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ABSTRACT

OFDM communications require extreme linearity of High Power
Amplifiers (HPA) to avoid Inter-Carrier Interference (ICI) and sub-
sequent degradation of the BER and Quality of Service (QoS).
Amplitude (AM/AM) and Phase (AM/PM) amplifier non-linearities
can be compensated in a number of ways. Nevertheless, digi-
tal adaptive schemes based on least squares optimization criteria
need estimate the delay introduced by the analog chains in the
generation of the error signal. A sufficiently precise HPA input-
output time delay estimate (TDE) is necessary before attempting
pre-distortion of the amplifier itself. This paper introduces statis-
tical criteria for this initial acquisition stage.

1. INTRODUCTION

Increased capacity requirements of wireless communication sys-
tems demand bandwidth efficient and multipath resistant modu-
lation schemes. OFDM has been the subject of wide interest in
this respect. Although many advantages can be reaped from mul-
ticarrier signals, they still prove to be very sensitive to non-linear
distortion. Its non-constant amplitude nature is critical in the ra-
dio frequency (RF) amplification stage. RF amplifiers introduce
a type of non-linear multiplicative distortion [1] dependent on the
modulus of the input baseband signal ux(t) = jbx(t)j as,

by(t) = bx(t��)G(ux(t��)) (1)

with by(t) the baseband signal at the HPA output and � the time
delay introduced by the baseband to RF up-conversion (U/C) chain.
This effect introduces spectral re-growth (very high spectral com-
ponents outside the OFDM signal passband) and in-band distor-
tion. The bit-error rate of the link is thus degraded. Pre-distortion
(PD) methods have been considered in the literature ([2],[3],[4]
and others) to invert the non-linear characteristic of the amplifier.
A depiction of an amplification chain can be observed in figure (1),
where the corresponding RF signals s�(t) are expressed in terms
of their baseband equivalent signals as,

s�(t) = Refb�(t)e
j2�fctg (2)

with the subindex � denoting either x (input to the HPA) or y (out-
put from the HPA). The central carrier frequency is denoted with
fc (Hz). The phase term will be denoted as ��(t) for either signal.
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The multiplicative gain in (1) is expressed in terms of modulus and
phase non-linearities as,

jG(u)j = A(u) (3)

arg(G(u)) = �x +�(u) (4)

with A(u) and �(u) the AM/AM and AM/PM distortion curves,
respectively. The unknown time delay � constitutes a nuisance
parameter when digital baseband PD is intended to compensate
for the non-linear effects of the amplifier. In particular, the com-
pensation of the phase response �(u) does require the estimation
of �, while complete information on A(u) can be gathered from
the probability density function of the input and output modulus
ux and uy . The approximation of the memory effect present in
the up-conversion (U/C) plus HPA plus down-conversion (D/C)
chain by a pure time delay is reasonable provided that the filters
response in U/C and D/C be sufficiently flat in the band of interest.
This assumption, which is technologically feasible, leads to a use-
ful simplification of the signal model. The objective of the TDE
algorithm herein described is the robust estimation of the analog
time delay � in (1) in the presence of the non-linear gain G(u).
Correct identification of the inverse multiplicative factor G�1(u)
for PD of the input signal necessitates the estimation of this model
parameter. Thus, time alignment has been devised to operate in-
dependently from the adaptive PD algorithm. PD takes place then
as,

by(t) = bz(t��)G(uz(t��)) (5)

= bx(t��)G�1(ux(t��))G(uz(t��)) (6)

such that bz(t) is the baseband output of the PD function and
G
�1(ux)G(uz) = 1 is the necessary condition to achieve PD

within the input dynamic range. Note that this TDE problem is
not governed by the presence of noise in the signal model, which
is inexistent (it takes place in the modulator). Difficulties are rather
related with unknown distortion and the probability distribution of
the input signal. The estimation of � in the presence of unknown
AM/AM and AM/PM distortion is formulated in terms of an in-
variance equation as follows: note that equation (1) can be recast
into,

by(t+�) = bx(t)G(ux(t)) (7)

Now, multiplication of this equality with b
�

x(t) yields,

by(t+�)b�x(t) = u
2
x(t)G(ux(t)) (8)

So that the following invariance equation may be established,

rux(t)by(t+�)b�x(t) = 0 (9)
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Fig. 1. baseband model of the RF non-linear chain: analog up-
converter (U/C) plus HPA plus analog down-converter (D/C). The
input/output delay is denoted with �.

for the derivation of robust TDE algorithms in the presence of
memoryless amplifier non-linearities. This equation states in fact
the functional independence between the terms c(t;�) = by(t +
�)b�x(t) and ux(t). This invariance property has been derived as-
suming negligible bandlimitation and aliasing effects. In the fol-
lowing we will assume that processing is done in the discrete do-
main. Hence, t = nTs with fs = 1=Ts a sufficiently high sam-
pling frequency and Ts the corresponding sampling period. For
reasons of convenience, the time delay � can be recast into a fixed
rough estimate (an integer number of samples) �0 plus a finer
fractional estimate ":� = �0 + ". Then, the search is performed
in " rather than in the wider range � and the invariance equation
becomes,

by(t+ ")b�x(t��0) = u
2
x(t��0)G(ux(t��0))

The modified cross-correlation can be re-expressed now as,

c(t; ") = by(t+ ")b�x(t��0)

2. TDE ALGORITHM

TDE algorithms will be based on tests of the invariance princi-
ple. The method seeks the model that best fits c(t; ") with the sole
dependence on ux. The N -sample long data record is defined as
vectors,

ux = [ux(1); ux(2) � � �ux(N)]T (10)

c
b" = [c(1; b"); c(2; b") � � � c(N; b")]T (11)

where for convenience we have assumed Ts = 1. A regression
equation using a set of Nb interpolation functions fhk(u); 1 �
k � Nbg may be established on the coordinates defined by these
vectors: (uxji; cb"ji) with ji the corresponding i-th component.
Evaluation of the parameter b" for which the regression error is
minimum establishes a test for invariance on ux(nTs) of the quan-
tity c(nTs; b"). That is, influence of random sources other than ux

lead to model misfit and to a large regression error. The error con-
sistent with this invariance property can be defined in scalar and
vector forms as,

e(i; b"; a) = c(i; b")� LX
k=1

akhk(ux(i)) (12)

e(b"; a) = c
b" �H(ux)a (13)

in terms of the regression coefficients a. The regression error �2e
is then evaluated as,

�
2
e (b"; a) = e(b"; a)He(b"; a) (14)

so that minimization with respect to a yields,

r
a
H�

2
e (b"; a) = H

H(ux)(cb" �H(ux)a) (15)

with the optimum (classical least squares) solution aopt,

aopt = (HH(ux)H(ux))
�1
H
H(ux)cb" (16)

Hence, the error evaluated at the optimum regression coefficients
�
2
e (b") = �

2
e (b"; aopt) is,

�
2
e (b") = c

H
b"

�
I�H(ux)(H

H(ux)H(ux))
�1
H(ux)

H
�
c
b"

= c
H
b" P

?

H
c
b" (17)

= kP?
H
c
b"k
2
2 (18)

in terms of the orthogonal projector P?
H

, which is independent of
the estimation variable b". Hence, this criterion searches for that b"
such that the projection of c

b" is most contained in the null space
of P?

H
. k � k22 denotes the Euclidean norm. The compressed cost

function must now be minimized in terms of b". We define,

c
b" = b

�

x � b
b"

y = D
H
xb

b"

y (19)

with Dx = diag(bx). Therefore,

�
2
e (b") = b

b";H
y DxP

?

H
D
H
xb

b"

y (20)

where the term b
b"

y can be obtained from the output of an interpo-
lator. Equation (20) can be used to perform a rough search in ".
A more precise estimate of " can then be tracked using steepest
descent methods. The S-curve of the synchronizer is obtained as
the derivative of �2e (b"),

r
b�
�
2
e (b") = 2Re

h
b
b";H
y DxP

?

H
D
H
x

�
r

b"b
b"

y

�i
(21)

= 2Re
h
b
b";H
y DxP

?

H
D
H
x
_
b
b"

y

i
(22)

with the term _
b
b"

y = r
b"b

b"

y the output of the derivative interpolator.
For stochastic gradient updates, the TDE is modified in accordance
with the equation,

b"k+1 = b"k � �r
b"�

2
e (b") (23)

Let the impulse response of a derivative interpolator be denoted as
h
0

d(n; b"). Then,

_
b

b�
y =

+1X
k=�1

h
0

d(n; b")by(n� k)

where the samples of the derivative interpolator depend on the in-
terpolation time. Perfect derivative interpolation (of a bandlim-
ited signal) requires an infinitely long impulse response. Hence, in
practice, approximate finite length derivative interpolation is used.
In this way, the synchronizer can operate continuously and with
independence of the pre-distorter.
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Fig. 2. fine timing estimation is achieved via derivative interpola-
tion in h

0(n; ") in a steepest descent algorithm. For simplicity we
assume a fixed delay �0 on the HPA baseband input to compensate
for the equivalent delay of the analog chain. The resulting delay
" = � � �0 will have much a smaller range. An initial rough
search for " is performed substituting the derivative interpolator
h
0(n; ") for a direct interpolator h(n; ") or via oversampling.

3. INTERPOLATION FUNCTIONS

There exist several choices for the set of interpolation functions
fhk(u); 1 � k � Nbg. Either non-overlapping rectangular func-
tions covering the whole modulus interval are used, in which case
the computation of the projector P?

H
is straightforward,

hk(u) = �

�
u� ck

dk

�

or more precise linear interpolation (triangular) functions are cho-
sen. In this case, the evaluation of the projector is computation-
ally more involved as it requires inversion of a square tri-diagonal
matrix. The eigenvalue spread of the matrix HH(ux)H(ux) is di-
rectly related to the probability density function of the modulus.
For rectangular interpolation functions, this is a diagonal matrix
such that,

H
H(ux)H(ux) = H(ux)H

H(ux) = DH(ux) (24)

= Ndiag [p1; p2; :::; pN
b
] (25)

with pi = Prob
�
ui � uxji � ui+1

�
. A previous examination of

the data, can help determine the most suitable set of bin centroids
ci = 1

2
(ui + ui+1) to guarantee that all entries of the diagonal

matrix HH(ux)H(ux) be equal for the rectangular function case.
That is, each interval [ui; ui+1] is activated with equi-probability
with pi = 1=Nb and Nb the number of bins of the activation range.
Then, the computation of the projector is amenable to direct im-
plementation,

DH(ux) =
N

Nb

I (26)

P
?

H
= I�

Nb

N
H(ux)H(ux)

H (27)

Note that as the cost function is �
2
e (b") = kP?

H
c
b"k
2
2, using

H = H(ux) for a more compact expression, we can establish
that,

�
2
e (b") = b

b";H
y DxP

?

H
D
H
xb

b"

y (28)

DxP
?

H
D
H
x = DxD

H
x �

Nb

N
DxHH

H
D
H
x (29)

Fig. 3. (left) triangular and (right) rectangular interpolation func-
tions
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Fig. 4. 10 realizations of �2
b"

over a 200-sample block. The nor-
malized signal bandwidth is B = 0:08. The number of modulus
bins of ux is Nb = 4. The correct time delay is � = 50. Observe
the large variance off the correct delay for small block size.

withHHH a rank-defficient square matrix with components either
one or zero. A one entry in component (l; l0) meaning that the l-
th and l

0-th entries of ux belong to the same bin. Hence, each
component of matrix DxHH

H
D
H
x contains either a zero or the

product bx(l)b�x(l
0), if both samples bx(l) and b

�

x(l
0) of bx are in

the same modulus bin. Hence, �2e (b") can be expressed as,

�
2
e (b") =X

l;l0

b
�

y(l+ ")by(l
0+ ")bx(l)b

�

x(l
0)

�
Æl;l0 �

Nb

N
h(l; l0)

�
(30)

with h(l; l0) 2 f0; 1g the coefficient indicating whether bx(l) and
b
�

x(l
0) share the same modulus bin and Æl;l0 the Kronecker delta.

4. SIMULATIONS

The simulations in figures (4) to (9) show the behaviour of the
cost function for several values of the block length N . More de-
tailed descriptions are provided in the caption of each particular
figure. Saleh’s model [1] has been used for the non-linear HPA.
The complexity in evaluating equation (30) for all candidate b"’s,
is quadratic in the length of the sample block. Averaging of �2e (b")
over a number of short sample blocks provides important savings
in complexity without noticeable degradation in the final result.
Thus, the poor discrimination that can be observed in figure (4) for
some realizations is averaged out in figure (5).

5. CONCLUSIONS

A TDE algorithm has been presented to aid in input/output signal
alignment of a non-linear amplification chain. PD algorithms re-
quire that this time delay be compensated in the absence of knowl-
edge of the non-linear characteristic. A simple algorithm based on
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Fig. 5. average of the 10 realizations shown in figure (4).Note
that the discrimination is noticeably improved. The width of the
zero lobe is inversely proportional to the bandwidth of the input
signal bx. A number of bins as low as 4 already provides good
discrimination for the correct time delay.
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Fig. 6. 10 realizations of �2
b"

in the same context of figure (4) ob-
tained with a larger block size: 400. Observe the better discrimi-
nation for each particular realization.

derivative interpolation and selective modulus activation functions
has been shown to achieve this purpose. The amplifier charac-
teristic can be assumed time-invariant over large sample records.
Hence, the convergence rate of time delay estimation and pre-
distortion itself does not constitute a critical parameter for this type
of application.
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Fig. 7. average of the 10 realizations shown in figure (6).Note
that the discrimination with respect to that obtained in (5) is sig-
nificantly better. Nevertheless, the behaviour observed in figure
(5) already guarantees the estimation of the correct time delay to
within one sample resolution.
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Fig. 8. 10 realizations of �2
b"

obtained for a block size of 1000
samples and a number of bins Nb = 12. For such a high number of
samples, averaging of �2

b"
over different realizations is not already

necessary as discrimination is sufficiently precise.
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Fig. 9. S-function obtained for a signal normalized bandwidth
B = 0:04, using 1000-sample blocks and 5-block averaging. The
number of bins is Nb = 4.
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