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ABSTRACT

OFDM communications require extreme linearity of High Power

Amplifiers(HPA) to avoid Inter-Carrier Interference (ICl) and sub-

sequent degradation of the BER and Quality of Service (QoS).

Amplitude (AM/AM) and Phase (AM/PM) amplifier non-linearities
can be compensated in a number of ways. Nevertheless, digi-

tal adaptive schemes based on least squares optimization criteria
need estimate the delay introduced by the analog chains in the
generation of the error signal. A sufficiently precise HPA input-

output time delay estimate (TDE) is necessary before attempting

pre-distortion of the amplifier itself. This paper introduces statis-

tical criteriafor thisinitial acquisition stage.

1. INTRODUCTION

Increased capacity requirements of wireless communication sys-
tems demand bandwidth efficient and multipath resistant modu-
lation schemes. OFDM has been the subject of wide interest in
this respect. Although many advantages can be reaped from mul-
ticarrier signals, they still prove to be very sensitive to non-linear
distortion. Its non-constant amplitude nature is critical in the ra-
dio frequency (RF) amplification stage. RF amplifiers introduce
atype of non-linear multiplicative distortion [1] dependent on the
modulus of the input baseband signal u.. (t) = |b. (t)| as,

by(t) = ba(t — A)G(ua(t — A)) )

with b, (t) the baseband signal at the HPA output and A the time
delay introduced by the baseband to RF up-conversion (U/C) chain.
This effect introduces spectral re-growth (very high spectral com-
ponents outside the OFDM signal passband) and in-band distor-
tion. The bit-error rate of the link is thus degraded. Pre-distortion
(PD) methods have been considered in the literature ([2],[3],[4]
and others) to invert the non-linear characteristic of the amplifier.
A depiction of an amplification chain can be observed infigure (1),
where the corresponding RF signals s.(¢) are expressed in terms
of their baseband equivalent signals as,

54(t) = Re{b. (t)e" <"} 2
with the subindex * denoting either z (input to the HPA) or y (out-

put from the HPA). The central carrier frequency is denoted with
fe (Hz). The phase term will be denoted as «v. (t) for either signal.
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Themultiplicativegainin (1) isexpressed in terms of modulus and
phase non-linearities as,

arg(

()] = Au) ©)
(w) = asz+®(u) 4)

with A(u) and ®(u) the AM/AM and AM/PM distortion curves,
respectively. The unknown time delay A constitutes a nuisance
parameter when digital baseband PD is intended to compensate
for the non-linear effects of the amplifier. In particular, the com-
pensation of the phase response ®(u) does require the estimation
of A, while complete information on A(u) can be gathered from
the probability density function of the input and output modulus
u, and u,. The approximation of the memory effect present in
the up-conversion (U/C) plus HPA plus down-conversion (D/C)
chain by a pure time delay is reasonable provided that the filters
response in U/C and D/C be sufficiently flat in the band of interest.
This assumption, which is technologically feasible, leads to a use-
ful simplification of the signa model. The objective of the TDE
algorithm herein described is the robust estimation of the analog
time delay A in (1) in the presence of the non-linear gain G(u).
Correct identification of the inverse multiplicative factor G~* (u)
for PD of theinput signal necessitates the estimation of this model
parameter. Thus, time alignment has been devised to operate in-
dependently from the adaptive PD algorithm. PD takes place then
as,

G
G

b.(t — A)G(u.(t — A)) (5)
bo(t — A)G ™ (uz(t — A)G(u. (t — A)) (6)

by (1)

such that b.(t) is the baseband output of the PD function and
G '(uz)G(u,) = 1 is the necessary condition to achieve PD
within the input dynamic range. Note that this TDE problem is
not governed by the presence of noise in the signal model, which
isinexistent (it takes placein the modulator). Difficultiesare rather
related with unknown distortion and the probability distribution of
the input signal. The estimation of A in the presence of unknown
AM/AM and AM/PM distortion is formulated in terms of an in-
variance equation as follows: note that equation (1) can be recast
into,

by(t + A) = ba (1) G (ua(t)) ™

Now, multiplication of this equality with b}, () yields,
by (t + A)b3 (1) = uz ()G (ua(t)) 8
So that the following invariance equation may be established,

Vuatyby(t + A)bo(t) =0 9)
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Fig. 1. baseband model of the RF non-linear chain: analog up-
converter (U/C) plus HPA plus analog down-converter (D/C). The
input/output delay is denoted with A.

for the derivation of robust TDE algorithms in the presence of
memoryless amplifier non-linearities. This equation states in fact
the functiona independence between the terms ¢(¢, A) = b, (¢t +
A)b;(t) and u. (t). Thisinvariance property has been derived as-
suming negligible bandlimitation and aliasing effects. In the fol-
lowing we will assume that processing is done in the discrete do-
main. Hence, t = nT, with f; = 1/T; a sufficiently high sam-
pling frequency and T the corresponding sampling period. For
reasons of convenience, thetime delay A can be recast into afixed
rough estimate (an integer number of samples) Aq plus a finer
fractional estimates:A = Ag + . Then, the search is performed
in e rather than in the wider range A and the invariance equation
becomes,

by ( + )03 (t — Ao) = w2 (t — Ao)G(us(t — Ao))
The modified cross-correlation can be re-expressed now as,

c(t,e) = by (t + )by (t — Ao)

2. TDEALGORITHM

TDE agorithms will be based on tests of the invariance princi-
ple. The method seeks the model that best fits ¢(¢, £) with the sole
dependence on u,. The N-sample long data record is defined as
Vectors,

up (N)]" (10)
(N, )" (12)

W = fue(1),ux(2)-
ez = [e(1,8),¢(2,8)-

where for convenience we have assumed 7, = 1. A regression
equation using a set of N, interpolation functions {hy(u),1 <
k < Ny} may be established on the coordinates defined by these
vectors: (uz|i, cz|;) with |; the corresponding i-th component.
Evauation of the parameter ¢ for which the regression error is
minimum establishes atest for invariance on u, (nT’) of the quan-
tity e(nT5, €). That is, influence of random sources other than u,
lead to model misfit and to alarge regression error. The error con-
sistent with this invariance property can be defined in scalar and
vector forms as,

L

e(i,§a) = c(i,&) =Y arhi(us (i) (12)
k=1

e(¢,a) = cz—H(uz)a (13)

in terms of the regression coefficients a. The regression error o2
is then evaluated as,

o2(,2) = e(,2)"e(E, a) (14)

so that minimization with respect to a yields,
Voo (8,a) = H" (uz)(ce — H(uy)a) (15)
with the optimum (classical least squares) solution agpt,

Aopt = (HH(um)H(uz))leH(uz)Cg (26)

Hence, the error evaluated at the optimum regression coefficients
02(€) = 02 (8, a0pt) IS,

oe(€) = et (I - H(uz)(HH(uz)H(uz))’lH(uz)H) cs
= cIPge: (17)
= |IPrc:l> (18)

in terms of the orthogonal projector P, which is independent of
the estimation variable €. Hence, this criterion searches for that £
such that the projection of cz is most contained in the null space
of Pi. || - ||3 denotes the Euclidean norm. The compressed cost

function must now be minimized in terms of €. We define,
c: = b} eb, =DI'b; (19)
with D, = diag(b.). Therefore,
02(8) = b,;"D,PH Db (20)

where theterm b§ can be obtained from the output of an interpo-
lator. Equation (20) can be used to perform a rough search in e.
A more precise estimate of £ can then be tracked using steepest
descent methods. The S-curve of the synchronizer is obtained as
the derivative of o2 (8),

V30l(8) = 2Re[b}"D.PiDI(Vebi)] (1)

— 2Re [bi’HDzPﬁngi] (22)

withthetermbS = Vzb: the output of the derivative interpolator.
For stochastic gradient updates, the TDE is modified in accordance
with the equation,

k1 = Ex — puVzoe (3) (23)

Let the impulse response of a derivative interpolator be denoted as
hl;(n;€). Then,

“+o0
S Ky by (n— k)

k=—o00

where the samples of the derivative interpolator depend on the in-
terpolation time. Perfect derivative interpolation (of a bandlim-
ited signal) requires an infinitely long impulse response. Hence, in
practice, approximate finite length derivative interpolation is used.
In this way, the synchronizer can operate continuously and with
independence of the pre-distorter.
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Fig. 2. fine timing estimation is achieved via derivative interpola-
tionin k' (n;¢) in a steepest descent algorithm. For simplicity we
assume afixed delay Ao onthe HPA baseband input to compensate
for the equivalent delay of the analog chain. The resulting delay
e = A — Ay will have much a smaller range. An initial rough
search for ¢ is performed substituting the derivative interpolator
h' (n; €) for adirect interpolator h(n; ) or viaoversampling.

3. INTERPOLATION FUNCTIONS

There exist several choices for the set of interpolation functions
{hi(u),1 < k < N,}. Either non-overlapping rectangular func-
tions covering the whole modulus interval are used, in which case
the computation of the projector P3; is straightforward,

hi(u) = 11 (“ ;kc’“>

or more precise linear interpolation (triangular) functions are cho-
sen. In this case, the evaluation of the projector is computation-
aly more involved as it requires inversion of asquare tri-diagonal
matrix. The eigenvalue spread of the matrix H™ (u,)H(u,) isdi-
rectly related to the probability density function of the modulus.
For rectangular interpolation functions, this is a diagonal matrix
such that,

HH(uz)H(ugD) = H(ugﬂ)HH(ugﬂ):DH(ugﬂ) (24)
= Ndiag[p1:p27"':pr] (25)

with p; = Prob [u; < ug|; < uit1]. A previous examination of
the data, can help determine the most suitable set of bin centroids
¢ = % (ui + ui+1) to guarantee that al entries of the diagonal
matrix H” (u, )H(u. ) be equal for the rectangular function case.
That is, each interval [u;, ui4+1] is activated with equi-probability
withp; = 1/N, and N, the number of bins of the activation range.
Then, the computation of the projector is amenable to direct im-
plementation,

N
Du(u) = I (26)
T Ny H
Pi = I-H(u)H(u.) @7)
Note that as the cost function is o2() = ||Piice||3, using

H = H(u,) for a more compact expression, we can establish
that,

02(8) = b;"D,PiDLb; (28)
D.P;DY = DIDE—%DJDHHHDg (29)

c—d, ¢ oty o—d/2 ¢ ot d2

Fig. 3. (left) triangular and (right) rectangular interpolation func-
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Fig. 4. 10 realizations of o2 over a 200-sample block. The nor-
malized signal bandwidth is B = 0.08. The number of modulus
bins of u, is N, = 4. The correct timedelay is A = 50. Observe
the large variance off the correct delay for small block size.

with HHY arank-defficient square matrix with components either
one or zero. A one entry in component (I, ') meaning that the I-
th and I’-th entries of u, belong to the same bin. Hence, each
component of matrix D, HHYDY' contains either a zero or the
product b, ()b (1'), if both samples b, (1) and b%(I') of b, arein
the same modulus bin. Hence, o2 (€) can be expressed as,

p * * N
COEMWHERMERIROD (310 = Rener)
’ (30)
with h(1,1") € {0, 1} the coefficient indicating whether b, (1) and
b (I') share the same modulus bin and 4, ; the Kronecker delta

4. SIMULATIONS

The simulations in figures (4) to (9) show the behaviour of the
cost function for several values of the block length N. More de-
tailed descriptions are provided in the caption of each particular
figure. Saleh’s model [1] has been used for the non-linear HPA.
The complexity in evaluating equation (30) for all candidate €’s,
is quadratic in the length of the sample block. Averaging of ¢2(¢)
over a number of short sample blocks provides important savings
in complexity without noticeable degradation in the final result.
Thus, the poor discrimination that can be observed in figure (4) for
some redlizations is averaged out in figure (5).

5. CONCLUSIONS

A TDE agorithm has been presented to aid in input/output signal
alignment of a non-linear amplification chain. PD algorithms re-
quire that thistime delay be compensated in the absence of knowl-
edge of the non-linear characteristic. A simple algorithm based on
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Fig. 5. average of the 10 redlizations shown in figure (4).Note
that the discrimination is noticeably improved. The width of the
zero lobe is inversely proportional to the bandwidth of the input
signa b,. A number of bins as low as 4 aready provides good
discrimination for the correct time delay.

Fig. 6. 10 realizations of o2 in the same context of figure (4) ob-
tained with a larger block size: 400. Observe the better discrimi-
nation for each particular realization.

derivative interpolation and selective modulus activation functions
has been shown to achieve this purpose. The amplifier charac-
teristic can be assumed time-invariant over large sample records.
Hence, the convergence rate of time delay estimation and pre-
distortion itself does not constitute acritical parameter for thistype
of application.
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Fig. 7. average of the 10 redizations shown in figure (6).Note
that the discrimination with respect to that obtained in (5) is sig-
nificantly better. Nevertheless, the behaviour observed in figure
(5) dready guarantees the estimation of the correct time delay to
within one sample resolution.

Fig. 8. 10 redlizations of o2 obtained for a block size of 1000
samples and anumber of bins N, = 12. For such ahigh number of
samples, averaging of o2 over different realizations is not already
necessary as discrimination is sufficiently precise.

Fig. 9. Sfunction obtained for a signal normalized bandwidth
B = 0.04, using 1000-sample blocks and 5-block averaging. The
number of binsis V, = 4.
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