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ABSTRACT

In this paper we tackle the joint source symbol detection and
multi-channel acquisition problem in the context of wireless digital
flat-fading links with space diversity. We propose a simple para-
metric statistical channel model which decouples the time dynam-
ics of the channel vector in amplitude and direction. We implement
the corresponding maximum a posterior (MAP) joint estimator for
the amplitude and direction of the channel vector and the source
information symbols. We derive a computationally attractive itera-
tive scheme to solve the optimization problem associated with the
MAP estimator. This scheme is based on differential-geometric
concepts and fully exploits the curvature of the surface constraint.
Preliminary computer simulations assessing the good performance
of our proposed solutions are included.

1. INTRODUCTION

Figure 1 illustrates the scenario considered herein. In figure 1,

�����

����

����

Tx

����� �����

������� � � � ���� ���������

�� ���

Rx

Fig. 1. Flat-fading multi-channel driven by a mobile binary source
(baseband model)

���� denotes the discrete-time sequence of transmitted information
symbols, while���� represents the continuous-time baseband sig-
nal emitted by the mobile source. The signal����� represents
the complex channel established between the source and the�-th
receiver, and����� is the observed baseband signal at the�-th
receiver. Finally������ and����� denote the estimates of�����
and����, respectively. We assume all activated spatial channels to
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be flat-fading. Moreover, the�-th receiver is time-synchronized
to the transmitted signal at the symbol level. Given these assump-
tions, the baseband signal available at the�-th antenna can be
written as

����� � ����� ���� � 	�����

where����� � 
�����������. Here, 
���� denotes the acti-
vated spatial channel (complex-valued), while����� models car-
rier phase drifts between the source and the�th antenna of the
receiver. Each antenna adds zero mean complex Gaussian noise
(AWGN) 	���� with power spectral density of�
� Watts/Hz.
That is, E�	����	���� ���� � �
�Æ���. Because we are
interested in acquiring fast-changing channels each symbol pe-
riod is oversampled by a factor� . Let each one of the received
baseband signals����� be oversampled by an integrate-and-dump
(I&D) circuit. We have the equivalent discrete-time data model
����� � ����� ������ �� � 	����. Here, ��� stands for the
lowest integer greater than or equal to�. For further details on
this data model see, e.g., [3]. The data model can be written in a
vector format as���� � ���� ������ �� � ����, where���� �

������� � � � � �� ����� , and���� and���� follow similar defini-
tions. Let
 denote the number of observed symbol periods. Col-
lect the vectors����, ���� and���� for � � �� �� � � � � � �

� into the matrices� �

�
���� ���� � � � ����

�
�� ��

���� ���� � � � ����
�
� and� � ��������� � � � ���� �.

We have the matricial data model� � � diag��� �� � �� �

Here,� � ������ ����� � � � � ��
 ��� denotes the transmitted sequence
of 
 information symbols. The symbol� stands for the Kro-
necker product, diag��� denotes a diagonal matrix with��� � � � � ��
as its main diagonal entries and�� � ��� �� � � � � ��� represents
the�-dimensional column vector with all entries equal to�. We
assume that the additive noise processes are spatially white, that
is, E

�
������� � ��	

�
� ����	�Æ���, where�� � 	
��
,

���	 denotes the Hermitean operator (transpose conjugate) and
Æ��� stands for the discrete-time Kronecker signal (Æ��� � � and
Æ��� � � for � �� �). The matrix	� is the�	 � identity matrix.

Problem Statement. In this paper, we face the joint detection
of the emitted information sequence� and estimation of the chan-
nel trajectory�, given the observation matrix�. We work under
a Bayesian framework. We assign non-informative probabilistic
priors to the channel motion� and to the transmitted data�. We
show that the implementation of the corresponding MAP estimator
is amenable to an attractive iterative algorithm which exploits the
differential geometry of the constraint surface.

Paper Organization. Section 2 motivates the chosen priors
on the channel vector trajectory and source symbols. Using these
priors, we implement the joint maximum a posterior (MAP) esti-
mator for the amplitude and direction of the channel vector and
the source symbols. In section 3, we discuss how to implement
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the MAP estimator. We fix the discrete variables� and solve a
subproblem for the channel parameters, over all possible combi-
nations of�. We use a second-order geodesic descent method to
solve each subproblem. Section 4 presents some preliminary com-
puter simulations. Section 5 concludes our paper.

2. CHANNEL AND SOURCE PROBABILISTIC PRIORS

The purpose of this section is to motivate the choices of the sta-
tistical models for the channel/source pair. We start by reviewing
some standard models for the fading channel
���� in terms of its
first and second-order statistics for some idealized scenarios.This
material is taken mostly from [3] and [4]. For example, consider
a rich scattering environment. Many (high number) of different
propagation paths are established between the source and the re-
ceiver. By invoking the central limit theorem,
���� can be mod-
elled as a wide-sense stationary (WSS) Gaussian process, see [4].
If there exists a direct line-of-sight (LOS) between the antennas,
the Rice fading model can be adopted. Otherwise,
���� can be
taken as zero-mean and the use of the Rayleigh fading model is
the adequate choice. Outside the Gaussian context, other mod-
els frequently adopted for the distribution of the amplitude of the
channel

����
 are the Nakagami-q (Hoyt), the Nakagami-n, and
the Nakagami-m, see [3]. With respect to second order statistics, it
can be shown that, in the idealized scenario where the scatterers are
uniformly distributed in angle, the receiving antenna is omnidirec-
tional and the mobile speed is constant, we have the well-known
Clarke’s model, see [3, 4]. In that case, the autocorrelation func-
tion of the channel is given by����� � E�
����
���� ���� �
����� �������. Here,��� � E

�


����
�

�
denotes the power of

the fading channel,����� is the zero-order Bessel function of the
first kind, and�� is the maximum Doppler frequency in Hz.

In scenarios where the receiver is equipped with several an-
tennas, the amplitude of the channel vector���� � ������ tends
to change slowly when compared to the direction of the same vec-
tor 
��� � ����� ������, see, e.g., [5]. If the autocorrelation
function of each activated spatial channel is given by the Clarke’s
model it is possible to confirm this property through simulations
for time intervals corresponding to a small number of symbol peri-
ods, see [6]. Throughout this paper, we only process small blocks
of data. This precludes the usage of second order statistics meth-
ods [1, 2]. The qualitatively asymmetric behavior of���� and
���
becomes more noticeable if more statistically independent anten-
nas are deployed at the receiver (spatial diversity), or if a Rice
channel model is considered, as both of these scenarios tend to sta-
bilize the amplitude of the channel vector. In fact, this property is
a generalization of the typical behavior of single-channel systems.
Notice that, for� � � channel given by���� � ������
���,
we have���� � ���� � �, and the vector
��� specializes to
the pure (unit-amplitude) phasor
��� � ��
���, where���� ac-
counts for the joint time variation of the phase of the fading chan-
nel and the carrier phase drift. This behavior of���� and
���
suggests the decoupling of the time dynamics of���� in amplitude
and direction. In terms of discrete time data,���� � ����
���,
where���� � � and �
���� � �. For simplicity, we assume
that the amplitude of the channel vector is constant,���� � � for
� � �� �� � � � � �. We take the random variable� uniformly dis-
tributed over the interval��� ��, where� � � is a fixed constant
� 
 � ���� ���. This distribution acts as a non-informative prior
on �. The sequence�
����
���� � � � �
���� is statistically inde-
pendent of� and is taken to be a first-order Markov process on the

unit-sphere. More specifically, let

���� �
�

Re
���� Im
����
	�

� (1)

Notice that each�� -dimensional vector���� lies in�����. Here,
and for further reference,���� � �� � �

� � ��� � �� denotes
the �� � ��-dimensional unit-sphere in the Euclidean space�

� .
We let���� be uniformly distributed over the sphere�����, writ-
ten

���� 
 �
�
�
����

	
� (2)

and let the one-step transition probability be given by

���� 
��� � �� 
��� ���� � ���  � � (3)

Here,�� ���  � denotes the von Mises-Fisher distribution on�
���

with the unit-norm vector� as mean direction and the non-negative
scalar as the concentration parameter, see [7]. The density of the
von Mises-Fisher distribution�� ���  � with respect to the uni-
form distribution on the unit-sphere is

� ��� � !�� � 
��
�
 ���

	
� (4)

where� � �
��� and!�� � denotes the normalizing constant.

This distribution reduces to the uniform distribution on the unit-
sphere for � �, and exhibits a mode at� for  � �. As  in-
creases, the probability mass becomes more concentrated around
the mean direction� (in our context, the channel becomes slower).
The uniform density assumption���� 
 �



�
����

�
about the

initial direction vector is adopted to reflect our ignorance about
the initial vector channel state (non-informative prior). The von
Mises-Fisher model for the one-step transition probability can also
be seen as a non-informative prior because it doesn’t imply any
major constraints in the trajectory of����. In fact, the first-order
Markov probabilistic structure of���� is only trying to model the
continuity of the corresponding continuous-time signal����. It is
both interesting and elucidative to notice that this model can also
be obtained by relaxing the model corresponding to� point-to-
point links. Let���� � ��� ����� � � denote two consecutive
samples of the channel established between the source and�-th
antenna of the receiver. Decouple them in amplitude and phase
���� � �� � ���� � ����
������ and����� � �������
����.
Assuming a constant amplitude:����� � ����������� � ��,
where
���� is the phase shift between the realizations of the

channel. Defining the vector������ �


Re"����� Im"�����

��
,

we have

������ �



��� �
����� � ��� �
�����
��� �
����� ��� �
�����

�
� �� �

�����

����� � ��� (5)

Consider now the� antennas at the receiver

����� �
�
��

������
...��� ���

�
�� �

�
������

Re"����
Im "����

...
Re"� ���
Im "� ���

�
������ � (6)
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The transition model is����� � ���� ���� � ��, where���� �
diag������� � � � ��� ���� with each����� defined as in (5). No-
tice that the vector����� in (6) is equal to���� in (1) apart a permu-
tation. The model can be written as���� � ���� ��� � �� where

���� �



���� �
���

��� ����

�
�

Here,���� � diag�����
������ � � � � ����
� ����� and
��� �
diag�����
������ � � � � ����
� �����. Thus,���� is obtained by ap-
plying a structured perturbation to��� � ��. That is, for a given
������ not all the points in the sphere����� are possible realiza-
tions for����. On the other hand, with the von Mises-Fisher model
���� is obtained by applying a random unstructured perturbation to
��� � ��. This is the previously mentioned model relaxation. Re-
mark that our channel statistical model is a�-parameter model ( )
that does not rely on any special assumption about the scattering
environment, antenna directivity pattern, etc. Its main purpose is
to be able of reproducing the typical time variation of the chan-
nel vector���� over small observation intervals, which occurs in
many flat-fading propagation scenarios. Regarding the transmit-
ter model, we consider that the information source emits a string
������ of independent and identically distributed symbols drawn
from a finite modulation alphabet. For simplicity, we assume here-
after a binary-shift keying (BSK) digital source, i.e., the symbols
���� are taken from the alphabet���� �� and are equiprobable
(non-informative prior).

3. MAP CHANNEL AND SYMBOL ESTIMATORS

The MAP estimates of the random objects� � ����� � � � ���� �,
� and � correspond to the global solutions of the optimization
problem ���� �� ���	 � ������

��� � �
# ���� � � 
�� �

Notice that, due to the adopted priors, we have the following con-
straints: � � � � �, ������ � � for � � �� �� � � � � � and
���� � ���� for � � �� �� � � � � 
 . We are assuming that both the
noise variance�� and the concentration parameter are known.
Using the Bayes rule and our statistical assumptions, we have, af-
ter some trivial algebraic manipulations, the equivalent optimiza-
tion problem ���� �� ���	 � ������

��� � �
$ ���� � �� (7)

where

$ ���� � �� ����
�

�


�
�	�

��
�
���� �����

�� 

��


�
�	�

������������

and�
�
��� �



������ ��Re����� ������ �� Im�����

��
for � �

�� �� � � � � �. The optimization problem in (7) is posed in terms
of a set of discrete (�) and continuous (��� ) variables. It may
be solved by enumerating all bit sequences of length
 and, for
each one, say�, optimize over� and� to yield the corresponding
estimates�� and� �,

����� �� � ������
���

$ ���� � �� � (8)

In fact, since there is an unavoidable sign ambiguity in the vari-
ables� and�, because$ ���� � �� � $ ����� ����, we may
fix a bit, e.g.,���� � ��, and enumerate over all���� bit se-
quences������ � � � � ��
 �� solving, for each one, the optimization
problem in (8). This approach may be implemented through a bank
of ���� parallel processors, which is feasible for small sequence
lengths
 (as we are assuming throughout the paper). Each pro-
cessor solves problem (8) for a fixed sequence of bits�. To solve
problem (8), we use a second order geodesic descent method. The
theory behind this method is inspired in the differential-geometric
viewpoint taken in [8] for efficiently solving certain constrained
optimization problems. The general idea is as follows: fixing�
solve a simple quadratic problem over�; then, fixing� and using
� from the previous iteration, compute the Newton direction�� ;
verify if �� is a descent direction; if so, use�� and� to compute
the geodesic���� which starts from� in the direction�� , other-
wise instead of using�� use��� (steepest descent direction) in
the calculation of the geodesic; in either case, obtain the new�

using the Armijo rule. Notice that, geometrically, optimizing over
� (with � fixed) corresponds to searching over a high-dimensional
torus (the constraint surface). In the general case, computing the
Newton direction would require�



�


���� � ����


�
flops, but it

can be shown that, by using the special structure of this problem,
we only need�



����� � ��
 � 	���� � ���

�
flops. This

fact makes the use of Newton steps bearable from the computa-
tional viewpoint. Details are omitted due to paper length restric-
tions, see [5].

4. PRELIMINARY COMPUTER SIMULATIONS

In this section, we present some preliminary computer simulations
to assess the performance of our proposed solutions. Further re-
sults can be found in [5]. We start by considering a� � � an-
tenna receiver. We assumed an oversampling factor of� � � and
process
 � 	 consecutive bits. Thus, the data packet length is
� � �
 � ��. Each data packet is generated according to our
channel and source priors. We have fixed the vector channel am-
plitude throughout the simulations,� � � (ignored at the receiver)
and considered as von Mises-Fisher concentration parameters �
�� ��� ��. For each , we varied the signal-to-noise ratio (SNR)
from SNR��
 � �� dB to SNR��� � �� dB in steps of
 �
��� dB, where SNR� E

�
�����������

�
�E
�
�������

�
� ����.

For each SNR,���� statistically independent Monte-Carlos runs
are performed. For this set of preliminary simulations, we also
assume that the sequence of bits� is known. Thus, we only face
the task of estimating the channel. In equivalent words, we must
solve (8) for a given (training) sequence of bits�. Our method re-
quires an initialization point� �. In these simulations, we let� �

denote the true value of� perturbed with a random disturbance.
The amplitude of this random disturbance is obtained using results
from [6]. In [6] the optimization problem in (8) is reformulated
into a nearby semidefinite programming (SDP). The algorithm that
we describe in this paper can be used to refine the results obtained
in [6]. In figure 2, we plot the mean of the estimate�� versus SNR.
As can be seen, the estimate converges to the true value� � �, as
the SNR tends to infinity. Since� � �, each channel direction

��� is a point in the unit-radius circle of the complex plane. In
figure 3, we show the average absolute phase error obtained by our
estimator. Notice that with our von Mises-Fisher channel model,
the phase of the channel has a mean jump of����� ���� and����
degrees from
��� to 
�� � �� (separated in time by one third of
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Fig. 2. Estimated fading amplitude (��) versus SNR (� �
 � ��� � �  � �� and��  � �)
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Fig. 3. Mean phase error (degrees) versus SNR (��  � ��� � �
 � �� and��  � �)

the symbol period), for � �� �� and��, respectively. Thus, we
are tackling a scenario with rapid channel phase variation. In order
to test the robustness of our overall approach in the face of other
channel models, we generate the observation matrix� using the
Clarke’s model. We consider an� � � antenna array receiver
which observes a digital source with a symbol period of��� ms,
and a carrier frequency equal to� GHz. Moreover, we assume that
source moves with a speed of��� Km/h, and that the crystal oscil-
lator at the receiver has a stability of��� ppm. With this model the
mean jump of the direction of the channel vector, from one sample
to the next, is���� degrees. Because of this fact we use � ��
as our von Mises-Fisher concentration parameter. The remaining
simulation parameters are maintained and���� Monte-Carlo runs
are performed per simulated SNR. In figure 4, we show the av-
erage absolute difference in degrees between the estimate and the
true value of the direction of the channel vector. The outcome
of this last block of simulations suggest that our method is well
adapted to other channel models although further simulations are
required to reach more conclusive statements, see [5].

5. CONCLUSIONS

We addressed the problem of joint source symbol detection and
multi-channel estimation in the context of flat-fading wireless com-
munications. We rely on a simple vector channel model which,
however, captures the typical channel behavior of many flat-fading
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Fig. 4. Mean difference between the estimate and the true value of
the direction of the channel vector (degrees) versus SNR

propagation scenarios. We decouple the time dynamics of the
multi-channel vector in amplitude and direction over short time
intervals. We let the amplitude remain constant and model the
time variation of the channel direction as a first-order Markov walk
on the unit-sphere. We implemented the corresponding MAP es-
timator of the emitted symbol sequence and channel realization.
We derived a low-cost computational iterative scheme, based on
differential-geometric concepts, to solve the optimization prob-
lem associated with the MAP estimator. Preliminary results as-
sessed the ability of our method in acquiring fast-changing chan-
nels. These results also suggested that our approach is robust
enough to handle standard channel models.

6. REFERENCES

[1] V. Barroso, J. Xavier, and J. M. F. Moura, “Blind Array
Channel Division Multiple Access (AChDMA) for Mobile
Communications”,IEEE Trans. on Signal Proc., vol. 46, pp.
737–752, March 1998.

[2] J. Xavier, V. Barroso, and J. M. F. Moura, “Closed-form Cor-
relative Coding (CFC�) Blind Identification of MIMO Chan-
nels: Isometry Fitting to Second-Order Statistics,”IEEE
Trans. on Signal Proc., vol. 49, no. 5, pp. 1073 – 1086,
May 2001.

[3] M. Simon and M. Alouini,Digital Communication over Fad-
ing Channels , John Wiley & Sons, 2000.

[4] J. Cavers, Mobile Channel Characteristics, Kluwer Aca-
demic Pub., 2000.

[5] J. Xavier, V. Barroso, and T. Patr˜ao, “Joint MAP Symbol
Sequence Detection and Channel Estimation in Fast-Fading
Narrowband Wireless Systems with Spatial Diversity: a
Bayesian Approach,” in preparation.

[6] J. Xavier, V. Barroso, and T. Patr˜ao, “Joint symbol de-
tection and multi-channel acquisition in fast-fading narrow-
band wireless environments,”in Proc. of the IEEE Internat.
Telecomm. Symp. ITS’2002, Brasil, 2002.

[7] K. Mardia and P. Jupp,Directional Statistics, John Wiley &
Sons, 2000.

[8] A. Edelman, T. Arias, and S. Smith “The geometry of al-
gorithms with orthogonality constraints,”in Siam J. Matrix
Anal. Appl., vol. 20, No. 2, pp. 303–353, 1998.

IV - 516

➡ ➠


