (21) 

In a digital implementation of the GMSK receiver, the 
received signal is divided into frames. The carrier 
frequency offset is computed once a frame. If large burst 
noise exists in a certain frame, the corresponding 
estimation result will not be credible enough. To reduce 
the affect of burst noise, the estimation results are filtered 
as follow.  

If denotes the estimation result computed by (20) 
in the ith frame and  denotes the output of the filter in the 
ith frame, we have  

f̂λ e∆⋅    (22) 
where  is a forgetting factor and is chosen in the range 

. The variable  is defined as 





,0
,1               (23) 

where condition A means that |  
for j=i-2, i-1, i and | . 

NT/
)3 −−

 
4.  SIMULATION RESULTS 

 
This section gives the simulation results that illustrate the 
performances of the algorithm described in this paper. The 
frequency estimation algorithms described in [3] [4] [6] 
are also simulated for comparison. The modified Cramer-
Rao bound [9] (MCRB) is given as a benchmark. In the 
simulations, the length of a frame equals to 128 symbols 
and the over-sampling factor T  is 4. For MM 
algorithm in [6] and GSD algorithm in [4], M is chosen to 
be 10. The performances are described in normalized 
frequency estimation error variance defined as  


 f̂e                       (23) 

For the sake of simplicity, we denote the algorithms 
proposed in this paper, in [3], [4] and [6] by algorithm A, 
B, C and D respectively.  

To illustrate the improvement brought by the 
frequency computing method defined in (21), algorithms 
using (21) and without using (21) are compared. Fig.1 

shows  versus E2σ
NTf

s/N0.  is chosen to be 11/256 so 
that 

Tfe
2/⋅∆  is very close to [ 5.0]2/ ±⋅∆ NTf . It can 

be seen that the frequency estimator without using  (21) 
has larger error than that using (21).  

  Secondly, the algorithms A, B, C and D are simulated 
in an additive white Gaussian noise (AWGN) channel. 
Fig.2 illustrates the normalized estimation error variances 
as functions of Es/N0 when  is chosen to be 0. It is 
shown that algorithm A performs much better than the 
others. Fig.3 shows  versus normalized frequency 
offset  when E

Tfe

2σ
Tfe s/N0 is 15dB. It can be seen that the 

estimation range of algorithm A is coarsely a quarter of 
the symbol rate and is larger than the other algorithms.  

The algorithms are also simulated in a Rayleigh flat-
fading channel.  is chosen to be 0.1. Fig.4 and Fig.5 
show  versus E

Tfe

df

2σ s/N0 when the maximum Doppler 
frequency shift is 5e-4/T and 1e-3/T respectively. It is 
shown that the performance of algorithm A degrades a lot 
in a fading channel yet is the same as the other algorithms. 

 
5.  CONCLUSION 

 
A carrier frequency offset estimation algorithm for GMSK 
modulation is proposed in this paper. The algorithm has 
low computational complexity and a feed-forward 
structure and is well suited for burst-mode 
communications. The estimation accuracy is quite good in 
an AWGN channel and is the same as the algorithms in [4] 
and [6] when the channel is Rayleigh flat-fading. Because 
a phase unwrapping scheme is adopted, the estimation 
range of the frequency estimator is enlarged to a quarter 
of symbol rate. 
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Fig.1. Comparison between using (21) and without 
using (21) 
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Fig.3. Affect of carrier frequency offset on performances 
of different algorithms 
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Fig.4. Performances in Rayleigh flat-fading channel 
(fdT=5e-4) 

Fig.5. Performances in Rayleigh flat-fading channel 
(fdT=1e-3)  
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Fig.2. Performances in AGWN channel 
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