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ABSTRACT

This paper addresses the problem of Non-Data-Aided (NDA)
symbol timing error estimation in presence of unknown de-
terministic carrier frequency errors. A general framework for
the stochastic low-SNR ML estimation is derived considering
a prior distribution for the carrier frequency error, and exploit-
ing the cyclostationary properties of linear modulations. Fi-
nally, the well-known Oerder & Meyr (Square Timing) method
is shown to become a particular case of this general solution.

1. INTRODUCTION

In this paper' we are addressing a basic problem on digital communi-
cations such as the Non-Data Aided (NDA) symbol timing estimation,
which constitutes one of the fundamental tasks of a digital receiver.
However, despite of the wide range of different approaches to attempt
the NDA symbol timing estimation problem, most of them are found
to be based on some heuristic or ad-hoc reasoning [1]. Conversely,
this paper presents an analytical and systematic Maximum Likelihood
(ML) approach based on the second order cyclostationarity of linear
modulations, to derive a general framework for the symbol timing er-
ror estimation problem in presence of a certain carrier frequency un-
certainty with some prior statistical distribution.

Basically, second order cyclostationarity has been usually reported
in recent literature for the purpose of carrier frequency estimation [2]-
[3], although [4] presents an interesting study for both frequency and
timing estimation. However, most of references assume the process-
ing of the signal at the output of some receive filter, so the carrier
frequency error is then assumed to be irremediably constrained within
an small interval for not incurring in some mismatch degradation. In
this sense, this paper presents a general formulation showing that the
received signal Cyclic Autocorrelation Function (CAF) [5] becomes a
sufficient statistic for the problem at hand. Finally, this expression will
be related to the classical Square Timing recovery method by Oerder
& Meyr [6], and its convergence will be shown for the particular cases
of both totally unknown and perfect carrier knowledge.

2. DISCRETE-TIME SIGNAL MODEL AND STOCHASTIC
ML APPROACH

The complex envelope model that will be used for a linearly modulated
received signal corrupted by noise is given by:
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with z,, the transmitted symbols, g(k7Ts) the sampled pulse shape,
Ts the sampling period, ' = N7 the symbol period with N,
the number of samples per symbol and w(kTs) the AWGN. More-
over, the signal model in (1) includes the symbol timing error 7 con-
strained within a symbol interval [—1'/2, +T'/2), the carrier phase 6o,
and the carrier frequency error w constrained to the Nyquist bandwidth
[—7/Ts,+m/Ts) that will be further on normalized to the symbol rate,
that is, v = 3=T. In a more convenient vectorial notation, the re-
ceived signal can be expressed by means of the shaping matrix A (©)
asr =A(O)x+w[7],with® = [,v].

Synchronization methods derived under the Stochastic or Uncon-
ditional Maximum Likelihood approach are the most extended in liter-
ature, and they are based on applying the ML principle assuming that
the transmitted symbols x are all random. Assuming a low-SNR sce-
nario, the authors in [7] prove that the sample covariance matrix of the
received data given by R =rr” , becomes a sufficient statistic for the
NDA parameter estimation problem. Thus, the stochastic ML function
depends only on the second order moments. For a long enough ob-
servation interval, the log-Likelihood function in low SNR scenarios
asymptotically becomes:

L (x|0) = In (Bx [A (r]0; x)]) ~ <77 (A(@)FAH(@)ﬁ)

ol
2

where C is an irrelevant constant, ”7'r” stands for the trace operator,
and' = FE [xxH ] the autocorrelation matrix for the transmitted sym-
bols, which will be assumed without loss of generality, to be uncorre-
lated and normalized to the transmitted mean power, thatis, I' = 1.

3. TIMING ESTIMATION UNDER CARRIER FREQUENCY
UNCERTAINTY

3.1. Exploitation of the Second-Order Cyclostationarity

The second order cyclostationarity of the received signal becomes a
fundamental part for the NDA ML timing estimation under carrier fre-
quency uncertainty. Assume the signal model presented in (1) in the
absence of timing nor carrier frequency errors, to be given by r(k) =
s(k) +w(k) with s(k) = >4 __ 2,9 (kTs — nT). With indepen-
dent uncorrelated symbols, the second-order moment for the cyclo-
stationary signal s(k) can be expressed by means of its time-varying
autocorrelation as: Rs(k;m) = E [s(k)s* (k +m)] = 02 R, (k;m).
Moreover, it is satisfied that Rs(k;m) = Rs(k + [Nss;m),l € Z.
Hence, it can be expressed without loss of generality, in terms of it
Fourier Series (FS) expansion in & as in [4] and [8]: Rs(k — 7;m) =
Y aca RS (m)e? =) with A = {—7 < o < 7}

A consistent and asymptotical estimator for Rg (m) is given by
R (m) = ﬁ Zg/[:_M s (k)s* (k+m)e 9% as shown in [8],
so Rg(m) is also known as the coefficient for the Cyclic-Autocorrelation
Function (CAF) evaluated at the cycle-frequency o, according to [9].
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The FS expansion can be further simplified by noting that for linear
modulations, RS (m) # 0 when |a| = 221, 1 < integer (1 + 3), and
(3 the pulse shape roll-off factor [10].

Thus, it is seen that the maximum possible value for [ is [ = 2,
which implies that the CAF should be evaluated in the worst case, at
the two first cycle-frequencies |a| = {27 /T, 27 (2/T)}. Due to the
fact that signal s(k) is shaped by an even pulse shape, we know from
the FS theory that its expansion should be given as a weighted sum
of odd pure tones, so this fact eliminates the second possible cycle-
frequency, and just &« = £27/T is to be considered. As regards of the
cycle-frequency o« = 0, it will be herein omitted, as it does not pro-
vide any information on the timing error parameter 7. Considering the
positive and negative cycle-frequency 27 /7", we may conclude that the
FS expansion of the time-varying autocorrelation for timing estimation

2z o
purposes is given by Rs(k — 7;m) = 202 Re {RQT (m)ej%(kff) )

3.2. Cyclic-Autocorrelation based NDA Timing Estimation

Herein, we will focus on those applications in which the problem of
the marginal estimation of just the symbol timing error 7 is required,
assuming the carrier frequency error v to be an unknown determinis-
tic parameter constrained within the interval A, . The lack of knowl-
edge about the carrier frequency error is then reflected by adopting a
uniform prior distribution, f, (v) = 1/A,. In this sense, the log-
Likelihood function must be averaged in terms of v, so each of the
(p, q) entries of the outer-product matrix AAT are given by:

+Nss/2
lim E, HAAH} } = fr () ejl\%_;u(pfq)dl/
K—oo p,q
—Nss/2
“+oo
> 9T +nT —7)g" (¢Ts +nT —7) €©)

thus, it is possible to express (2) as:

L(lr) =< 1r (Mﬁ) —~ M= [(GTGE) ® V] @
J’w

where the ”®” operator stands for the Schur-Hadamard product, G-

is the pulse shaping matrix A with only dependence on the timing

error parameter 7, G- = A (7,v = 0), and finally, the entries of

the Doppler spreading matrix V result: [V] g = sinc(%i (p— q)) .

Due to the particular structure of matrices G- G and V, the Doppler
spreading matrix can be seen to mold the Likelihood function accord-
ing to the prior distribution for the carrier frequency error.

Next step is based on recalling the cyclostationary nature of linear
modulations. In particuar, each of the m-th diagonal entries in matrix
G GE are found to be equal to the pulse shape time-varying autocor-
relation Ry (k;m). Hence, it is straightforward to express Ry (k; m)
in terms of its Fourier Series expansion (FS), and the m-th diagonal

m). Due to the partic-

constant entries of V as dv (m) isinc( 1@”

ular structure of matrices M and ﬁ, and after some straightforward
manipulations, expression (4) can be found to be given by:

L(rlr) = %Tr (MR) =

c —i%Er RF « 2 i %k
=——Re e’ T7 [dv(0)R (0) D [r(k)eT" +
wY x k=—M

27 +M—_m -2
Zdﬂm‘ g (m) P (k)r(k +m)e F O E) 4

m>0

k=—M

2m
Ry (m)

Z dv (m)

m<0

+M-m
Z r(k)r*(k — m)ej2%<k+%)>}
k=—M
(©))

with |m| < L, and 2L + 1 being the pulse shape duration in samples.
As it can be seen from (5), the log-Likelihood function suggests

2m
that the cyclic autocorrelation function (CAF) R,” (m) of the re-
ceived samples should be performed at the frequency lag o = 27/ N5
and at all the possible time-lags, in order to collect their spectral com-
ponents at the symbol rate and then obtaining a robust symbol tim-
ing estimate. On the other hand, the window dv (m) is responsible
of limiting the number of time-lags to integrate, as the carrier fre-
quency degrades the weighted CAF when increasing m. Grouping
common terms and considering some symmetric properties of CAFs,
it is found that the optimal ML NDA symbol timing estimate is given

as T — max, {Tr (Mﬁ) }

Fwom = —arg{ > dv(m [RN” (m )rﬁﬁl (m)}

m=—L

referred as the WCM (Weighted Cyclic Method) timing estimator.

3.3. Reconfigurable NDA Timing Estimation and Tracking

In the previous section it has been shown that a timing estimation can
be performed from the ML cost function by computing the argument in
the weighted sum of the correlation between the pulse shape CAF and
the received signal CAF. This estimate exhibits an estimation range
within the whole margin [—7'/2,+7/2), which is suitable for work-
ing at acquisition mode. Once a coarse timing estimation has been ob-
tained, fine timing can be performed by deriving a NDA timing tracker
from the same Likelihood funtion in (5). Assuming the timing error to
be small, the simplified version of this timing discriminator is derived
by taking the derivative of the ML cost function with respect to the
timing parameter:

+L

ATWCMMIm[ > v () [R5 ()] R (m)}

m=—L

with o some normalization factor to force the discriminator S-curve to
have unitary slope. Hence, using the same analytical framework, two
possible schemes could be employed in a reconfigurable architecture
with the purpose of coarse and fine symbol timing estimation without
any increase in complexity.

4. RELATIONSHIP WITH THE SQUARE TIMING - OERDER
& MEYR ALGORITHM

The Square Timing recovery method (SQT) presented in [6] is based
on exploiting the cyclostationary nature of linear modulations by tak-
ing the argument of the input signal Fourier Transform at the symbol
rate. An analytical development is presented in [7] that shows the SQT
optimality for maximum carrier frequency uncertainty. However, no
exact nor formal reasoning can be found to prove whether the SQT is
optimum or not when there exists perfect knowledge of the carrier fre-
quency. In this section, two main results are presented: on one hand,
it is proved that the WCM converges to the SQT for maximum carrier
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frequency uncertainty, and on the other, that the WCM converges to the
SQT at the output of the matched filter when perfect carrier knowledge
exists. Therefore, as the WCM is the optimum ML timing estimator
for low-SNR, the SQT at the output of a matched filter becomes so.

4.1. Scenarios with Maximum Carrier Frequency Uncertainty

It is straightforward to prove that when there exists maximum carrier
frequency uncertainty, the WCM converges to the optimum ML so-
lution of the classical SQT based on received samples. In this case,
the interval for the uniform prior in (3) comprises the whole Nyquist
bandwidth, so the diagonal entries of the Doppler spreading matrix
result in dv (0) = 1, dv (m) = 0 form # 0, as A, — N,
Therefore, expression (6) just takes into consideration the central time-
2

i

lag of the CAF RY** (m), thus resulting in the well-known SQT

27 . on
method. Twenm — %arg{Rév” (0) S \r(k)zejﬁk}

k=—o0

2
with Rg'** (0) a real valued constant that does not affect the argument
computation, as it is evaluated off-line assuming 7 = 0.

4.2. Scenarios with Perfect Carrier Frequency Knowledge

In order to derive the equivalence between cyclic-moments and time-
linear filtering, it is convenient to express the CAF in terms of its fre-
quency domain representation. For that purpose, the Fourier trans-
forms (FT) for the Nyquist square-root pulse shape g(t), the received
signal r(¢) and the output of the matched filtering y(¢) = r(t) * g(—t)
are further on expressed as G (w), R (w), and Y (w). Using Parseval’s

27 +m
theorem, we find that Ry ** (m) = 5375 [ G (w) G (—w + ]\2,—::)
e 9“mdw. Substituing in (6), assuming C; an irrelevant constant,
and the argument in (6) to be denoted as ¢ (1\2,—1), with Twem =

% arg {‘1> (2—”) }, it is found that

Nss

+m 47

2\ 2 - B 2
@(NJ*CNZ /(/G(U)G ( u)R(u Nﬁ)
2 L
* —j(v—u)m
R (—v + N55> dudv} E e’ 7

m=—L

where the weighting window dv (m) in (6) results to be an all ones se-
quence for the case of perfect carrier frequency knowledge (A, = 0).
Moreover, note that Z;L:fL e Iv—wm — 0, u # v for a suffi-

+m
ciently large L. Thus, expression (7) results in ® (1\2,—::) =C [ Y (uw)

Y (13; - u) duwithY (w) = R (w) G* (—w) < r(k)xg(—k).

Finally, the timing estimator in (6) can be rewritten as follows:

Fwear = - S e k)% eI R T 8
TweM = o arg D Ir(k) * g(—k)[* e s ®)

k=—M

In the absence of carrier frequency error, this last expression shows that
the optimal ML timing estimation derived in (6) based on the CAF cor-
relation between the pulse shape and the received signal, can be equiv-
alently achieved by passing the received signal through its matched
filter gmr (k) = g(—k), squaring the result, and observing the argu-
ment of its Fourier Transform at the symbol rate.
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Fig. 1. Timing error variance for |A, /2| € [0,0.5) N5, with 50 %
roll-off square root Nyquist pulse shape and E, /Ny = {0, 3} dB.

5. LOW-SNR CRAMER RAO BOUND

The Cramer-Rao bound (CRB) is a useful benchmark for testing the
performance of any unbiased estimator, as it constitutes a lower bound

-1
of the error variance: CRB (1) = (ET [—ngL (r\T)D [11].

Nss

2) -
2n
where it has been used the fact that for the noise CAF, R ** (m) =0
as it is evaluated at a cycle-frequency different from oo = 0 [5]. This
bound is useful for operation at very low EbNO values, such as the re-
quired for coded transmission (e.g. Turbo Codes). As seen in figure
2, for EbNO below this margin, outliers become predominant and the
variance performance for this non-linear estimator collapses. More-
over, this limit is shown to best suit for small values of A,, as higher

A, moves the variance curves to higher EbNO values away from the
low-SNR assumption.

~2T o
From (5)-(6), and noting that, E.. [RTN” (m)} = e IF sinc( Dy m)

27
-RJ2*% (m), the CRB for the problem at hand is given by:

1602 L L/ A 2
C’RB(T)-( T Z sinc (Nssm> ‘R;’* (m)

2
0,0
w z T

6. SIMULATION RESULTS

Computer simulations have been carried out in order to demonstrate
the performance of the Cyclic-Autocorrelation based NDA timing es-
timator in scenarios with some carrier frequency uncertainty. The sim-
ulation parameters include the employment a 16-QAM modulation
with square root Nyquist pulses in an additive Gaussian noise chan-
nel, where N,s = 4 samples per symbol have been selected, and an
observation interval of typically N = 64 symbols. In addition, some
results are also presented for the particular case of using a rectangular
pulse shape, although in this case, some of the statements presented
in section 3.1 may not completely apply due to the pulse bandwidth.
That is, the harmonic decomposition of matrix GG in (4) into a FS
can not be approximated by just taking the main term (n = 1) when
using a rectangular pulse shape. However, the rectangular pulse shape
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Fig. 2. Timing error variance as a function of Ey/Ny for A, =
{0,0.1,0.2} N, and 50 % roll-off.

is commonly used in a wide range of applications, and the classical
Square Timing recovery fails to provide any timing estimate because
of the signal constant envelope, in contrast with the WCM.

- Figure 1 shows the variance evolution for the symbol timing error
as a function of the carrier frequency error uncertainty. When the fre-
quency uncertainty increases, the SQT at the output of the matched fil-
ter (SQT+MF) is seriously degraded due to the mismatch between the
incoming signal and the receiving filter, but the WCM is able to over-
come this effect. For values approaching the maximum uncertainty,
the WCM timing estimator inherently becomes the classical Square
Timing method, as discussed in section 4.1.

- Figure 2 shows the evolution for the timing error variance as a
function of the Ey/No. The curves have also been plot for scenarios
with carrier frequency uncertainty A, = {0,0.1,0.2} N, and as in
figure 1, it can be seen the convergence of the WCM towards the SQT.

- Figure 3 presents some results for the timing error estimation
problem with rectangular pulse shape. A severe degradation is shown
to appear in presence of carrier frequency errors due to the mismatch
between the incoming signal and the receiving filter in the SQT+MF.
This degradation is shown in figure 3 to be drastically diminished by
using the WCM timing estimator, especially for carrier frequency un-
certainty intervals with |A, /2| > 0.1.

7. CONCLUSIONS

This paper presented a new result to the basic synchronization problem
of NDA symbol timing estimation. Following a Maximum Likelihood
approach, it has been derived an optimal timing estimator for low-SNR
in presence of a uniform prior distribution for the carrier frequency
uncertainty. The resulting timing estimator is shown to include as a
particular case, the classical Square Timing (Oerder&Meyr) algorithm.
For the case of maximum carrier uncertainty, the CAF based timing
estimator with A, — N, was proved to converge towards the Square
Timing recovery with the received signal. Similarly, for the case of
perfect carrier frequency knowledge, the resulting CAF with A, — 0
attained the performance of the Square Timing applied at the output
of a matched filter. Finally, for intermediate cases, the CAF based
estimator provides the optimal ML NDA timing estimation.

Timing Variance
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Fig. 3. Timing error variance as a function of the frequency error un-
certainty interval |A, /2| € [0,0.5) N, with rectangular pulse.
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