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ABSTRACT

This paper considers the design of biorthogonal DMT multicarrier
transceiver systems supporting multiple services. The supported
user services may have differing quality of service (QoS) require-
ments, quantified in this paper by bit rate and symbol error rate
specifications. To reflect their service priorities, different users on
the system can be potentially assigned different number of sub-
channels. Our goal is to minimize the transmitted power given the
QoS specifications for the different users, subject to the knowledge
of colored interference at the receiver input of the DMT system. In
particular we find an optimum bit loading scheme that distributes
the bit rate transmitted across the various subchannels belonging to
the different users, and subject to this bit allocation, determine an
optimum transceiver. This work differs from our prior work where
the same number of subchannels were assigned to each user.

1. INTRODUCTION

Future broadband communication systems will be expected to de-
liver multiple services, such as voice, data, video, with multiple-
stream support. Because delivery of these streams will be under
differing requirements such as information rate and error perfor-
mance, allocation of critical resources like power would have a sig-
nificant impact on the overall performance of the communication
system. Discrete Multitone (DMT) transmission involves a chan-
nel coding technique to achieve reliable, high data rate communi-
cations in such systems. It is a current standard in various wireline
applications like ADSL, VDSL, [11], and in the form of Orthog-
onal frequency division multiplexing (OFDM) has been proposed
for fixed wireless standards like IEEE 802.11a. This paper con-
siders transceiver optimization for such multicarrier transmission
systems operating in a multiuser environment.

More specifically, we assume that a single DMT system sup-
ports � users, each having its own QoS specification quantified by
its bit rate and symbol error rate (SER). The � -th user is assumed
to have been assigned ��� subchannels, and requires a bit rate of� � , and an SER of no more than � � . The number of subchannels
assigned to each user is fixed a priori according to some priorities
determined by the user service, and may vary from user to user.
As proposed in several recent papers, [7], [6], [10], we consider
general DMT transceivers which are more general than the tradi-
tional DFT based systems in that the input and output transforms
are general block transforms. We consider biorthogonal systems
employing zero padding redundancy with the redundancy removal
at the receiver being a general linear operation. Our goal is to se-
lect the input and output block transforms 	�
 , �

 (see fig. 1),
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the linear operation reflecting redundancy removal, the number of
bits/symbol assigned to each subchannel, and the subchannels as-
signed to each user to achieve the QoS specifications, under a zero
intersymbol interference (ISI) condition with the minimum possi-
ble transmitted power. We assume that the channel and equalizer
are known and so is the interference autocorrelation.

We thus generalize our earlier result reported in [6], where the
same optimization problem was considered with an orthonormal
transceiver under the assumption that each user is assigned the
same number of subchannels. In [8], the same problem as [6] was
considered without the assumption of orthonormality. The novelty
of this paper lies in both relaxing the orthonormality condition, i.e.
considering instead the biorthogonal case and permitting different
users to be allocated potentially unequal number of subchannels.
We shall see in the following sections how the extension to [6],
[8] considered here nontrivially modifies the optimization prob-
lem. We note that the asymmetric subchannel allocation consid-
ered here is more realistic as service priorities may cause certain
users to receive greater number of subchannels than others. For ex-
ample, one may allocate more subchannels to video services than
to audio services.

Figure 1 depicts a DMT system. An incoming data stream is
converted into � -parallel data streams of lower rate. An � -point
block transformation 	 
 , of these streams of data is followed by
a parallel-to-serial conversion, prior to transmission through the
communication channel. An equalizer is employed to shorten the
dispersive effects of the transmission channel. The equalized chan-
nel ������� is assumed to be FIR of length � . For an FIR equalized
channel of length � , extra redundancy of length � in the form of
zero padding is added at the channel input to infuse resistance to
channel induced ISI. At the channel output, one performs in suc-
cession the operations of redundancy removal, serial-to-parallel
conversion, and the application of an inverse block transform, � 
 .

Past treatment of optimum resource allocation, [1], [2], [3],
has been restricted mostly to bit loading and power allocation algo-
rithms. Some authors have studied the optimum transceiver design
in the single user case, [7], [10]. While [7] was concerned with op-
timizing the transmitted power, [10] focussed on the maximization
of the mutual information between the transmitted and received
signals. In [5] the authors consider the problem considered here for
the single user case of ����� , and with orthonormality condition
enforced. In [7] the single user case is considered with orthogonal-
ity removed. Both [7] and [8] show in their respective cases, that
biorthogonality leads to no improvement in the transmitted power.
Likewise a major conclusion of this paper is to show that even in
the multiuser environment with potentially asymmetric subchan-
nel allocations, optimal performance is acheived by orthonormal
transformations.
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Fig. 1. DMT communication system.

2. FORMULATION

2.1. Preliminaries

Barring [7] and [8], most papers assume that 	 
 is unitary, i.e.

	��
 	 
 ����� (2.1)

In the biorthogonal case considered here we relax (2.1) and sim-
ply assume that 	 
 and � 
 can be arbitrary nonsingular ���� matrices. Denote the blocks of � input and output symbols
respectively by � � � � ��� � 
�� ��������������� ��� � � � �"!$# , and %� � � � �� %� 
 � � ���&������� %� �'� � � � �"! # . With ( � ��� , the noise and interference
effect at the output of the equalizer, denote ) � ��� �*� ( �,+ � ����( �,+ �	-� �����&������( �,+ �.-/+10 � �"!2# , as the + -fold blocked version of ( � � � ,
with + � �3- � . Then one can show, [5] that with 465 an +7� �
constant matrix characterized by the � order FIR equalized chan-
nel, and � � , an �8�9+ matrix, representing the linear redundancy
removal operation, the blocked input-output relation of the system
is given by %� � � � � � 
 � � 4:5 	 
 � � � �	- � 
 � � ) � � ��� (2.2)

We impose the perfect reconstruction (PR) condition, i.e., in
the absence of noise/interference, %� � � � �;� � � � for all � . In other
words, � 
 � � 4<5 	 
 ����� (2.3)

and the DMT system has no ISI. To obtain a more useful char-
acterization of PR, consider the singular value decomposition of4:5 4:5��>=@? ACB ?DFEHG �? �>= 
 B ? G �? (2.4)

where = ? and G ? are respectively +I�J+ and �K� � unitary
matrices and

B ? is a �L� � real, positive definite diagonal matrix.
Then, because of (2.3), given 	 
 , the class of all � 
 � � enforcing
PR is completely characterized by

�

 � 	 � �
 � (2.5)

and � � � G ? B � �?NM � � OQP =H�? � (2.6)

where O is any arbitrary �R� � matrix. In the sequel it will be
useful to partition =S? as =@? �*� = 
 = � ! , where = 
 is +3� � and= � is +T� � .

Note, as G ? , =@? and
B ? are supplied by the channel, the only

quantities that need to be found to determine the transceiver com-
pletely are 	�
 and O .

2.2. Problem formulation

As mentioned earlier the � subchannels are distributed among the� users with the � -th user allocated ��� subchannels. Thus consider
disjoint subsets U��CVXW D �&������� �Y0 �[Z with \ U���\ � � �C] � , andU �6^_Ua` �Qb�� �3c�Ld . Subchannel assignment to the � -th user
constitutes determining U�� . We assume that the d -th subchannel of
the � -th user is assigned e `�f � bits per symbol. To meet the bit rate
specification for the � -th user one requires that

�+�g`&hjijk e `�f ��� � �l� (2.7)

Let the input power in the d -th subchannel of the � -th user bem no�prq k . Assume that m nsrp"q k is the noise power in this subchannel.
Under high SNR most modulation schemes, [9], require that to
achieve a given SER the required SNR is proportional to tvu prq k .
More precisely, m no prq k ��w �vt u prq k m ns prq k � (2.8)

where the constant w � depends on the desired SER, � � , for the� -th user. For example, for QAM, w � � �x � y � � �[z k{ �"! n . Under
this framework, the transmitted power for the biorthogonal DMT
system is given by

|@} � ~g ��� � g`&hjijk m no�prq k � 	 �
 	�
�! `r` (2.9)

� ~g ��� � g`&hji k w �jt u prq k m ns p"q k � 	��
 	 
 ! `r`�� (2.10)

Define ��� denoting the known autocorrelation matrix of the
noise vector ) � ��� , and

� s � � 
 ��� ���
 and ��� � � � � � ���� � (2.11)

Then m ns p"q k are the diagonal elements of � s , the autocorrelation
matrix of the output noise vector � � � � . Thus, because of (2.5),
(2.10) can be rewritten as

|S} � � 
 � � ~g ��� � g`[h�i k w � t u p"q k � � � �
 � � �
 ! `r` � �

&� � � �
 ! `r` � (2.12)

Thus the optimization problem becomes: Given � � , � � , ��� ,� � , minimize (2.12) subject to (2.7) by selecting e `�f � (bit loading),
selection of U�� (subchannel assignment), � 
 (transformation se-
lection) and because of (2.6), O (redundancy removal selection).

We show that there is a conceptual separation between the
three selections, i.e. the optimizing O is determined exclusively by� � , provided by the knowledge of the interference and equalizer
characteristics; � 
 is determined entirely by O and the channel
characteristics; U�� are determined entirely by � s , in turn provided
by � � and � 
 , and the bit allocations are determined once the
above quantities are found. Further as noted in the introduction,
we will show that without loss of generality, the optimizing �

 , 	�

are unitary.

3. OPTIMUM SELECTIONS

In this section we consider the selection of the various variables.
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3.1. Optimum Bit Loading

From the Arithmetic Mean-Geometric Mean (AM-GM) inequality
that states that the Arithmetic Mean, exceeds the Geometric mean,
with equality if all samples are equal, we have that for a given
choice of U�� and � 
 , under (2.7),

|@}�� |S}���� # � ~g ��� � w �
� t��
	 k��`&hji k � � � �
 � �	�
 ! `r` � � 
&� � ���
 ! `"`�
 ����� k

(3.13)
with equality iff for all � and ��� dt u prq k � � � �
 � � �
 ! `r` � � 
&� � � �
 ! `"` � t u�� q k � � � �
 � �	�
 !���� � �

&� � � �
 !���� �

(3.14)
This is in turn equivalent to the optimum bit loading rule:

e `�f � � + � �
� � 0������ n A m ns prq k � 	 �
 	 
 ! `r`

��� `&hjijk m nsrprq k � 	 �
 	�
�! `"` � ����� k E � (3.15)

Note that
| }���� # is much more complicated than its specializa-

tions, � � � , studied in [5] and, ��� �! for all � , studied in [6].
Thus, under optimum bit loading the remaining variables must be
selected to minimize

| }���� # . Observe, that while the choice of
these other variables impacts the selection of e `�f � , | }���� # itself is
independent of e `�f � . This underscores the fact that the remaining
variables can be selected regardless of the precise values of e `�f �
obtained through (3.15).

3.2. Selection of �

 , U � and O
Assume for the moment that O and hence � � has been selected and
that the resulting positive definite Hermitian �H� has the SVD:� � �>= B n = � (3.16)

with
B

real, diagonal and = unitary. The goal is to select �

 andU � to minimize
| }���� # .

For convenience we first work with the minimization of" � � 
 � � ���	�
g � � 
$# � � � 
 ��� � �
 ! ��� � � � �
 � � �
 ! �%� (3.17)

given positive # � . Note
" � � 
 � has the form of

| }
.

It is noteworthy that in all the papers [5]-[8], the � 
 � | = � ,
with

|
a permutation matrix miminimizes

|�}���� # . If �

 is re-
stricted to be unitary, then [12] shows that this choice of � 
 also
minimizes (3.17). Consider, however, the example where # � � � ,� �>t and � � � diag W'&�� ��Z . Then observe that

" � � � � � D but
with (

� �) t A � �� 0 � E A �+* ) , DD � E" � ( � �.- . Thus in general �

 � = � does not minimize (3.17).
However, we will show in the sequel that it does minimize

| }���� # .
The following result shows that the search space of � 
 can be

restricted to a particular form.

Lemma 3.1 For some unitary G , (3.17) is minimized by

� 
 � G B �	��� n = � (3.18)

and (3.17) becomes" � � 
 � � �'� �
g � � 
 # � M G B G � P n��� (3.19)

Denote / � �>w � t �0	 k ��� k and 1 ` � M G B G � P `"` . Then under
optimum bit loading it suffices to restrict the search of � 
 to (3.18)
and to seek to minimize under unitary G :|32} � ~g ��� � / � �`[h�i54k 1 n �6� k� (3.20)

with U 2� defining the optimal arrangement of the sequence of 1 � .
Before proceeding, we need a few results from the theory of

majorization, [4].

Definition 3.1 Consider two sequences � � W&�7�"Z �� � � and 8 �W+8 � Z �� � � with � � � � ��9 � and 8 � � 8 �:9 � . Then we say that 8
majorizes � , denoted as �<;=8 , if > �� � � � �@? > �� � � 8 � holds
for � ? � ? � , with equality at � ��� . We say that 8 weakly
supermajorizes � , denoted �A;CBD8 , if > �� � ` � � � > �� � ` 8 � � � ?d ? � .

Fact 1 If E is an �/� � Hermitian matrix with diagonal elementsF �>W F �rZ �� � � and eigenvalues G �>W�GH�rZ �� � � , then
F ;IG .

Definition 3.2 A real valued function J ��� � �KJ ��� � �������&� � � � de-
fined on a set L V � � is said to be Schur concave on L if�.;D8 on LNMOJ � � � � J �P8 � . J is strictly Schur concave onL if strict inequality J � � � ]IJ �P8 � holds when � is not a permuta-
tion of 8 . Further if �Q; B 8 then also J � � � ]RJ �P8 � .

We will now state a theorem that results in a test for strict
Schur concavity. We denote JTS �VU ��� � �XW�Y S�Z UW Z k .

Lemma 3.2 Let J ��� � be a scalar real valued function defined and
continuous on [��3W ��� � ��������� � � �]\
� � � �&��� � � � Z , and twice
differentiable on the interior of [ . Then J ��� � is Schur concave on[ if J�S �VU ����� is increasing in � .

The following Lemma provides an important property of U 2�
the optimum arrangement of the subchannels.

Lemma 3.3 Consider for integers ^ �`_ � t ,a � � #3b �	����� 
dc � � n � b - �e/gf
� �� h � 
 e h � n � f

with # �`/ � c � ��e ` ] D
, c � � c ��9 � and eV� � eV��9 � . Suppose for

some � �,d c �@] e ` and i ai c � ]ji ai e�` � (3.21)

Then k�� � # � b � ���� 
 f �ml� � c ��� e�` � ��� b - �e/ � f �	�h � 
 f h l� ` e h � c � � ��� fon a .
Further i a * i c �p? i a * i c ��9 � and i a * i e �p? i a * i e ��9 � .
Thus from Lemma 3.3, any optimum arrangement for (3.20) re-

quires that for all 1�� ].1 h , W � 4qW'r k n W � 4qW'r�s . Under this condition,| 2}
is Schur concave. Thus from Fact 1, as W M G B G � P ��� Z �'� �� � 
 ;W�G 
 �����&���6G �'� � Z , the choice of V as a permutation matrix that en-

forces an optimum arrangement of subchannels, minimizes (3.20).
Thus to within a permutation matrix

|
, under optimum bit al-

location, one can choose as an optimizing �

 � | B.� ��� n = � .
Now note that for any diagonal nonsingular matrix t ,

" � � 
 � �" �ut � 
 � , and that for some diagonal matrix vB ,

�

 � | B �	��� n =H� �wvB � ��� n | =H� �
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Thus as in [5]- [8], the minimizing �

 � | = � with
|

enforcing
the optimum arrangement. Under these conditions� � � �
 � � �
 ! `r` � �

&� � � �
 ! `r`
and indeed m nsrprq k are the eigenvalues of � � .

Thus, regardless of O the best � 
 is a Karhunen Loeve Trans-
form of ��� , and the m nsrp"q k equal the eigenvalues of ��� . From the
comment on supermajorization made at the end of Definition 3.2,
it follows that the optimizing O must be such that the set of result-
ing eigenvalues of � � weakly supermajorize all possible sets of
attainable eigenvalues. The optimizing O can then be shown to be
given by, [6], O �*0�=H�
 � � = ��� =H�� � � = ��� � � � (3.22)

4. SIMULATION RESULTS

In this section, we compare the transmitting power of the DFT
based DMT under no bit allocation and optimum bit allocation
with an optimum unitary transceiver. We assume the equalized
channel to be ����� � � �S- D � � � �	� , and a noise source ( � � � whose
power spectral density is shown in fig. 2. We assume the DMT sys-
tem supports two user services. The �P��� d � on the x-axis of the plot
indicates that user 1 and 2 were respectively allocated ��� d num-
ber of channels. The plot shows that there is a 10 dB saving in
transmit power with our design over the DFT based DMT under
optimum bit allocation, and a 14 dB improvement over the con-
ventional DMT with no optimum bit allocation.
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Fig. 2. Comparison of transmit power levels.

5. CONCLUSIONS

In this paper, an optimum bit allocation strategy and design of
a general biorthogonal DMT multicarrier transceiver system em-
ploying zero padding redundancy were presented, for minimizing

the transmit power when different users with varied QoS require-
ments are supported and are assigned potentially different number
of subchannels. We showed that no gains in transmit power can be
obtained by considering biorthogonal transceivers over orthogonal
transceivers. These results also show that the optimum transceiver
depends only on the channel and interference conditions and not
on the QoS requirements. Indeed to within a permutation of sub-
channels, the optimum transceiver obtained here is identical to that
obtained in [5]-[8]. Equally should the channel/interference re-
main invariant after the initial connection is established, then only
bit loading and subchannel selection need be updated in response
to changing traffic needs.
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