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ABSTRACT 

 
Turbo codes not only achieve near Shannon-capacity 

performance, but also have decoders with modest 
complexity, which is crucial for implementation. So far 
efficient architectures for decoding of turbo codes have 
been proposed that is suitable for sequential processing. In 
this paper a novel parallel processing architecture for very 
high-speed turbo decoder is presented. The performance 
of this decoder and the tradeoff between speed and 
efficiency are discussed. It is shown that some decoders 
can run faster by some orders of magnitude while 
maintaining almost the same processing load. A systolic 
implementation of this decoder is presented at the end1.  

 

1. INTRODUCTION 
 
Recently, some new classes of channel encoders have been 
introduced that achieve near Shannon-capacity rates. 
Turbo codes [4] and Low Density Parity Codes (LDPC) 
are the most important examples. The basic property of 
these codes is the capability of iterative decoding. The 
iterative algorithms can be viewed as a probability or 
“belief” propagation algorithm, which is based on message 
passing [1].  

Although iterative decoding has a parallel nature for 
LDPC, for turbo codes it is very attractive as a sequential 
processor because messages can be computed iteratively 
using previously computed messages. Although the 
message passing algorithm can be parallelized in theory, it 
is quite inefficient and impractical for implementation. In 
[2] a concurrent turbo decoder is studied. Although the 
concurrent decoder can run by some orders of magnitude 
faster than the sequential counterpart, the number of 
components used for processing is so large that makes it 
quite impractical. Moreover, the processing load has been 
increased dramatically, which translates to low efficiency. 
Another approach proposed in the literature is using 
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overlapping windows [3].  However, for a very high-speed 
decoder the extra processing load for overlapping bits 
causes inefficiency and irregularity. 

In this paper we will propose a method that make 
parallel processing feasible, while efficiency of the 
decoder is maintained. Regular structures such as systolic 
arrays are proposed for implementation of such a decoder. 
In section 2 we will describe the decoding algorithm for 
turbo decoders. In section 3 the proposed method is 
described and the tradeoff between speed and efficiency is 
discussed. The performance of the proposed decoder is 
discussed in section 4. Finally, in section 5 a systolic array 
implementation of the decoder is presented.  
 

2. TURBO CODE 
 

Turbo code was introduced in [4]. Berrou, et al. 
presented the Parallel Concatenated Convolutional Code, 
(PCCC) and the iterative decoding algorithm. Later Serial 
Concatenated Convolutional Codes (SCCC) was 
presented. PCCC has been remained the most popular type 
of turbo code, which has been adopted in UMTS standards 
as channel coding scheme. In the following we briefly 
describe the PCCC encoder and its iterative decoder. 

A PCCC is constructed from 2 or more parallel 
convolutional encoders that are working on the input 
sequence and the permuted version of it in parallel. Each 
convolutional code is called a constituent code.  Figure 1 
depicts the structure of a PCCC with two constituent 
codes. The block denoted by I is the interleaver, which 
permutes the input sequence with a predefined random 
pattern. 
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Figure 1: The structure of a PCCC encoder 

 
The iterative decoding algorithm is based on 

Maximum-A-Posteriori (MAP) decision of the input 
sequence. However, since it is difficult to find the MAP 

IV - 5210-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡



solution by considering all the observations at the same 
time, the MAP decoding is performed on the observations 
of each constituent code separately. Since two codes have 
been produced from one input sequence, the A-Posteriori-
Probability (APP) of data bits coming from the first 
decoder can be used by the second decoder and vice versa. 
Therefore the decoding process is carried out iteratively. 
In [5] a general unit, called SISO, is introduced that 
generates the APPs in the most general case.  

Since the second constituent code is using the permuted 
version of the input sequence, therefore, extrinsic 
information also should be permuted before being used by 
the second decoder. Likewise, the extrinsic information of 
the second decoder is to be permuted in reverse order for 
the next iteration of the first decoder. Figure 2 shows the 
iterative decoding bock diagram.  
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Figure 2: The iterative decoding block diagram 

 
An efficient algorithm for MAP decoding of a 

convolutional code is known as BCJR algorithm [5]. In 
this algorithm A-Posteriori-Probabilities for a time-
invariant trellis encoder can be computed with a 
complexity that depends linearly on the number of states 
and also on the size of input sequence. It should be noted 
that SISO is a block which implements the BCJR 
algorithm. Here we briefly describe the structure of this 
algorithm. For more details see [5-6].  The main three 
steps of this algorithm are as follow: 
Forward recursion: In this step we compute the likelihood 
of all the states in the trellis given the past observations. 
Starting from a known state, we will go ahead along the 
trellis and compute the likelihood of all the states in one 
trellis section from the likelihood of the states in the 
previous trellis section. This iterative scheme is continued 
until likelihoods of all the states, which are called alpha 
variables, are computed in the forward direction.  
Backward recursion: This step is quite similar to the 
forward recursion. Starting from a known state at the end 
of the block, we compute the likelihood of previous states 
in one trellis section. Therefore we compute the likelihood 
of all the states in the trellis given the future observations, 
which are called beta variables. This iterative processing is 
continued until the beginning of the trellis.  
Output computation: Once the forward and backward 
likelihoods of the states are computed, the extrinsic 
information can be computed from them. The extrinsic 
information can be viewed as the marginal probability of 
each bit given the observations.  

3. PARALLE TURBO DECODER 
 

In this section we present a novel method for iteratively 
decoding the turbo codes. Although this method is 
applicable for every turbo code, we will explain it in the 
case of a block PCCC code. To obtain block codes, 
termination or tail-biting methods is used.  
The algorithm is as following. First of all, the received 
data for each constituent codes are divided into several 
contiguous non-overlapping sub-blocks; so called 
windows. Then, each window is decoded separately in 
parallel using the BCJR algorithm. In other words, each 
window is a vector decoder. However, the initial values 
for alpha and beta variables come from previous iteration 
of adjacent windows. Since all the windows are being 
processed at the same time, in the next iteration the initial 
values are ready to load. Therefore, there is no extra 
processing needed for the initialization of state 
probabilities at each iteration. The size of windows is a 
very important parameter that will be discussed later. 
Figure 3 shows the structure of the decoder.  
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Figure 3: Parallel turbo decoder structure 

 
The proposed structure stems from the message-passing 

algorithm itself. We have only introduced some new 
messages that are passed between sub-blocks at each 
iteration. There are two types of messages that are 
communicated between sub-blocks. First, the messages 
associated with the decoded data are the same as extrinsic 
information, which are communicated between two 
constituent codes in the traditional approach. Second, the 
messages that are related to the states in window 
boundaries, we call them state messages. These messages 
are the same as alpha and beta variables that are computed 
in forward and backward recursion of the BCJR algorithm. 
In the first iteration there is no prior knowledge available 
about the state probabilities. Therefore the messages are 
set to ½ for unknown states. In each iteration, these 
messages are updated and passed across the border of 
adjacent windows.  

The optimum way to process a window is the sequential 
processing using forward and backward recursions; i.e. 
BCJR algorithm. Therefore each window processor is a 
SISO. 
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The processing of the windows in two constituent codes 
can be run in parallel. However, since this scheme can be 
exploited in the sequential decoder as well, this is not 
considered here for a fair comparison. In other words, that 
parallelization introduces another speed gain factor which 
can be exploited. Therefore the architecture of the decoder 
of the choice only needs half of the processors as it is 
shown in figure 4. 
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Figure 4: Parallel turbo decoder with shared processors for 
two constituent codes 

 
Table I shows the parameters of a decoder. For window 

size at two extremes, the approach is reduces to known 
methods. If window size is B, the number of windows is 1, 
it turns out to the sequential approach. If the window size 
is 1, the architecture reduces to what was proposed in [2]. 
It should be noted that the memory requirement for all 
cases is the same. 

 
Parameter Definition 
W Window size 
N Number of windows 
B = W x N Block size 
I Number of iterations 
TW  Window Processing Time 
T = 2Ix TW Processing Time (Latency) 
P = k 2I B  Processing Load 

Table I: the decoder parameters 
 
Two characteristic factors should be studied as 

performance figures. One is the speed gain and the other is 
the efficiency. These two are defined as following: 

Speed gain  = T0/T =  N x I0/I  
Efficiency = P0/P = I0/I 

Where T0 and P0 are the processing time and processing 
load for the sequential approach, i.e. W=B case.  
This is very interesting result. The speed gain and the 
efficiency are proportional to the iteration ratio. If the 
number of iterations required for the parallel case is the 
same as the serial case, we enjoy a speed gain of N 
without losing the efficiency, which is ideal 
parallelization. Therefore we should look at the number of 
iterations required for a certain performance to further 
quantify the characteristic factors. In next section we will 
illustrate the performance of the proposed architecture for 
some widow sizes. 

4.  Simulation results 
 
For simulations a PCCC with block size of 4800 is chosen. 
The interleaver is an S-random interleaver. The first 
constituent code is a rate one-half systematic code and the 
second code is a rate one non-systematic recursive code. 
The feed forward and feedback polynomials are the same 
for both codes and are 1+D+D3 and 1+D2+D3 respectively. 
Thus coding rate is 1/3. The simulated channel is an 
AWGN channel. 

The bit error rate performance of the proposed decoder 
has been simulated for window sizes of 64, 48, 32, 16, 8, 
4, 2, and 1.  The maximum number of iterations for each 
case is chosen such that the BER performance of the 
decoder equals that of the sequential decoder after 10 
iterations.  This is very important that this structure does 
not sacrifice performance for speed. We can always 
increase the maximum number of iterations to get similar 
performance as of the sequential decoder. 

 
Figure 5: Performances of parallel decoder 

 
However, in practice, the iterations are stopped based 

on a criterion that shows the data is reliable or correct. We 
have simulated such a stopping criterion in order to get the 
average number of iterations needed. The stopping rule 
that we use is the equality between the results of two 
consecutive iterations. The average number of iterations is 
used for the efficiency computation. The average number 
of iterations for low signal to noise ratio is the maximum 
number of iterations for each window size.  Figure 5 
shows the BER performance of the decoders. The curves 
are almost indistinguishable.  

Efficiency of the parallel decoder with different 
window sizes is shown in Figure 6.  It clearly shows that 
we have to pay some penalty in order to achieve speed 
gain. Also we observe that the efficiency of parallel 
decoder decreases gracefully for window sizes greater than 
32. The efficiency is degraded dramatically for very small 
windows, which prohibits us to get speed gain as well.  
Another interesting thing in the efficiency curves is the 
flatness of the curves. In other words, the efficiency of the 
parallel decoder is almost constant in all SNR. This 
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observation translates to almost constant speed gain over 
the whole SNR range.   

As a summary, in Table II the maximum number of 
iterations, the average number of iterations, and the 
characteristic factors are tabulated for different window 
sizes at Eb/N0 = 0.7 (BER = 1e-8).  

 
Figure 6: Ratio of the average number of iterations in 

parallel decoder to  
 
Window 

Size 
Max # of 
iterations 

Ave. # of 
iterations 

Speed 
Gain 

Effici- 
ency % 

64 12 5.0 63 84 
32 14 5.8 109 72 
16 18 7.4 170 57 
8 25 10.4 242 40 
4 42 16.3 310 26 
2 65 28.3 356 15 
1 120 52.0 386 8 

Table II: Characteristic factors for the parallel decoder at 
SNR= 0.7 dB (BER=10e-8) 

 
5.  Systolic array implementation 

 
Systolic architectures for signal processing algorithms 
including Viterbi decoding have been proposed [7-9]. The 
regularity of the architecture presented for parallel turbo 
decoder suggests that we can implement it with systolic 
array type hardware. The design consists of several 
window processors (SISO) that decode a vector of data 
bits as shown in figure 4. The corresponding observations 
related to each vector are stored in its SISO. The SISO 
uses the observations, the initial alpha and beta coming 
from adjacent windows, and extrinsic information to 
produce new extrinsic information and new alpha and 
beta. This procedure repeats by the number of iteration by 
the same hardware. The other alternative is to do each 
iteration in a pipelined fashion. In this method the speed 
will be increased further. However, the memory 
requirement is much larger in this case. Achieving higher 
speed is better served by increasing number of windows 
because there is no memory penalty for this. It should be 

noted that a higher speed is achieved with a larger block 
size at the penalty of raising the memory requirement. 
 

6. CONCLUSIONS 
 

We have proposed an efficient architecture for parallel 
implementation of turbo decoders. The advantage of this 
architecture is that the increase in the processing load due 
to parallelization is minimal. Simulation results 
demonstrate that this structure not only can achieve some 
orders of magnitude in speed gain, but also maintains the 
efficiency in processing. Also we have shown that the 
efficiency and the speed gain of this architecture are 
almost independent of the SNR.   
      The regularity of the proposed architecture is another 
advantage. Therefore it is very suitable for VLSI 
implementation. One realization of such hardware in the 
form of systolic arrays was presented.  

 
7. REFERENCES 

 
[1] F.R. Kschischang and B.J. Frey, “Iterative dec. of 
compound codes by probability propagation in graphical 
models,” IEEE JSAC, pp. 219-230, Feb. 98. 
 
[2] Frey, B.J.; Kschischang, F.R.; Gulak, P.G. “Concurrent 
turbo-decoding,” Proc. of IEEE International Symp. on 
Info. Theory, p. 431. July 97. 
 
[3] J. Hsu and C.H. Wang, “A parallel decoding scheme 
for turbo codes,” Proc. ISCAS’98, vol.4, June 1998, pp. 
445-448.  
 
[4] C. Berrou, A. Glavieux, and P. Thitimasjshima, “Near 
Shannon limit error correcting coding and dec.: Turbo 
codes (1),” Proc. IEEE ICC.,  May 1993, pp. 1064-1070. 
 
[5] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, 
“Soft-input Soft-output APP module for iter. decoding of 
conccat. codes,” IEEE Commu. Letters, pp.22-24, Jan. 97. 
 
[6] L.R. Bahl, J. Cocke, F. Jelinek,, and J. Raviv, 
“Optimal dec. of linear codes for min. symbol error rate,” 
IEEE Trans. Inform. Theory, pp. 284-287, Mar. 1974. 
 
[7] C.Y. Chang and K. Yao, “Systolic array processing of 
the Viterbi algorithm,” IEEE Trans. Inform. Theory, pp. 
76-86, Jan. 1989 
 
[8] G. Fettweis and H. Meyr, “High-speed parallel Viterbi 
decoding: Algorithm and VLSI architecture,” IEEE 
Commun. Mag., pp. 46-55, May 1991. 
 
[9] F. Daneshgaran and K. Yao, “The iterative collapse 
algorithm: A novel approach to the design of long 
constraint length Viterbi decoders – Part I,” IEEE Trans. 
on Commun., pp. 1409-1418, Feb. 1995. 

IV - 524

➡ ➠


