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ABSTRACT

This paper presents a non-data-aided (NDA) carrier
frequency offset estimation algorithm for GMSK
modulation. A nonlinearity of the GMSK signal is shown
to be a sine wave with frequency related to the carrier
frequency offset. Based on that, a single frequency
estimation method with large estimation range and low
computational complexity is used to compute the carrier
frequency offset. The estimator has a feedforward
structure and is suitable for burst mode transmission. Its
estimation accuracy is good and the estimation range is a
quarter of the symbol rate, which is illustrated by
simulation results.

1. INTRODUCTION

Continuous phase modulation (CPM) is attractive for its
high bandwidth efficiency and constant envelope. As a
type of CPM, Gaussian minimum shift keying (GMSK)
modulation has been adopted in many wireless
communication standards such as the global system for
mobile (GSM).

Knowledge of carrier frequency offset caused by
oscillator instability and Doppler effects is necessary for
both coherent demodulation and differential demodulation
of GMSK signal'"’. Carrier frequency estimation methods
for GMSK modulation are typically categorized in data-
aided (DA) methods and non-data-aided (NDA) methods.
This paper focuses on the later.

Some NDA methods for carrier frequency offset
estimation MR do not need the aid of timing clock
estimation and thus are called non-clock-aided (NCA).
The NDA carrier frequency offset detector proposed in
reference [1] is based on the Laurent approximation of
CPM signals ® and maximum likelihood (ML) frequency
estimation. Reference [2] shows that the change of the
continuous signal phase over any one-symbol time
interval is not larger than z/2 . Based on that, [2]

frequency estimator proposed in [3] extracts the carrier
frequency offset from the phase of the nonlinearity

x(kT)x" (kT = DT,) , where x(f) is the received GMSK

signal, T is the symbol interval, 7; is the sampling time
interval and D is a time delay parameter related to the
estimation range and variance. The bigger D is, the
smaller the estimation range and variance are. In [4], a
frequency synchronization algorithm based on fourth
order cyclic statistics is proposed. The algorithm works
well in a time-selective fading channel.

Some other frequency estimation algorithms are
clock-aided (CA), i.e. they require timing recovery be
previously accomplished. Reference [5] approximately
converts GMSK modulation to a linear modulation by
means of keeping only the most significant item of the
Laurent approximate expression *.. Based on that, [5]
shows that a non-linearity of the GMSK signal can
generate a sine wave at frequency related to the carrier
frequency offset. Then, the Rife and Boorstyn (R&B) ")
method is used to estimate the frequency of the sine wave.
The estimation range of the algorithm is a quarter of the
symbol rate. In [6], a frequency offset estimation method
based on the fourth order cyclic statistics is proposed.

In this paper, a sine wave is obtained from a GMSK
signal in the same way as in [5]. Based on that, a single
frequency estimation method with large estimation range
and low computational complexity is used to compute the
carrier frequency offset.

The paper is organized as follows. Signal model and
basic notations are introduced in section 2. Section 3
describes the frequency estimation algorithm. Section 4
gives the simulation results that illustrate the
performances of the proposed scheme. Some conclusions
are given in Section 5.

[5106]

2. SIGNAL MODEL

The complex envelope of a GMSK signal can be written
as

proposes an NDA frequency difference detector (FDD) s(t)=exp(jp(t,a)) nT <t <(n+1T (1)

and frequency compensation structure that is suitable for where

one-bit differential demodulation. The estimation range of _

the FDD is a quarter of the symbol rate. The feed-forward glt,0) = ”hz a;q(t —iT) )
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is the information bearing phase, a={g,} is a binary
information sequence, 7T is the symbol period. In (2), A
denotes the modulation index and it equals 0.5 for GMSK
modulation. ¢() is the phase pulse and

g0)=[ h)a (3)

The frequency pulse 4(f) is limited to the interval [0, LT]
and gives

IOLZ(t)dz 1 (4)

where L is an integer.
It is shown in [8] that a GMSK signal can be
approximately expressed by

s(t)= " g, hy(t=nT) (5)
where
o, = exp{jgzai} (6)
i=1
L-1
ho(t)=Hp(f+/T) (7
1=0
and
sin[g()-7/2]  0<t<LT
p(t)=3 pQRLT-t), LT <t<2LT (8)
0, else

Assume that s(f) is transmitted over an AGWN
channel, the complex envelope of the received GMSK
signal in a digital implementation is modeled as

XkT) =extljQA kT +OYay i (kT —nD+n(kT)  (9)

where f, and € denote the carrier frequency offset and
phase respectively. The sampling rate 1/7 is a multiple P
of the symbol rate 1/7. n(kT) is the filtered Gaussian
noise.

Define a non-linearity of the received signal

Ll pry (10)

z(k) = (-1)* x* (kPT, +

Reference [5] shows that z(k) is approximately a discrete
time sine wave whose frequency and sampling rate are
Af and 1/T respectively. z(k) can be written as

2(k) = Aexp|j2r - MKT+ 26} + w(k) (11)
where Af=2f,, A={max{hy (0} and w(k) is the noise
term. Therefore the estimation of carrier frequency offset
£, turns to the estimation of a sine wave’s frequency.

3. FREQUENCY ESTIMATION

Consider the m-lag autocorrelation of z(k)
N
R(m) = % k) (k-my 1<ms<N-1 (12)
T M k=m+1
where N is the number of available data. From (11), it can
be seen that

R(m) = A* exp{j27 - AfinT } + y(m) (13)
where y(m) is the noise term.

Clearly, the frequency Af can be extracted from the
phase of R(m). As is shown in [10], the phase of R(m)
with bigger m(m < N/2) is less affected by noise. Using
the autocorrelation R(N/2), [10] gives an estimator

Af = arg[R(N /2)]/ zTN (14)
The estimator in (14) has a poor estimation range
1/ NT . That is resulted by the phase wrapping introduced
by the operation arg[-]. To enlarge the estimation range,
phase unwrapping technique has to be adopted.
If the noise term in (13) is ignored, we have
arg{R(m)} = 2zAfmT -2 - S (15)
where
S =[AfinT] (16)
and [x] denotes the integer that is most close to x. Thus a
new estimator of Af* can be written as

Af.. =arg[R(m)]/2xTm+S/2xTm  (17)
The calculation of S is the key of phase unwrapping.
Consider the discrete Fourier transform (DFT) of z(k)
(0<k<m-1). Let S (-m/2<S<m/2 ) denote the
sequence number of the largest spectral line. When noise
is ignored, we have

S =[Af -mT] (18)
From (16) and (18), it can be seen that S=5 . Let

m=N/2. The following estimator of A/ can be derived
from (17)

A sow = & + forr (19)
where f‘DFT =S/aTN is the frequency of the largest
spectral line. The carrier frequency offset estimator for
GMSK modulation is

Je =Moo 1 2=+ frpr)/ 2 (20)

When noise is ignored, we can see from (11) that f'DFT

can be correctly computed only if the sampling rate of z(k)

is larger than 2Af , which means that the estimation range

of the estimator in (19) is |Af|<T/2 . Hence the
estimation range of the estimator in (20) is 7/4.

When carrier frequency offset f, takes some values
so that Af'- NT /2 is very close to [Af - NT/2]£0.5, the
sequence number of the largest spectral line may be
[Af-NT/2]%1 instead of [Af-NT /2] because of the
existence of noise. That will lead to a wrong phase
unwrapping and thus wrong frequency estimation.

As a solution to this problem, we compute the DFT of
N samples of z(k) and denote the spectral lines by 0,1,...
N-1. Let S denote the sequence number of the largest
spectral line. If S is even, S =8'/2. If §' is odd, we
need to determine whether S equals to (S'+1)/2 or
(8"-1)/2. From (15), it can be seen that the sign of
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arg[R(N/2)] indicates which range Af-NT/2 is in. If

arg[R(N/2)]20 ie. Af>20 , we have
Af-NT/2€[S,S+0.5] and thus S=(S'-1)/2 . If
arg[R(N/2)]<0 , ie. Af<0 , we have

Af-NT/2e(S—-05,8) and thus S =(S'+1)/2.

As is computed using a high time lag autocorrelation,
the sign of Aj} has a reasonable reliability. Hence we take
it as a measure to determine the value of S . In short, S is
computed as

(S'=1)/2 S'isoddand Af >0
S={(S"+1)/2 S'isoddand Af <0 (1)
S'/2 S'iseven

In a digital implementation of the GMSK receiver, the
received signal is divided into frames. The carrier
frequency offset is computed once a frame. If large burst
noise exists in a certain frame, the corresponding
estimation result will not be credible enough. To reduce
the affect of burst noise, the estimation results are filtered
as follow.

If Afe’(z‘) denotes the estimation result computed by (20)
in the /" frame and Afe(i) denotes the output of the filter in the

i frame, we have
AL G) =1 A6+ A=) [2- A G- 1) +(1-2)- A/ (22)

where A is a forgetting factor and is chosen in the range
0 < A <1. The variable 7 is defined as
1, oncondition A
"= {O (23)
R else
where condition A means that | Af.(j)—Af'(j) |2 4/NT

for j=i-2, i-1, i and | Af,(i—3)— Af/(i—3)|< 4/ NT .
4. SIMULATION RESULTS

This section gives the simulation results that illustrate the
performances of the algorithm described in this paper. The
frequency estimation algorithms described in [3] [4] [6]
are also simulated for comparison. The modified Cramer-
Rao bound ) (MCRB) is given as a benchmark. In the
simulations, the length of a frame equals to 128 symbols
and the over-sampling factor T'/7, is 4. For MM
algorithm in [6] and GSD algorithm in [4], M is chosen to
be 10. The performances are described in normalized
frequency estimation error variance defined as

o= e (7. 1)) | 23)

For the sake of simplicity, we denote the algorithms
proposed in this paper, in [3], [4] and [6] by algorithm A,
B, C and D respectively.

To illustrate the improvement brought by the
frequency computing method defined in (21), algorithms
using (21) and without using (21) are compared. Fig.1

shows o2 versus E,/N,. f.,T is chosen to be 11/256 so
that Af' - NT'/2 is very close to [Af - NT/2]£0.5. It can
be seen that the frequency estimator without using (21)
has larger error than that using (21).

Secondly, the algorithms A, B, C and D are simulated
in an additive white Gaussian noise (AWGN) channel.
Fig.2 illustrates the normalized estimation error variances
as functions of E/N, when f,T is chosen to be 0. It is
shown that algorithm A performs much better than the
others. Fig.3 shows o’ versus normalized frequency
offset f,7 when EJ/N, is 15dB. It can be seen that the
estimation range of algorithm A is coarsely a quarter of
the symbol rate and is larger than the other algorithms.

The algorithms are also simulated in a Rayleigh flat-
fading channel. f,T is chosen to be 0.1. Fig.4 and Fig.5
show o’ versus E/N, when the maximum Doppler
frequency shift f, is 5e-4/T and 1e-3/T respectively. It is
shown that the performance of algorithm A degrades a lot
in a fading channel yet is the same as the other algorithms.

5. CONCLUSION

A carrier frequency offset estimation algorithm for GMSK
modulation is proposed in this paper. The algorithm has
low computational complexity and a feed-forward
structure and is well suited for burst-mode
communications. The estimation accuracy is quite good in
an AWGN channel and is the same as the algorithms in [4]
and [6] when the channel is Rayleigh flat-fading. Because
a phase unwrapping scheme is adopted, the estimation
range of the frequency estimator is enlarged to a quarter
of symbol rate.
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