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ABSTRACT

Computation of the peak-to-average envelope power ratio
(PAR) of an orthogonal frequency division multiplexing
(OFDM) signal plays a major role in peak reduction
methods. A procedure for computing the continuous-time
PAR of an OFDM signal, with any PSK or QAM
constellations, is developed here. It is shown that the
derivative of the instantaneous envelope power function
(EPF) can be transformed into a linear sum of Chebyshev
polynomials of the first kind and the second kind.
Consequently, the roots of the derivative of EPF can be
obtained by solving a polynomial. The procedure may be
useful for theoretical studies of PAR distributions and
developing the peak reduction methods.

1. INTRODUCTION

OFDM has become a popular technique in various high-
speed wireless systems owing to the high spectrum
efficiency and channel robustness [1]. The principal
drawback of OFDM is that the PAR of an OFDM signal
with N subcarriers may be up to N times that of a
corresponding single carrier signal. A high PAR is
undesirable in practice. In the digital part such as D/A and
A/D convertors, it requires a large word length in order to
keep the precision and quantization noise at an acceptable
level. Consequently, they are used very inefficiently, as
most of the signal amplitudes are only a fraction of the
peak amplitude [1,2]. In the analog part, when the signal is
applied to a non-linear device such as a RF power
amplifier, it results in in-band distortion, which degrades
the bit error rate performance, and out-of-band radiation,
which reduces the spectral efficiency [1].

Two leading proposed approaches to resolving peak
power problem are to improve the performance of power
amplifier and to generate signals with low PAR. The
amplifier, which can handle the peak power problem,
needs to be highly linear or operated with a large back off.
Both approaches result in a severe power efficiency
penalty and are expensive [3]. This may have a deleterious
effect on battery lifetime in mobile applications. Although
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many creative methods for reducing PAR have been
proposed, almost all of them are devoted to peak power
reduction of the discrete time signal [3-5]. In fact, when
considering the analog signal processing, reducing the
peak factor of a continuous wave is required. The PAR of
the sampled sequence should not be larger than that of the
continuous waveform, and reducing the former does not
necessarily imply a similar reduction of the latter [6], even
some reduction methods perform worse on the latter
compared to the former [4]. In many cases, the
continuous-time PAR is approximated using the discrete-
time PAR [7], which is obtained by the Nyquist sampling
or oversampling of the OFDM signal with IFFT, as
obtaining the exact PAR value of continuous-time OFDM
signal is difficult. Recently, a procedure using Chebyshev
polynomials of the first kind solves the computation
problem of the continuous-time PAR of an OFDM signal
with BPSK subcarriers [8]. In this paper, we try to extend
it to any PSK or QAM constellations.

To compute the continuous-time PAR, the roots of the
derivative of the envelope power function (EPF) are
required. But finding the required roots appears very
difficult because the derivative of EPF is a sum of
sinusoidal functions. As such, it may require the use of a
general root finding algorithm for nonlinear functions,
which is not easy to be implemented. In this paper, using
an inverse cosine-based transformation, the derivative of
the EPF can be converted to a sum of Chebyshev
polynomials of the first kind and the second kind, and the
required roots are now trapped within the interval -1 to 1.
So the original root finding problem is reduced to a root
finding problem for a polynomial. Reliable algorithms for
finding all roots of a polynomial are well known [9].
Consequently, using this approach, the absolute peak of
the envelope power function can be evaluated exactly.

2. MATHEMATICAL DEFINITIONS

The complex envelope of the OFDM signal with N
subcarriers is represented by

N-1 )
>8P, 0<t<T, (1)

1
S(t) - '\/ﬁ n=0
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where j =+/-1, S, =a, + jb, is complex symbols from
a given PSK or QAM constellation, Af* is the subcarrier

spacing and 7 is the symbol period. Since the cyclic prefix
cannot introduce any new peaks in the symbol, we assume
that Af =1/T . Also, for simplicity, we normalize time by

T and then substitute 8 =2 /T to get,

N-1

SO =—=S5,e"  0<0<2z. (@)
\/ﬁ n=0

The level of amplitude fluctuation of OFDM signals is

measured in terms of peak factors that indicate the ratio of

the peak power to the average power of the signal

envelope. The continuous-time PAR for a given N-tuple of

complex symbols S =(S,,S,, -,

max | s(0) |*
PAR = 0027 , (3)
av

where P,, a constant that depends on the signal
constellation and N for an uncoded system, is the average
envelope power of the signal. Most of PAR-reduction
techniques are concerned with reducing this quantity of the
transmitted signals to the level lower than certain specified
threshold.

Sy_;) is defined as

3. COMPUTATION OF CONTINUOUSTIME PAR

To compute Eq.(3) exactly, the roots of d|s()]*/df are
needed. The instantaneous envelope power of the signal,
i.e. |s(9)]%, is a real-valued function and may be represented

as
N

1
) == |a2 +b?
[5(0)P= Ng(an ?)
2 &
S (ak cos(k@) + S, sin(k6)),0 < 6 <27, (4)
k=
where
N-1-k
o = Z( nn+k +b bn+k)s k=12,---,N -1,
n=0
N-1-k
IBk = Z(an+kbn _anbn+k)’ k = 132a”',N_1-
n=0
Let us define
2
P(0) = N d|s(0)]

deo

(kﬁk cos(k@) — ke, sin(k@)),0 < 0 < 27. (5)

Mz“

k=1
At first, we consider the solution of P(6)=0 in the
interval of [0,n]. Let & = cos™(x), where -1 < x < 1.
Substituting it in the Eq.5) and noticing

sin(cos ™' x) =4/1—x? , we get

0,(x) = P(cos ™' x)
N-1
= Z(kﬂka (x) - ka, N1-x*U, (x)),—l <x<1,(6)
k=1

where
T, (x) =cos(k cos™! X),

. ( -1 )
Uk(x)=s1n(k+l)cos X

sin(cos ! X)

Tyx) and Uyx) are the kth-order Chebyshev
polynomial of the first kind and the second kind [10],
respectively. The explicit expressions of Tj(x) and U(x)
for any nonnegative integer k are available, for example,
To(x)=1, Ty(x)=x, To(x)=2x>-1, Up(x)=1, U;(x)=2x, Us(x)=
4x*-1 and so on.

Let Q;(x)=0, we get

N-1 N-1
D kBT (x) = Vi-x2 D ko Uy (x), ~1<x<1.(7)
k=1 k=1

Squaring the two side of Eq.(7) and shifting the right
term to the left, we will have

2
O(x) = (Zkﬂkmmj -(-x )(Zkakvk 1<x>J

—1<x<1l. (8)

Obviously, the roots of Q;(x) must be the roots of
O(x). Now, we consider the solution of P(6)=0 in the
interval of [m,271]. Let 6 = 27-cos™ (x), where —1 < x < 1.
Substituting it in the Eq.(5) and using the trigonometric
identical equation, we then get

0,(x) = P2z —cos ™' x)
N-1
= Z(kﬂka(x) + ka1 —sz,H(x)), —1<x<1.(9)
k=1

Just as we can get O(x) from Q;(x), we can get O(x)
from Q,(x). So, all the roots of O,(x) are also the roots of
0x).

Since the square of a polynomial is also a polynomial,
O(x) is a polynomial of degree (2N-2), with (2N-2) roots,
real or complex. Substituting the real roots of Q(x) that lie
between —1 and +1 into Q;(x) and (O,(x) and testing
whether the result is zero or not, we can get the real roots
of QOi(x) and Q,(x). Let the real roots of Q;(x) be

M, xl x](é? where M; < 2N-2, and the real roots of

2

0Os(x) be x(z) x§2>, x};) , where M,< 2N-2. Define the set
A= {cos (xl(l)),o--,cos’l(x}(‘yl )
27 —cos”! (x1(2) ) 27 —cos ! (xj(éi )} (10)

It is clear that all the required roots of P(6) are in this
set. Therefore, according to the maximum value theory of
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Fig.1. The extrema on the set ® and the oversampling (L=4)
points of |s(8)[* for a 16-carrier 64-QAM OFDM signal.

continuous function on an interval, the continuous-time
PAR is obtained by
max | s(0) |
PAR =140 —
av

where ©@=AuU{0,7} , is the extremum point set of

an

instantaneous envelope power function, |s(6)[.

The following is an outline of the complete procedure.

Step 1) Calculate the coefficients a; and f; for a given
N-tuple S = (8,8, Sy_;) -

Step 2) Obtain the coefficients of O(x) in Eq.(8).

Step 3) Solve for the roots of the polynomial O(x).

Step 4) Find out the real roots of Q;(x) and QO,(x) and
then obtain the real roots set A of P(6).

Step 5) Evaluate |s()]* on © and pick the maximum.

4. CONCLUSIONS

From Fig. 1, which shows the results using the above
method for a 16-carrier 64-QAM OFDM signal, we can
see that all the extrema of the instantaneous envelope
power function can be found and the maximum value point
does not just lie in an oversampling point. So, the exact
PAR of a continuous-time OFDM signal can definitely be
found out by using this method, but it may not necessarily
be found out by using oversampling.

Computation of the peak power plays a major role in
peak reduction methods. Although Tellambura [8] has
introduced a procedure for computing the continuous-time
PAR of an OFDM signal, it is noneffective for other signal
constellations except BPSK. In addition, Sharif et al. [7]
have introduced an error bound for using discrete-time
PAR to approximate the continuous-time PAR. But for the

oversampling factor of four, which is usually considered
accurate enough [4,7,8], the error bound theorem shows
that the ratio of the continuous-time PAR to the discrete-
time PAR may reach 2.09, which is too large for practical
application. In this paper, a more accurate computational
method for the continuous-time PAR of an OFDM signal,
with any PSK or QAM constellations, has been developed.
It may be useful for theoretical studies of PAR
distributions and developing the peak reduction methods.
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