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ABSTRACT 

 
Computation of the peak-to-average envelope power ratio 
(PAR) of an orthogonal frequency division multiplexing 
(OFDM) signal plays a major role in peak reduction 
methods. A procedure for computing the continuous-time 
PAR of an OFDM signal, with any PSK or QAM 
constellations, is developed here. It is shown that the 
derivative of the instantaneous envelope power function 
(EPF) can be transformed into a linear sum of Chebyshev 
polynomials of the first kind and the second kind. 
Consequently, the roots of the derivative of EPF can be 
obtained by solving a polynomial. The procedure may be 
useful for theoretical studies of PAR distributions and 
developing the peak reduction methods. 

 

1. INTRODUCTION 
 
OFDM has become a popular technique in various high-
speed wireless systems owing to the high spectrum 
efficiency and channel robustness [1]. The principal 
drawback of OFDM is that the PAR of an OFDM signal 
with N subcarriers may be up to N times that of a 
corresponding single carrier signal. A high PAR is 
undesirable in practice. In the digital part such as D/A and 
A/D convertors, it requires a large word length in order to 
keep the precision and quantization noise at an acceptable 
level. Consequently, they are used very inefficiently, as 
most of the signal amplitudes are only a fraction of the 
peak amplitude [1,2]. In the analog part, when the signal is 
applied to a non-linear device such as a RF power 
amplifier, it results in in-band distortion, which degrades 
the bit error rate performance, and out-of-band radiation, 
which reduces the spectral efficiency [1].  

Two leading proposed approaches to resolving peak 
power problem are to improve the performance of power 
amplifier and to generate signals with low PAR. The 
amplifier, which can handle the peak power problem, 
needs to be highly linear or operated with a large back off. 
Both approaches result in a severe power efficiency 
penalty and are expensive [3]. This may have a deleterious 
effect on battery lifetime in mobile applications. Although 

many creative methods for reducing PAR have been 
proposed, almost all of them are devoted to peak power 
reduction of the discrete time signal [3-5]. In fact, when 
considering the analog signal processing, reducing the 
peak factor of a continuous wave is required. The PAR of 
the sampled sequence should not be larger than that of the 
continuous waveform, and reducing the former does not 
necessarily imply a similar reduction of the latter [6], even 
some reduction methods perform worse on the latter 
compared to the former [4]. In many cases, the 
continuous-time PAR is approximated using the discrete-
time PAR [7], which is obtained by the Nyquist sampling 
or oversampling of the OFDM signal with IFFT, as 
obtaining the exact PAR value of continuous-time OFDM 
signal is difficult. Recently, a procedure using Chebyshev 
polynomials of the first kind solves the computation 
problem of the continuous-time PAR of an OFDM signal 
with BPSK subcarriers [8]. In this paper, we try to extend 
it to any PSK or QAM constellations. 

To compute the continuous-time PAR, the roots of the 
derivative of the envelope power function (EPF) are 
required. But finding the required roots appears very 
difficult because the derivative of EPF is a sum of 
sinusoidal functions. As such, it may require the use of a 
general root finding algorithm for nonlinear functions, 
which is not easy to be implemented. In this paper, using 
an inverse cosine-based transformation, the derivative of 
the EPF can be converted to a sum of Chebyshev 
polynomials of the first kind and the second kind, and the 
required roots are now trapped within the interval -1 to 1. 
So the original root finding problem is reduced to a root 
finding problem for a polynomial. Reliable algorithms for 
finding all roots of a polynomial are well known [9]. 
Consequently, using this approach, the absolute peak of 
the envelope power function can be evaluated exactly. 
 
 

2. MATHEMATICAL DEFINITIONS 
 
The complex envelope of the OFDM signal with N 
subcarriers is represented by 
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where 1−=j , nnn jbaS +=  is complex symbols from 
a given PSK or QAM constellation, f∆  is the subcarrier 
spacing and T is the symbol period. Since the cyclic prefix 
cannot introduce any new peaks in the symbol, we assume 
that Tf /1=∆ . Also, for simplicity, we normalize time by 
T and then substitute Tt /2πθ =  to get, 
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The level of amplitude fluctuation of OFDM signals is 
measured in terms of peak factors that indicate the ratio of 
the peak power to the average power of the signal 
envelope. The continuous-time PAR for a given N-tuple of 
complex symbols  ),,,( 110 −= NSSSS L

v
 is defined as 
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where Pav, a constant that depends on the signal 
constellation and N for an uncoded system, is the average 
envelope power of the signal. Most of PAR-reduction 
techniques are concerned with reducing this quantity of the 
transmitted signals to the level lower than certain specified 
threshold. 

 
 

3. COMPUTATION OF CONTINUOUS-TIME PAR 
 
To compute Eq.(3) exactly, the roots of d|s(θ)|2/dθ are 
needed. The instantaneous envelope power of the signal, 
i.e. |s(θ)|2, is a real-valued function and may be represented 
as 
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Let us define 
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At first, we consider the solution of P(θ)=0 in the 
interval of [0,π]. Let θ = cos-1(x), where –1 ≤ x ≤ 1. 
Substituting      it      in      the      Eq.(5)      and     noticing 

21 1)sin(cos xx −=− , we get 
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where 
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Tk(x) and Uk(x) are the kth-order Chebyshev 
polynomial of the first kind and the second kind [10], 
respectively. The explicit expressions of Tk(x) and Uk(x) 
for any nonnegative integer k are available, for example, 
T0(x)=1, T1(x)=x, T2(x)=2x2-1, U0(x)=1, U1(x)=2x, U2(x)= 
4x2-1 and so on. 

Let Q1(x)=0, we get 
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Squaring the two side of Eq.(7) and shifting the right 
term to the left, we will have 
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Obviously, the roots of Q1(x) must be the roots of 
Q(x). Now, we consider the solution of P(θ)=0 in the 
interval of [π,2π]. Let θ = 2π-cos-1(x), where –1 ≤ x ≤ 1. 
Substituting it in the Eq.(5) and using the trigonometric 
identical equation, we then get 
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Just as we can get Q(x) from Q1(x), we can get Q(x) 
from Q2(x). So, all the roots of Q2(x) are also the roots of 
Q(x).  

Since the square of a polynomial is also a polynomial, 
Q(x) is a polynomial of degree (2N-2), with (2N-2) roots, 
real or complex. Substituting the real roots of Q(x) that lie 
between –1 and +1 into Q1(x) and Q2(x) and testing 
whether the result is zero or not, we can get the real roots 
of Q1(x) and Q2(x). Let the real roots of Q1(x) be 
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It is clear that all the required roots of P(θ) are in this 
set. Therefore, according to the maximum value theory of 
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continuous function on an interval, the continuous-time 
PAR is obtained by 
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where },0{ π∪Λ=Θ , is the extremum point set of 
instantaneous envelope power function, |s(θ)|2. 

The following is an outline of the complete procedure. 
Step 1) Calculate the coefficients αk and βk for a given 

N-tuple ),,,( 110 −= NSSSS L
v

. 
Step 2) Obtain the coefficients of Q(x) in Eq.(8). 
Step 3) Solve for the roots of the polynomial Q(x). 
Step 4) Find out the real roots of Q1(x) and Q2(x) and 

then obtain the real roots set Λ  of P(θ). 
Step 5) Evaluate |s(θ)|2 on Θ and pick the maximum. 

 
 

4. CONCLUSIONS 
 
From Fig. 1, which shows the results using the above 
method for a 16-carrier 64-QAM OFDM signal, we can 
see that all the extrema of the instantaneous envelope 
power function can be found and the maximum value point 
does not just lie in an oversampling point. So, the exact 
PAR of a continuous-time OFDM signal can definitely be 
found out by using this method, but it may not necessarily 
be found out by using oversampling. 

Computation of the peak power plays a major role in 
peak reduction methods. Although Tellambura [8] has 
introduced a procedure for computing the continuous-time 
PAR of an OFDM signal, it is noneffective for other signal 
constellations except BPSK. In addition, Sharif et al. [7] 
have introduced an error bound for using discrete-time 
PAR to approximate the continuous-time PAR. But for the 

oversampling factor of four, which is usually considered 
accurate enough [4,7,8], the error bound theorem shows 
that the ratio of the continuous-time PAR to the discrete-
time PAR may reach 2.09, which is too large for practical 
application. In this paper, a more accurate computational 
method for the continuous-time PAR of an OFDM signal, 
with any PSK or QAM constellations, has been developed. 
It may be useful for theoretical studies of PAR 
distributions and developing the peak reduction methods. 
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Fig.1. The extrema on the set Θ and the oversampling (L=4) 
points of |s(θ)|2 for a 16-carrier 64-QAM OFDM signal. 

IV - 531

➡ ➠


