An Efficient Architecture for High Speed Turbo Decoders'

Aliazam Abbasfar and Kung Yao

Department of Electrical Engineering,
University of California Los Angeles

ABSTRACT

Turbo codes not only achieve near Shannon-capacity
performance, but also have decoders with modest
complexity, which is crucial for implementation. So far
efficient architectures for decoding of turbo codes have
been proposed that is suitable for sequential processing. In
this paper a novel parallel processing architecture for very
high-speed turbo decoder is presented. The performance
of this decoder and the tradeoff between speed and
efficiency are discussed. It is shown that some decoders
can run faster by some orders of magnitude while
maintaining almost the same processing load. A systolic
implementation of this decoder is presented at the end'.

1. INTRODUCTION

Recently, some new classes of channel encoders have been
introduced that achieve near Shannon-capacity rates.
Turbo codes [4] and Low Density Parity Codes (LDPC)
are the most important examples. The basic property of
these codes is the capability of iterative decoding. The
iterative algorithms can be viewed as a probability or
“belief” propagation algorithm, which is based on message
passing [1].

Although iterative decoding has a parallel nature for
LDPC, for turbo codes it is very attractive as a sequential
processor because messages can be computed iteratively
using previously computed messages. Although the
message passing algorithm can be parallelized in theory, it
is quite inefficient and impractical for implementation. In
[2] a concurrent turbo decoder is studied. Although the
concurrent decoder can run by some orders of magnitude
faster than the sequential counterpart, the number of
components used for processing is so large that makes it
quite impractical. Moreover, the processing load has been
increased dramatically, which translates to low efficiency.
Another approach proposed in the literature is using

! This work is partially supported by a UC CoRe grant sponsored by ST
Microelectronics, Inc. and NASA-Dryden grant NCC2-374.

0-7803-7663-3/03/$17.00 ©2003 IEEE

IV -521

overlapping windows [3]. However, for a very high-speed
decoder the extra processing load for overlapping bits
causes inefficiency and irregularity.

In this paper we will propose a method that make
parallel processing feasible, while efficiency of the
decoder is maintained. Regular structures such as systolic
arrays are proposed for implementation of such a decoder.
In section 2 we will describe the decoding algorithm for
turbo decoders. In section 3 the proposed method is
described and the tradeoff between speed and efficiency is
discussed. The performance of the proposed decoder is
discussed in section 4. Finally, in section 5 a systolic array
implementation of the decoder is presented.

2. TURBO CODE

Turbo code was introduced in [4]. Berrou, et al.
presented the Parallel Concatenated Convolutional Code,
(PCCC) and the iterative decoding algorithm. Later Serial
Concatenated Convolutional Codes (SCCC) was
presented. PCCC has been remained the most popular type
of turbo code, which has been adopted in UMTS standards
as channel coding scheme. In the following we briefly
describe the PCCC encoder and its iterative decoder.

A PCCC is constructed from 2 or more parallel
convolutional encoders that are working on the input
sequence and the permuted version of it in parallel. Each
convolutional code is called a constituent code. Figure 1
depicts the structure of a PCCC with two constituent
codes. The block denoted by I is the interleaver, which
permutes the input sequence with a predefined random
pattern.

1 1

= C1 i » _ _»y
i [}
c
| c
©

2| & | v

|—> C2 > —

Figure 1: The structure of a PCCC encoder
The iterative decoding algorithm is based on

Maximum-A-Posteriori (MAP) decision of the input
sequence. However, since it is difficult to find the MAP

ICASSP 2003

solution by considering all the observations at the same
time, the MAP decoding is performed on the observations
of each constituent code separately. Since two codes have
been produced from one input sequence, the A-Posteriori-
Probability (APP) of data bits coming from the first
decoder can be used by the second decoder and vice versa.
Therefore the decoding process is carried out iteratively.
In [5] a general unit, called SISO, is introduced that
generates the APPs in the most general case.

Since the second constituent code is using the permuted
version of the input sequence, therefore, extrinsic
information also should be permuted before being used by
the second decoder. Likewise, the extrinsic information of
the second decoder is to be permuted in reverse order for
the next iteration of the first decoder. Figure 2 shows the
iterative decoding bock diagram.

v y2
y y
APP1 <L » APP2 [— I —‘

Figure 2: The iterative decoding block diagram

An efficient algorithm for MAP decoding of a
convolutional code is known as BCJR algorithm [5]. In
this algorithm A-Posteriori-Probabilities for a time-
invariant trellis encoder can be computed with a
complexity that depends linearly on the number of states
and also on the size of input sequence. It should be noted
that SISO is a block which implements the BCJR
algorithm. Here we briefly describe the structure of this
algorithm. For more details see [5-6]. The main three
steps of this algorithm are as follow:

Forward recursion: In this step we compute the likelihood
of all the states in the trellis given the past observations.
Starting from a known state, we will go ahead along the
trellis and compute the likelihood of all the states in one
trellis section from the likelihood of the states in the
previous trellis section. This iterative scheme is continued
until likelihoods of all the states, which are called alpha
variables, are computed in the forward direction.
Backward recursion: This step is quite similar to the
forward recursion. Starting from a known state at the end
of the block, we compute the likelihood of previous states
in one trellis section. Therefore we compute the likelihood
of all the states in the trellis given the future observations,
which are called beta variables. This iterative processing is
continued until the beginning of the trellis.

Output computation: Once the forward and backward
likelihoods of the states are computed, the extrinsic
information can be computed from them. The extrinsic
information can be viewed as the marginal probability of
each bit given the observations.

3. PARALLE TURBO DECODER

In this section we present a novel method for iteratively
decoding the turbo codes. Although this method is
applicable for every turbo code, we will explain it in the
case of a block PCCC code. To obtain block codes,
termination or tail-biting methods is used.

The algorithm is as following. First of all, the received
data for each constituent codes are divided into several
contiguous non-overlapping sub-blocks; so called
windows. Then, each window is decoded separately in
parallel using the BCJR algorithm. In other words, each
window is a vector decoder. However, the initial values
for alpha and beta variables come from previous iteration
of adjacent windows. Since all the windows are being
processed at the same time, in the next iteration the initial
values are ready to load. Therefore, there is no extra
processing needed for the initialization of state
probabilities at each iteration. The size of windows is a
very important parameter that will be discussed later.
Figure 3 shows the structure of the decoder.

2y 3 Xy g
e Vol Ve |77 Bl W e
xl¢ x2¢ xN¢
Interleaver
2 T > Loy
Zy) > 2y b
46-‘-- W, sz W, |- EN— W, E-“i*-l

Figure 3: Parallel turbo decoder structure

The proposed structure stems from the message-passing
algorithm itself. We have only introduced some new
messages that are passed between sub-blocks at each
iteration. There are two types of messages that are
communicated between sub-blocks. First, the messages
associated with the decoded data are the same as extrinsic
information, which are communicated between two
constituent codes in the traditional approach. Second, the
messages that are related to the states in window
boundaries, we call them state messages. These messages
are the same as alpha and beta variables that are computed
in forward and backward recursion of the BCJR algorithm.
In the first iteration there is no prior knowledge available
about the state probabilities. Therefore the messages are
set to Y2 for unknown states. In each iteration, these
messages are updated and passed across the border of
adjacent windows.

The optimum way to process a window is the sequential
processing using forward and backward recursions; i.e.
BCIJR algorithm. Therefore each window processor is a
SISO.

IV - 522

The processing of the windows in two constituent codes
can be run in parallel. However, since this scheme can be
exploited in the sequential decoder as well, this is not
considered here for a fair comparison. In other words, that
parallelization introduces another speed gain factor which
can be exploited. Therefore the architecture of the decoder
of the choice only needs half of the processors as it is
shown in figure 4.

o o (04 o
) > Oy 1y
e Mol Ve [B W B
A A
Xy Xow xn¢

Interleaver/Deinterleaver

Figure 4: Parallel turbo decoder with shared processors for
two constituent codes

Table I shows the parameters of a decoder. For window
size at two extremes, the approach is reduces to known
methods. If window size is B, the number of windows is 1,
it turns out to the sequential approach. If the window size
is 1, the architecture reduces to what was proposed in [2].
It should be noted that the memory requirement for all
cases is the same.

Parameter Definition

A\ Window size

N Number of windows
B=WxN Block size

I Number of iterations

Tw Window Processing Time
T=2IxTw Processing Time (Latency)
P=k2IB Processing Load

Table I: the decoder parameters

Two characteristic factors should be studied as
performance figures. One is the speed gain and the other is
the efficiency. These two are defined as following:

Speed gain =TT = N x [/l

Efficiency = Py/P = [(/1

Where T, and P, are the processing time and processing
load for the sequential approach, i.e. W=B case.
This is very interesting result. The speed gain and the
efficiency are proportional to the iteration ratio. If the
number of iterations required for the parallel case is the
same as the serial case, we enjoy a speed gain of N
without losing the efficiency, which is ideal
parallelization. Therefore we should look at the number of
iterations required for a certain performance to further
quantify the characteristic factors. In next section we will
illustrate the performance of the proposed architecture for
some widow sizes.

4. Simulation results

For simulations a PCCC with block size of 4800 is chosen.
The interleaver is an S-random interleaver. The first
constituent code is a rate one-half systematic code and the
second code is a rate one non-systematic recursive code.
The feed forward and feedback polynomials are the same
for both codes and are 1+D+D? and 1+D’+D’ respectively.
Thus coding rate is 1/3. The simulated channel is an
AWGN channel.

The bit error rate performance of the proposed decoder
has been simulated for window sizes of 64, 48, 32, 16, 8§,
4,2, and 1. The maximum number of iterations for each
case is chosen such that the BER performance of the
decoder equals that of the sequential decoder after 10
iterations. This is very important that this structure does
not sacrifice performance for speed. We can always
increase the maximum number of iterations to get similar
performance as of the sequential decoder.

0.1 nz 0.3 0.4 0.8 0.6 o7 0g 0.9
EBMNo

Figure 5: Performances of parallel decoder

However, in practice, the iterations are stopped based
on a criterion that shows the data is reliable or correct. We
have simulated such a stopping criterion in order to get the
average number of iterations needed. The stopping rule
that we use is the equality between the results of two
consecutive iterations. The average number of iterations is
used for the efficiency computation. The average number
of iterations for low signal to noise ratio is the maximum
number of iterations for each window size. Figure 5
shows the BER performance of the decoders. The curves
are almost indistinguishable.

Efficiency of the parallel decoder with different
window sizes is shown in Figure 6. It clearly shows that
we have to pay some penalty in order to achieve speed
gain. Also we observe that the efficiency of parallel
decoder decreases gracefully for window sizes greater than
32. The efficiency is degraded dramatically for very small
windows, which prohibits us to get speed gain as well.
Another interesting thing in the efficiency curves is the
flatness of the curves. In other words, the efficiency of the
parallel decoder is almost constant in all SNR. This

IV -523

observation translates to almost constant speed gain over
the whole SNR range.

As a summary, in Table II the maximum number of
iterations, the average number of iterations, and the
characteristic factors are tabulated for different window
sizes at Eb/NO = 0.7 (BER = 1e-8).

Parallel Turbo decoder
09 T T T T T T

0.8f----

o]

Z3FE=3%
JEAEEIRE

datire

o
@

o

Effiziency

Figure 6: Ratio of the average number of iterations in
parallel decoder to

Window | Max # of | Ave.#of | Speed | Effici-
Size iterations | iterations | Gain | ency %
64 12 5.0 63 84
32 14 5.8 109 72
16 18 7.4 170 57
8 25 10.4 242 40
4 42 16.3 310 26
2 65 28.3 356 15
1 120 52.0 386 8

Table II: Characteristic factors for the parallel decoder at
SNR= 0.7 dB (BER=10e-8)

5. Systolic array implementation

Systolic architectures for signal processing algorithms
including Viterbi decoding have been proposed [7-9]. The
regularity of the architecture presented for parallel turbo
decoder suggests that we can implement it with systolic
array type hardware. The design consists of several
window processors (SISO) that decode a vector of data
bits as shown in figure 4. The corresponding observations
related to each vector are stored in its SISO. The SISO
uses the observations, the initial alpha and beta coming
from adjacent windows, and extrinsic information to
produce new extrinsic information and new alpha and
beta. This procedure repeats by the number of iteration by
the same hardware. The other alternative is to do each
iteration in a pipelined fashion. In this method the speed
will be increased further. However, the memory
requirement is much larger in this case. Achieving higher
speed is better served by increasing number of windows
because there is no memory penalty for this. It should be

noted that a higher speed is achieved with a larger block
size at the penalty of raising the memory requirement.

6. CONCLUSIONS

We have proposed an efficient architecture for parallel
implementation of turbo decoders. The advantage of this
architecture is that the increase in the processing load due
to parallelization is minimal. Simulation results
demonstrate that this structure not only can achieve some
orders of magnitude in speed gain, but also maintains the
efficiency in processing. Also we have shown that the
efficiency and the speed gain of this architecture are
almost independent of the SNR.

The regularity of the proposed architecture is another
advantage. Therefore it is very suitable for VLSI
implementation. One realization of such hardware in the
form of systolic arrays was presented.

7. REFERENCES

[1] F.R. Kschischang and B.J. Frey, “Iterative dec. of
compound codes by probability propagation in graphical
models,” IEEE JSAC, pp. 219-230, Feb. 98.

[2] Frey, B.J.; Kschischang, F.R.; Gulak, P.G. “Concurrent
turbo-decoding,” Proc. of IEEE International Symp. on
Info. Theory, p. 431. July 97.

[3] J. Hsu and C.H. Wang, “A parallel decoding scheme
for turbo codes,” Proc. ISCAS’98, vol.4, June 1998, pp.
445-448.

[4] C. Berrou, A. Glavieux, and P. Thitimasjshima, “Near
Shannon limit error correcting coding and dec.: Turbo
codes (1),” Proc. IEEE ICC., May 1993, pp. 1064-1070.

[5] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara,
“Soft-input Soft-output APP module for iter. decoding of
conccat. codes,” IEEE Commu. Letters, pp.22-24, Jan. 97.

[6] L.R. Bahl, J. Cocke, F. Jelinek,, and J. Raviv,
“Optimal dec. of linear codes for min. symbol error rate,”
IEEE Trans. Inform. Theory, pp. 284-287, Mar. 1974.

[7] C.Y. Chang and K. Yao, “Systolic array processing of
the Viterbi algorithm,” IEEE Trans. Inform. Theory, pp.
76-86, Jan. 1989

[8] G. Fettweis and H. Meyr, “High-speed parallel Viterbi
decoding: Algorithm and VLSI architecture,” IEEE
Commun. Mag., pp. 46-55, May 1991.

[9] F. Daneshgaran and K. Yao, “The iterative collapse
algorithm: A novel approach to the design of long
constraint length Viterbi decoders — Part I,” IEEE Trans.
on Commun., pp. 1409-1418, Feb. 1995.

IV - 524

