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ABSTRACT 
 
A method for using the discrete cosine transform (DCT) 
as an alternative to the discrete Fourier transform (DFT) 
for orthogonal frequency division multiplexing (OFDM) 
wireless transmission methods is presented.   These 
transforms satisfy the cyclic convolution properties of the 
DFT when used with a symmetric extension.  Analysis of 
intersymbol and intercarrier interference in OFDM 
systems reveals that under certain channel conditions, 
throughput is enhanced when using the DCT rather than 
the DFT. 

 

1. INTRODUCTION 
 

Orthogonal frequency division multiplexing (OFDM) 
systems are attractive for wireless communications due to 
several different reasons, including the inherent frequency 
diversity due to multicarrier modulation.  However, 
channel equalization in an OFDM system is a 
computationally expensive task, particularly for high-
bandwidth OFDM systems where processing time at the 
receiver may be limited.   

The means of doing away with the need for 
equalization in an OFDM system is based on the use of a 
guard interval and a cyclic prefix (which will be described 
later).  The guard interval describes a transmission period 
between OFDM symbols.  If the guard interval is larger 
than the maximum delay spread of the channel, then 
intersymbol interference (ISI) does not become 
problematic.  However, in frequency selective channels, 
the problem of intercarrier interference (ICI) is not simply 
solved by the use of a guard interval. 

The basic OFDM transmission system is given in 
Figure 1.  With reference to this figure, 

( ) ( ) ( ){ }1,,1,0 −Naaa iii K comprises the input data vector for 
OFDM symbol i, ( ) ( ) ( ){ }1,,1,0 −Nxxx iii K  the actual OFDM 
symbol to be transmitted, x(k) the information transmitted 
after addition of the guard interval, r(k) the received data, 

( ) ( ) ( ){ }1,,1,0 −Nrrr iii K  the received vector after elimination of 

the guard interval, and ( ) ( ) ( ){ }1,,1,0 −NRRR iii K  the 
demodulated information vector. 
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Figure 1: OFDM Transmission 

Since OFDM systems normally use the discrete 
Fourier transform (DFT) for multicarrier modulation of 
the data to be transmitted, the user information after 
applying the DFT transformation follows the cyclic shift 
properties of the DFT matrix (namely the multiplication of 
its transform coefficients by a complex exponential whose 
argument is linearly related to the temporal shift).   By 
applying a cyclic prefix, merely involves pre-pending 
some number of the ending data vector entries of 

( ) ( ) ( ){ }1,,1,0 −Nxxx iii K  to the beginning of the OFDM 
symbol to be transmitted, then the interference per 
subcarrier will resemble a flat fading channel, as long as 
the maximum delay spread of the channel is less than the 
length of the cyclic prefix.   

Cyclic shift properties are not unique to the DFT.  In 
fact, cyclic shift properties were extended to a wide 
variety of sinusoidal transforms in Martucci’s work [1], 
where the author showed how cyclic shift properties can 
be derived for the discrete cosine transform (DCT) 
through the use of symmetric extension.   Symmetric 
extension involves the replicating of a sequence such that 
the resultant sequence is either symmetric or asymmetric.  
The consequence of such an extension is the reduction in 
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throughput by a factor of at least one-half when compared 
to the DFT matrix.  Therefore, these types of transforms 
(when used with a cyclic prefix) should be considered as 
an alternative to the DFT only for wireless channel 
profiles where a potential gain in overall throughput 
(taking into account the throughput-reducing effects of the 
symmetric extension) justifies their use. 
 

2. CYCLIC SHIFT PROPERTIES OF THE DCT 
 
The DCT does do not have a cyclic shift (and therefore 
cyclic convolution) property in and of itself.  However, 
cyclic shift properties arise when a symmetric extension is 
applied. We can see that a symmetric extension of the 
input vector to a DCT operation will result in half of the 
subcarriers being equivalent to zero.  This can be seen 
starting with the definition of the DCT: 
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In (1), the N-length input vector is x[l], the N-length 
output vector is C[m], and km is a scaling constant that is 
dependent on the subcarrier index m.  When the input 
vector is symmetric, i.e., 
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then the output DCT coefficients become 
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The sum in (3) becomes 0 when m is odd.  This is 
determined by breaking down the cosine terms: 
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This term can be further expanded: 
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If m is odd, then (5) becomes  
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The results of a cyclic shift therefore must be analyzed on 
a subcarrier-by-subcarrier basis.  Assuming a cyclic shift 
by an integer quantity r, the resultant DCT coefficients 
may be expressed as 
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With respect to (3) and (7), Cr[m] = C[m] when r = 0.  In 
(7), it can be seen that the DC-coefficient (m = 0) will 
always be the same regardless of cyclic shift.  For cyclic 
shifts greater than zero for even coefficients, the following 
applies: 
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(8) 

 
3. USE OF THE DCT IN AN OFDM SYSTEM 

 
Sinusoidal transforms in an OFDM system, the basic 

transmission can also be determined.  Clearly, the 
throughput of such a system (without considering mobile 
channel effects) is reduced by a factor of two with respect 
to the comparable DFT-based method of transmission, 
based on the inclusion of an extension.   The transmission 
system is depicted in Figure 2. 
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Figure 2: OFDM Transmission with Sinusoidal 
Transforms 

With respect to Figure 2, in the case of the IDCT the 
output of the N/2-point inverse transform operation 
(including a scaling by a factor of the square root of 2) is 
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The actual transmitted symbol (excluding the guard 
interval) is 
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An N-point DCT can be used to recover the original 
N/2 information symbols ai(n).  This can be seen when the 
transform is applied to the transmitted information 
symbols after elimination of the cyclic extension, the 
following results: 
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(11) 

Since the input sequence to the transform is symmetric, 
only the even coefficients are significant (i.e. when l is 
even).   Under these conditions, (11) becomes 
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(12) 

Since l is even, two cases in (12) are significant, when l = 
2n and when l = 2n + 1.   In the former case, the following 
occurs: 
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In the latter case, 
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Therefore the N-by-N DCT matrix is orthogonal to the 
N/2-by-N IDCT matrix representing the transmitter 
inverse transformation operation followed by the 
symmetric extension and therefore recovers the original 
transmitted symbol sequence ai(n). 
 

4. INTERSYMBOL AND INTERCARRIER 
INTERFERENCE 

 
In [2] and [3], different approaches to analysis of the 

performance of DFT-based OFDM systems is provided 
with respect to wireless channels which introduce 
intersymbol interference (ISI).   DFT-based OFDM 
systems are able to simply handle wireless channels 
whose delay spread is shorter than the guard interval, but 
suffer when channel conditions result in significant 
multipaths falling outside of the guard interval. 

While transforms such as the DCT result in a loss of 
throughput due to the symmetric extension when used in 
OFDM, these transforms may outperform the DFT in ISI 
channels.  The effects of ISI and intercarrier interference 
(ICI) resulting from wireless channels whose delay spread 
is greater than the cyclic prefix can be examined using the 
analysis of [3].  With respect to Figure 1, the output 
vector for the IDFT operation at OFDM symbol index i is 
(when the guard interval is G subcarriers) is 
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The first G elements of xi
g(k) –G < k < -1, form the cyclic 

prefix. For an equivalent IDCT operation (see Figure 2), 
the output vectors are 
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In the case of the DCT, the last G elements are used to 
form a cyclic extension so that it is length N + G.  
Neglecting any additive noise in the wireless channel, if 
the channel is of delay spread equivalent to M OFDM 
samples and has a static channel impulse response 
represented by the hm, then the received sequence may be 
expressed as 
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Assuming perfect synchronization at the receiver, the 
received sequence may be rearranged with respect to each 
OFDM symbol, i.e. 
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Assuming that the channel is an ISI-channel, i.e. M > G, 
the received sequence may be represented as 
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This received sequence of samples is then passed into 
either a DFT or DCT.  The desired signal at subcarrier l 
(weighted by Hi(l)) after transformation, the ICI term 
Ci(l), and ISI term Si(l) may be isolated: 

( ) ( ) ( ) ( ) ( )lSlClalHlR iiiii ++=  (20) 

The derivations of desired signal, ICI and ISI terms are 
not included here, but can be derived based on the 
definitions of the DCT and DFT 

The analysis proposed in [2] attempted to characterize 
throughput assuming a fixed modulation per subcarrier.  
This kind of modulation does not maximize throughput, 
and the analysis presented in this section demonstrates the 
fluctuations in SNR for each subcarrier as a result of ISI 
channels.  Therefore, it is desirable to find the modulation 

constellation that maximizes throughput on a per 
subcarrier basis [4].  The theoretical error bounds for a K-
point rectangular QAM constellation (i.e. K is a power of 
2) on a given subcarrier with SNR γ(l) is given as: 
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Assuming equivalency in (21), the number of bits per 
modulation constellation symbol may be assigned per 
subcarrier based on the following rule: 

( ) ( )( )( )[ ]RlPRlK KR
,1maxlog2 γ−=  (22) 

As a simple example of differences in throughput, the 
following channel was examined for N = 64 and G = 4: 

( ) ( ) Mmemh mp <≤= +− 0,1  (23) 
The throughput bound for the DCT-based method 

was 74.94 bits/symbol, while for the DFT-based method 
was 64.01 bits/symbol.   
 

5. CONCLUSIONS 
 
A method for OFDM transmission using the DCT and 
taking advantage of its cyclic convolutions properties was 
presented in this paper.  In order to ensure cyclic 
convolution is possible, a symmetric extension of the 
input sequence to the DCT is necessary.  However, in 
certain ISI channels, the DCT still provides throughput 
over the DFT.   
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