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ABSTRACT

Multicarrier signals often exhibit large peak to mean en-
velope power ratios (PMEPR) which can be problematic
in practice. In this paper, we study adjusting the sign of
each subcarrier in order to reduce the PMEPR of a multi-
carrier signal with 	 subcarriers. Considering that any ran-
domly chosen codeword has PMEPR of 
���
�	 with proba-
bility one and for large values of 	 [1], randomly choosing
signs should lead to the PMEPR of 
���
�	 in the probability
sense. Based on the derandomization algorithm suggested
in [2], we propose a deterministic and efficient algorithm
to design signs such that the PMEPR of the resulting code-
word is less than ��
���
�	 for any 	 where � is a constant in-
dependent of 	 . By using a symmetric � -ary constellation,
this algorithm in fact constructs a code with rate ����
���
���� ,
PMEPR of ��
���
�	 , and with simple encoding and decoding.
We then present simulation results for our algorithm.

1. INTRODUCTION

Multicarrier modulation is one of the promising techniques
for broadband communications due to its immunity to mul-
tipath fading and simplicity of the channel equalization. How-
ever, multicarrier signals suffer from high peak to mean en-
velope power ratio (PMEPR). For instance, for a signal with	 subcarriers, PMEPR can be as high as 	 in the worst case.

Several methods have been proposed to reduce PMEPR
including clipping, selective mapping, partial transmit se-
quence, coding, and using dummy carriers [3, 4, 5, 6]. The
first three methods do not give any guarantee on the worst
case PMEPR, but they improve the statistical properties of
PMEPR at the price of adding redundancy to the codewords.
On the other hand, coding methods can give a worst case
guarantee on PMEPR at the price of a big rate hit for the ex-
isting codes. For example, Golay codes have PMEPR of 2
with a rate approaching to zero as 	 increases. In [5], codes
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are constructed with PMEPR of ����
���
� �	�! , large minimum
distance, and rate approaching to zero as 	 becomes large.

On the other hand, it has been shown that any random
codeword chosen from a symmetric QAM or ��" -PSK con-
stellations, has PMEPR of 
���
�	 with probability one asymp-
totically [1]. This in fact states that random methods should
work well and give PMEPR of 
���
�	 with very high prob-
ability and there is no rate hit by reducing the PMEPR to
���
�	 , asymptotically. Recently, based on the elegant result
of Spencer [7], the existence of codes with even constant
PMEPR and high rates is also proved [8]. By choosing an
optimum sign for each subcarrier, we can in fact achieve
constant PMEPR for sufficiently large 	 .

In order to design the signs, we know that any randomly
chosen sign will achieve PMEPR of 
���
#	 in the probability
sense and for large 	 [1]. However, randomized algorithms
cannot give a guarantee on PMEPR. Therefore, we use the
derandomization algorithm as [2] to design the signs that
guarantee a PMEPR of ��
���
�	 for any 	 where � is a con-
stant independent of 	 . This algorithm in fact constructs a
code family with rate �$�%
���
 � � and PMEPR of ��
���
�	 by
using a symmetric constellation with � alphabets.

Clearly the rate of the above code for BPSK scheme is
zero, therefore, we consider using dummy carriers with op-
timum amplitude and phase to reduce the PMEPR for the
BPSK case [4]. Based on Nehari’s Theorem [9], we pro-
pose a computationally efficient method to find the values of
the dummy carriers to minimize the maximum of the mul-
ticarrier signal. Even though the method does not minimize
the ratio of the maximum to the average power, simulation
results suggest that it is an effective method for the BPSK
constellation.

2. DEFINITIONS

In this paper, we consider the normalized complex envelope
of a multicarrier signal with 	 subcarriers as

&(' ��)*!#+ ,- .
/10 �

.325476 .
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IV - 5400-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡



where � + �3� 0 8������ 8 � , ! is the complex modulating vec-
tor with entries from a given complex constellation � and
where ) is the time axis. The admissible modulating vec-
tors are called codewords and the ensemble of all possible
codewords constitute the code � . To quantify the variation
of the signal, we define the peak to mean envelope power
ratio (PMEPR) of each codeword � as,���
	�����
 ��� !#+ �������� 6 �  �� � &(' � )�! �  ����� � �  ! � (2)

Similarly,
���
	���� 


is defined as the maximum of (2) over
all codewords in � . By a symmetric constellation, we mean
that if there is a point " in the constellation, then �#" should
be also in the constellation. It is worth noting that if the�
.
’s are randomly chosen from � , then

���$� � �   + 	 �&%('
where

�)%(' + ��� � � . �   is the average energy of � .
As it is clear from (2), PMEPR can be as high as 	

in the worst case, however, the probability of encounter-
ing such a high PMEPR is very low. Furthermore, it has
been recently shown that for any given complex vector �
and for sufficiently large 	 , there exists an optimum sign,* . , for each subcarrier such that

���+	���� �,�.-�! +0/ � where��-;+ � * 0 � 0 8������58 * , � , ! and / � is a constant that only de-
pends on the constellation type [8]. This result motivates
the following problem:

Problem Statement: For any given complex vector � +� � 0 8������58 � , ! , design the sign vector * + � * 0 8������58 * , ! where* . 1 �32 � 8 � �  such that

��465- �������� 6 �  �� 77777 ,- . /10 * . � . 25476
. 77777 (3)

In Section 3, we propose an algorithm to design the sign
vector to guarantee the PMEPR of ��
���
 	 for any 	 where �
is a constant independent of 	 throughout the paper.

3. DESIGN OF SIGNS TO REDUCE PMEPR

As mentioned in the previous section, there exists a sign
vector that yields constant PMEPR for sufficiently large val-
ues of 	 . On the other hand, any random sign vector should
have PMEPR of 
���
�	 for large values of 	 with high prob-
ability, and therefore, random methods should work well in
the probability sense. In what follows, we propose a de-
terministic and efficient algorithm which basically deran-
domizes the search for the sign vector * and then we prove
that our algorithm achieves PMEPR of ��
���
�	 for any 	
(not asymptotically). We first use the following Lemma to
change the problem in (3) to minimizing a finite number of
linear forms.

Lemma 1. Let &98' ��)�! and &�:' ��)*! be the real and imaginary
parts of & ' ��)*! , respectively. Also assume ;=< � such that

; 	 is an interger and let )
.
+  �� .> , for ? + � 8������ 8 ; 	 . Then�����6 � & ' ��)�! �

: �@ �BA >DC��E; F �����0 � . � > , � & 8' ��) . ! �  2 �����0 � . � > , � & :' ��) . ! �  (4)

Proof: The lemma follows by using the result of [10]
to bound the maximum of a real multicarrier signal with 	
subcarriers to the maximum of its ; 	 uniform samples. G

Lemma 1 reformulates the problem in (3) and instead of
designing the vector * to minimize the maximum of

� & ' ��)�! �
over a continuous variable ) , we look for the optimum * . ’s
to minimize �E; 	 linear forms corresponding to &H8' ��) . ! and&9:' ��) . ! for ? + � 8������ 8 	 and defined as��465- �����0 �JI��  > , 77777 ,- . /10 * .LK I . 77777 8 (5)

where

K I . is defined as,K I . +NM �#O�P � . 2 476RQ .TS � :VU�: ; 	W � P � .32 476 Q . S ; 	 2 � :+U�: �E; 	 8 (6)

and ) I +  X� I> , .
In order to solve (5), we consider a more general set-

ting for our problem. Let’s consider the set of equiprobable
vectors * + � * 0 8������ 8 * , ! 8 * . 1 � � � 8 2 �  . Then, for any
codeword � , we define "ZYI as the event that the U ’th linear
form defined in (5) is greater than [ . Furthermore, assume [
is chosen such that \  > ,. /10 ��]^� ")Y.  is less than � , and there-
fore, there exists a vector * with the above property. We
would like to efficiently find the vector * , such that none of
the bad events " YI occur.

This problem has been considered in mathematics and
is usually referred to as the derandomization of random al-
gorithms [2]. In this approach, we assume that we can com-
pute the conditional probability

��]^� " YI � * 0 8������ * 4  , and we
find the * . ’s sequentially. At the _ ’th step, given * 0 8������ 8 * 4^` 0 ,
we choose * 4 1 ��2 � 8 � �  to minimize

 > ,- .
/10 �a]�� " Y. � * 0 8������ 8 * 4^` 0 8 * 4  � (7)

Due to the above recursive minimization, we have

 > ,- .
/10 �a]�� " Y. � * 0 8������ 8 * 4^` 0  :  > ,- .

/10 �a]�� " Y.  < � 8 (8)

and finally, we will end up with

 > ,- .
/10 �a]^� " Y. � * 0 8������ 8 * ,  < � � (9)
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Since there is no randomness in the events of (9) when all
the * . ’s are determined, each

�a]^� " Y. C * 0 8������58 * ,  is either
one or zero. Therefore, Eq. (9) implies that all of the prob-
abilities are zero, and consequently, the resulting vector *
guarantees that none of the events "�Y. will occur.

The difficulty here is now in the efficient computation of
the conditional probabilities. Instead of using the exact con-
ditional probability functions, we can use the upper bounds��]^� " Y. � * 0 8������ 8 * 4  :�� Y. � * 0 8������ 8 * 4 ! 8 (10)

if the upper bounds satisfy the following conditions:? ! \  > ,. /10 � Y. < �?R? ! � Y. � * 0 8������ 8 * 4 !�� ��465-����	��
 0
� ` 0�� � Y. � * 0 8������ 8 * 4^` 0 8 * 4 ! �
(11)

Obviously by the same reasoning used for the original algo-
rithm, we can use the upper bounds to find the vector * such
that none of the events " Y. occur. Fortunately, Chernoff’s
bound does the work for us,

� YI � * 0 8������58 * 4 !�+ �
2B` � Y @ �BA�� M�� 4

-
� /10 * � K I � � ,�

� / 4 
 0@ � A���� K I �
(12)

for any �=< 9 and � : U�: �E; 	 . It can be then verified that
Eq. (12) satisfies both conditions in (11). Now we return to
our problem and peresent the following algorithm.

Algorithm 1. For any codeword � + � � 0 8������58 � , ! , let

K I .
be as in (6), ; be as in Lemma 1, and

� " %�� + ����� � � . �  .
Then * 0 + � , and * 4 ’s are recursively determined as the
minus sign of

 > ,-I /10 A 465�� M ���
4^` 0-
� /10 * � K I � � AX465�������� K I 4 ! ,�

� / 4 
 0@ �BA�� � ��� K I �  �
for _;+ � 8������ 8 	 , where � � +��  	� �� "! > ,,$#&%('�) . G

The following Theorem gives the worst case guarantee
on the PMEPR of the codeword �.-#+ � * 0 � 0 8������ 8 * , � , ! .
Theorem 1. Let � + � � 0 8������58 � , ! be a given codeword
where

� � . � :+* � " %�� and
�)%(' + ��� � � . �   . Also, let � - +� * 0 � 0 8������ 8 * , � , ! where * . 1 ��2 � 8 � �  is determined ac-

cording to Algorithm 1. Then PMEPR of the resulting code-
word, � - , will be less than ! # %('�), ��-�.0/ �217 >03 #4'65 
���
87�; 	 where ; is
as in Lemma 1.

Proof: The proof relies on the derandomization method
introduced before and using Chernoff bound for evaluating
the conditional probability distribution. By properly choos-
ing the optimum � and setting [ + * �?	 � " %�� 
���
87�; 	 in
(12), it can be shown that both conditions in (11) will be
satisfied. Lemma 1 then completes the proof by relating
PMEPR to the maximum of �E; 	 linear forms. G

In order to get a better insight to the above result, we
define the rate of a � -ary code family � as,

9 + �	 
���
 � � � � (14)

where
� � � is the cardinality of the set � . In fact Theorem

1 implies that, by using the sign of each carrier to reduce
PMEPR, we can construct a code with rate � �%
���
���� and
PMEPR of ��
���
�	 for any 	 . The rate and PMEPR of this
code is much better than those of the previous codes pro-
posed in [5] whose PMEPR is of ��� 
���
  �	�! and their rate
is approaching to zero as 	 increases. It is also worth men-
tioning that finding optimum signs in the transmitted side
can be done very efficiently, and the decoding is very sim-
ple since the sign of each subcarrier is just used for PMEPR
reduction.

Since we cannot send information in the sign of sub-
carriers, the algorithm is not appropriate for the BPSK con-
stellation. Therefore in the following subsection, we use
the Nehari’s Theorem to propose a computationally efficient
method to reduce PMEPR for the BPSK case.

3.1. A Scheme for BPSK constellation

Using dummy carriers with optimum amplitude and phase
to reduce PMEPR has been proposed previously in [4]. Re-
cently the wellknown result of Nehari in functional analysis
has been used to find a bound on the maximum reduction
of the peak of a multicarrier signal by appending dummy
carriers at the end of the signal [11]. The solution to the
Nehari problem also suggests suboptimum values for phase
and amplitude of dummy carriers which is computationally
very efficient. The only problem with this approach is that
the Nehari result minimizes the maximum of the multicar-
rier signal, however, in the PMEPR problem we are inter-
ested in minimizing the ratio of the maximum to the average
power. In the mean time, these optimum values can still be
considered for PMEPR reduction as a suboptimal solution.
Here is the statement of the Nehari problem.

Problem Statement: Let �
.
’s be given, : �<;*! + \ ". /10 �

.
;
.

and =%�<;*!�+ \?>
.
/ " 
 0A@

.
;
.
, find the optimum values of @

.
’s

and the best B such that for all �
.
’s, we have� : ��; !��C=%�<;*! � > : B (15)

It is shown in [9] that the best B is the singular value of
the Hankel matrix generated by the vector �3� 0 8������ 8 � " ! and,
moreover, = ��; ! can be computed efficiently [11]. For our
problem, using an extra bandwidth of D , we simply trun-
cate the =%�<;*! to its first D coefficients, and we numeri-
cally compute the resulting PMEPR. The average power can
be also computed by taking the average of \ "

.
/10 � � . �  2\ " 
(E.

/ " 
 0 � @ . �  over all vectors �3� 0 8������58 � " ! . The details of
the computation of @

.
’s can be found in [11].
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4. SIMULATION RESULTS

In this section we present simulation results for different
constellations including BPSK, QPSK, and 16QAM and for	 + � ��� . Fig. 1 shows the complementary cumulative dis-
tribution function of PMEPR,

�a]��9���
	���� < K  , with and
without using the optimum signs. Clearly the distribution
function improves significantly and the resulting distribu-
tion after using signs is very abrupt. Considering (14), the
rate of such a code for QPSK and 16QAM is �!C�� and � C 7 ,
respectively.

Fig. 2 also compares the result of the sign algorithm
for QPSK with the performance of the algorithm in section
3.1 for BPSK constellation. In the simulations, we use 64
and 32 dummy carriers which correspond to �!C � and � C 7
rate coding. It also worth mentioning that the dummy car-
rier method requires different powers for different modulat-
ing vectors and also its performance deteriorates by using
QPSK or higher order constellations.
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Fig. 1. PMEPR distribution for 	 + �(��� befor and after
using optimum signs.

5. CONCLUSION

We propose a deterministic and efficient algorithm to de-
sign optimum signs for each subcarrier of a multicarrier
signal, modulated by any codeword, to reduce its PMEPR
to ��
���
 	 . In other words, considering a symmetric � -ary
constellation, we design a code with rate ��� 
���
�� � and
PMEPR of ��
���
 	 for any 	 with simple encoding and de-
coding. Numerical result shows that the use of signs makes
the distribution of PMEPR very abrupt and the algorithm
can significantly improve the PMEPR distribution for dif-
ferent constellation.
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