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ABSTRACT be flat-fading. Moreover, the:-th receiver is time-synchronized
In this paper we tackle the joint source symbol detection and to the transmitted signz_il at the s_ymbol level. Given these assump-
multi-channel acquisition problem in the context of wireless digital tlops, the baseband signal available at theh antenna can be
flat-fading links with space diversity. We propose a simple para- written as
metric statistical channel model which decouples the time dynam- Tm(t) = hm (t) b(t) + wm (),
ics of the channel vector in amplitude and direction. We implement | . B (t) = cm(t)e?® . Here, ¢, (t) denotes the acti-
the corresponding maximum a posterior (MAP) joint estimator for vated spatial channel (complex-valued), whtljg(t) models car-
the amplitude and direction of the channel vector and the Sourcejor phase drifts between the source aﬁdwm antenna of the
information symbols. We derive a computationally attractive itera- receiver. Each antenna adds zero mean complex Gaussian noise
tive scheme to solve the optimization problem associated with the(AWGN) wm(t) with power spectral density GIN, Watts/Hz.
MAP estimator. This scheme is based on differential-geometric 1 o+ is E{wm ()wm(t — )"} = 2Nod(r). Because we are
congepts and fully explpits thg curvature .Of the surface ConStraint'interest,ed in acquiring fast-changing channels each symbol pe-
Preliminary computer_5|mu|at|c_)ns assessing the good performance;q 4 is oversampled by a factd?. Let each one of the received
of our proposed solutions are included. baseband signais,, (¢) be oversampled by an integrate-and-dump
(I1&D) circuit. We have the equivalent discrete-time data model
1. INTRODUCTION Tm[k] = hm[k]b[[k/P]] + wn[k]. Here,[a] stands for the
lowest integer greater than or equaldo For further details on
Figure 1 illustrates the scenario considered herein. In figure 1,this data model see, e.g., [3]. The data model can be written in a
vector format asclk] = h[k]b[[k/P]] + w[k], wherez[k] =

“\ (z1[K], ..., zm[k])", and h[k] and w(k] follow similar defini-
tions. LetV denote the number of observed symbol periods. Col-

ha () b(t)y lect the vectorse[k], h[k] and w[k] for k = 1,2,... K =
NPintothe matricesX = [ =[1] =[2] --- «[K] ]| ,H=

We have the matricial data mod& = H diag(b ® 1p) + W.

B (t) / [ (1] A[2] -+ hKIK] ],andW = [w[l]w[?2] --- w][K]].

4 “ Here,b = (b[1],b[2], . ..,b[N])" denotes the transmitted sequence
$1(t)T T Tan(t) of IV information symbols. The symbab stands for the Kro-
necker product, dig@) denotes a diagonal matrix with, . . ., v,
Rx as its main diagonal entries and = (1,1, ..., 1)T represents
l the n-dimensional column vector with all entries equalltoWe
ﬁ;(t), o ,@(t),g[n] assume that the additive noise processes are spatially white, that

is, E{w[klw[k — ]} = o°/21,0[l], whereo® = 4No/A,
Fig. 1. Flat-fading multi-channel driven by a mobile binary source (-) denotes the Hermitean operator (transpose conjugate) and
(baseband model) d[l] stands for the discrete-time Kronecker signibf = 1 and

0[l] = 0 forl # 0). The matrixI,, is then x n identity matrix.
b[n] denotes the discrete-time sequence of transmitted information  Problem Statement. In this paper, we face the joint detection
symbols, whileb(t) represents the continuous-time baseband sig- of the emitted information sequenbeand estimation of the chan-
nal emitted by the mobile source. The sigial(t) represents  nel trajectoryH, given the observation matriX . We work under
the complex channel established between the source and-the  a Bayesian framework. We assign non-informative probabilistic
receiver, andc,,, (t) is the observed baseband signal at theh priors to the channel motioRl and to the transmitted data We
receiver. Finallyﬁ:n (t) andg[n] denote the estimates &f, (t) show that the implementation of the corresponding MAP estimator
andb[n], respectively. We assume all activated spatial channels tois amenable to an attractive iterative algorithm which exploits the
differential geometry of the constraint surface.
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the MAP estimator. We fix the discrete variablesnd solve a unit-sphere. More specifically, let
subproblem for the channel parameters, over all possible combi-
nations ofb. We use a second-order geodesic descent method to
solve each subproblem. Section 4 presents some preliminary com-
puter simulations. Section 5 concludes our paper.

vlk] = (Reulk]" Imu[k]T)T. 1)

Notice that each M -dimensional vectoo[k] lies inS** ~*. Here,
and for further referenc&™ ! = {v € R™ : ||v|| = 1} denotes
the (n — 1)-dimensional unit-sphere in the Euclidean sp&te
We letw[1] be uniformly distributed over the sphe®é™ —!, writ-

2. CHANNEL AND SOURCE PROBABILISTIC PRIORS

The purpose of this section is to motivate the choices of the sta-
tistical models for the channel/source pair. We start by reviewing -
some standard models for the fading chamnglt) in terms of its o[l ~U (S ) ; 2

first and second-order statistics for some idealized scenarios.This . - .

material is taken mostly from [3] and [4]. For example, consider 2nd letthe one-step transition probability be given by

a rich scattering environment. Many (high number) of different

propagation paths are established between the source and the re- vlk][v[k — 1] ~ Mow (v[k — 1], %) . (©)
ceiver. By invoking the central limit theorem,, () can be mod- ) ] o

elled as a wide-sense stationary (WSS) Gaussian process, see [4iére,M, (u, &) denotes the von Mises-Fisher distributionssr !

If there exists a direct line-of-sight (LOS) between the antennas, With the unit-norm vectop as mean direction and the non-negative
the Rice fading model can be adopted. Otherwisg(t) can be scalan.f as thg concentration parameter, see [7]. The density Qf the
taken as zero-mean and the use of the Rayleigh fading model i/on Mises-Fisher distributioiM,, (u, ) with respect to the uni-

the adequate choice. Outside the Gaussian context, other mogtorm distribution on the unit-sphere is

els frequently adopted for the distribution of the amplitude of the

channellc,, (t)_| are the Naka_gami-q (Hoyt), the Nakagami-r_l, gnd_ F (@) = ap(k) exp (ﬁ “TU) 7 4)

the Nakagami-m, see [3]. With respect to second order statistics, it
can be shown that, in the idealized scenario where the scatterers are =1 -
uniformly distributed in angle, the receiving antenna is omnidirec- wh_ere_v € S and ay () denote_s the r_10rmall_zmg constanp
tional and the mobile speed is constant, we have the WeII-knownTh'S distribution reduces to the uniform distribution on the unit-

Clarke's model, see [3, 4]. In that case, the autocorrelation func- sphere for = 0, an(.j.eXh'b'tS amode gt for & > 0. AS in-
tion of the channel is given by, (1) = E {cm (£)em (t — 7)°} = creases, the probability mass becomes more concentrated around

2, Jo (27 fm). Here,o2, = E{|cm (t)|2} denotes the power of the mean directiop (in our context, the channel becomes slower).

H H H 2M -1
the fading channel/y(+) is the zero-order Bessel function of the Thg “”.'fom? density agsumptlon[l] ~ U . ) about the
first kind, andf,,, is the maximum Doppler frequency in Hz initial direction vector is adopted to reflect our ignorance about

In scenarios where the receiver is equipped with several an-th.e "““?' vector channel state (non-informative prior).. The von
tennas, the amplitude of the channel vegten) — [|h(¢)| tends Mises-Fisher mode_l for the one-step transntlon_probabl[lty can also
to change slowly when compared to the direction of the same vec-be Seen as a'non.-lnformat.lve prior because it does.nt imply any
tor u(t) = h(t)/||h(t)], see, e.g., [5]. If the autocorrelation major constraints in the trajectory 0.{k]. In fact, the first-order
function of each activated spatial channel is given by the Clarke’s Marl_<ov_ probabilistic structur_e 0b (K] IS only tr_ymg t_o model t_he
model it is possible to confirm this property through simulations cont|r.1U|ty of .the correqundmg contln.uous-tlme.su_:rn(aﬂ). Itis
for time intervals corresponding to a small number of symbol peri- both mtt_erestlng and gluudatlve to notice that tr_us modt_el can also
ods, see [6]. Throughout this paper, we only process small blocksbe.om.allned by relaxing the model correspondlng\/tq)omt-to_-
of data. This precludes the usage of second order statistics methPOINt links. Lethp, [k — 1], hm [I.C] € C denote two consecutive
ods [1, 2]. The qualitatively asymmetric behaviorgt) andu(t) samples of the channel established betwgen the_sourcmahd
becomes more noticeable if more statistically independent anten 2ntenna of the rece"’er'jﬁﬁ‘;%ﬂp'e them in amp"t“d%i’ﬁ,i’] phase
nas are deployed at the receiver (spatial diversity), or if a Rice hom [k . 1] = An[k —1e . andhm[k]i ‘?k’]”[k]e '
channel model is considered, as both of these scenarios tend to st4}SSUMIng a constant amplitudéi,, [k] = e’ =" hp [k — 1],
bilize the amplitude of the channel vector. In fact, this property is Where Am[k] is the phase shift between the reahzaﬂonsTof the
a generalization of the typical behavior of single-channel systems.channel. Defining the vectai, [k] = (Rewn [k]” Imun,[k]") ",

Notice that, forM = 1 channel given bya(t) = A(t)e*®, we have

we havep(t) = A(t) > 0, and the vectomn(t) specializes to )

the pure (unit-amplitude) phasas(t) = €/**), whereg(t) ac- Tmlk] = | € (Am[k]) —sin (Am[k]) ik —1]. ()
counts for the joint time variation of the phase of the fading chan- LS (Am[E]) cos (Am[K]) J

nel and the carrier phase drift. This behaviorggt) and w(t) ~

suggests the decoupling of the time dynamica @f) in amplitude Am[K]

and direction. In terms of discrete time datgdk] = p[k]ulk],
wherep[k] > 0 and||u[k]|| = 1. For simplicity, we assume
that the amplitude of the channel vector is constafi] = p for

Consider now thé/ antennas at the receiver

k=1,2,..., K. We take the random variabjeuniformly dis- B1IK] :::T?ZIFIZ}

tributed over the intervgl, A], whereA > 0 is a fixed constant ! !

p ~ U ([0, A]). This distribution acts as a non-informative prior v[k] = : = : . (6)
on p. The sequencéu[l], u[2],...,u[K]} is statistically inde- D [k] Reu[k]

pendent op and is taken to be a first-order Markov process on the Im war[k]
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The transition model i®[k] = A[k]v[k — 1], whereA[k] =
diag(A1[k],. .., An[k]) with eachA,, [k] defined as in (5). No-
tice that the vectod[k] in (6) is equal tav[k] in (1) apart a permu-
tation. The model can be written ag] = I'[k] v[k — 1] where

o )

_ | CIK]
= | S
Here, C[k] = diag(cos(A1[k]), ..., cos(An[k])) and S[k] =
diag(sin(A1[k]), . .., sin(An[k])). Thus,v[k] is obtained by ap-
plying a structured perturbation W[k — 1]. That is, for a given
v[k—1] not all the points in the sphe™ ~! are possible realiza-

In fact, since there is an unavoidable sign ambiguity in the vari-
ablesV andb, because) (p, V,b) = ¢ (p,—V,—b), we may

fix a bit, e.g.,b[1] = —1, and enumerate over av -1 pit se-
quences{b[2], ..., b[N]} solving, for each one, the optimization
problem in (8). This approach may be implemented through a bank
of 2V~ parallel processors, which is feasible for small sequence
lengthsV (as we are assuming throughout the paper). Each pro-
cessor solves problem (8) for a fixed sequence ofthiffo solve
problem (8), we use a second order geodesic descent method. The
theory behind this method is inspired in the differential-geometric
viewpoint taken in [8] for efficiently solving certain constrained
optimization problems. The general idea is as follows: fixWg

tions forv[k]. On the other hand, with the von Mises-Fisher model ¢gve a simple quadratic problem oyerthen, fixingp and using
v[k] is obtained by applying a random unstructured perturbation to V from the previous iteration, compute the Newton direcidan
v[k — 1]. This is the previously mentioned model relaxation. Re- verify if dy is a descent direction; if so, ugky andV’ to compute
mark that our channel statistical model is-parameter modek) the geodesiey(t) which starts fromV” in the directiond,y , other-
that does not rely on any special assumption about the scatteringyise instead of usingy usedsp (steepest descent direction) in
environment, antenna directivity pattern, etc. Its main purpose iSthe calculation of the geodesic; in either case, obtain the View
to be able of reproducing the typical time variation of the chan- using the Armijo rule. Notice that, geometrically, optimizing over

nel vectorh(t) over small observation intervals, which occurs in v, (with p fixed) corresponds to searching over a high-dimensional
many flat-fading propagation scenarios. Regarding the transmit-y5r;5 (the constraint surface). In the general case, computing the
ter model, we consider that the information source emits a string newton direction would requir® (1[(2M — 1)K1?) flops, butit

. L - 3 ,
{b[n]} of independent and identically distributed symbols drawn ¢an he shown that, by using the special structure of this problem,
from a finite modulation alphabet. For simplicity, we assume here- e only need® (3K(2M —1)® + 4K (2M —1)?) flops. This
after a binary-shift keying (BSK) digital source, i.e., the symbols tact makes the use of Newton steps bearable from the computa-

b[n] are taken from the alphabgt-1,1} and are equiprobable  iona| viewpoint. Details are omitted due to paper length restric-
(non-informative prior). tions, see [5].

3. MAP CHANNEL AND SYMBOL ESTIMATORS 4. PRELIMINARY COMPUTER SIMULATIONS

The MAP estimates of the random objeds= [v[1] - - - v[K]],
p and b correspond to the global solutions of the optimization
problem

In this section, we present some preliminary computer simulations
to assess the performance of our proposed solutions. Further re-
sults can be found in [5]. We start by considering/a= 1 an-
tenna receiver. We assumed an oversampling factét ef 3 and
processN = 4 consecutive bits. Thus, the data packet length is
K = PN = 12. Each data packet is generated according to our
Notice that, due to the adopted priors, we have the following con- channel and source priors. We have fixed the vector channel am-
straints: 0 < p < A, |[v[k]]] = 1fork = 1,2,...,K and plitude throughout the simulations,= 1 (ignored at the receiver)
bln] € {£1}forn =1,2,..., N. We are assuming that both the ~and considered as von Mises-Fisher concentration parameters
noise variancer?> and the concentration parameteare known. 5, 10,20. For eachs, we varied the signal-to-noise ratio (SNR)
Using the Bayes rule and our statistical assumptions, we have, afffom SNRuin = —5 dB t0 SNRy.x = 20 dB in steps ofA =

ter some trivial algebraic manipulations, the equivalent optimiza- 2.5 dB, where SNR= E {||h[k]b[K]||* } /E {||lw[K]||*} = 2/0°.

tion problem For each SNR2000 statistically independent Monte-Carlos runs
are performed. For this set of preliminary simulations, we also
assume that the sequence of ltits known. Thus, we only face

the task of estimating the channel. In equivalent words, we must
solve (8) for a given (training) sequence of HitsOur method re-
quires an initialization poin¥,. In these simulations, we 18{
denote the true value &f perturbed with a random disturbance.
The amplitude of this random disturbance is obtained using results
from [6]. In [6] the optimization problem in (8) is reformulated
into a nearby semidefinite programming (SDP). The algorithm that
we describe in this paper can be used to refine the results obtained
in [6]. In figure 2, we plot the mean of the estim@eersus SNR.

As can be seen, the estimate converges to the true patué, as

the SNR tends to infinity. Sinc&/ = 1, each channel direction
u[k] is a point in the unit-radius circle of the complex plane. In
figure 3, we show the average absolute phase error obtained by our
estimator. Notice that with our von Mises-Fisher channel model,
the phase of the channel has a mean jump2at, 15.8 and11.8
degrees fromu[k] to u[k + 1] (separated in time by one third of

(5, V,b) = argmax p(p,V,b|X).
p,V,b

(5. V,0) = argmin v (p,V,b) W

p,V,b

where

2 2 <! T o’k < T
V. Vo0) =" 3 puelkl ol =G 3 ol elk 1)
andy,[k] = (b[[k/P]]Rex[k]"b[[k/P]] Imm[k]T)T fork =
1,2,..., K. The optimization problem in (7) is posed in terms
of a set of discreteb) and continuousg, V') variables. It may
be solved by enumerating all bit sequences of ledgtand, for
each one, say, optimize overp andV to yield the corresponding
estimatep, andVy,

(po, V) = argmin ¥ (p,V,b). ®)
pV
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SNR(dB)

Fig. 2. Estimated fading amplitudep) versus SNR [0 —
k= 20,x—x=10andQ — k = 5)

SNR(dB)

Fig. 3. Mean phase error (degrees) versus SNR(x = 20, * —
k=10and{ — k = 5)

the symbol period), fok = 5,10 and20, respectively. Thus, we

SNR(dB)

Fig. 4. Mean difference between the estimate and the true value of
the direction of the channel vector (degrees) versus SNR

propagation scenarios. We decouple the time dynamics of the
multi-channel vector in amplitude and direction over short time
intervals. We let the amplitude remain constant and model the
time variation of the channel direction as a first-order Markov walk
on the unit-sphere. We implemented the corresponding MAP es-
timator of the emitted symbol sequence and channel realization.
We derived a low-cost computational iterative scheme, based on
differential-geometric concepts, to solve the optimization prob-
lem associated with the MAP estimator. Preliminary results as-
sessed the ability of our method in acquiring fast-changing chan-
nels. These results also suggested that our approach is robust
enough to handle standard channel models.

6. REFERENCES

[1] V. Barroso, J. Xavier, and J. M. F. Moura, “Blind Array
Channel Division Multiple Access (AChDMA) for Mobile
Communications”| EEE Trans. on Signal Proc., vol. 46, pp.
737-752, March 1998.

are tackling a scenario with rapid channel phase variation. In order [2] J. Xavier, V. Barroso, and J. M. F. Moura, “Closed-form Cor-

to test the robustness of our overall approach in the face of other

channel models, we generate the observation marixsing the
Clarke’s model. We consider aWl = 3 antenna array receiver
which observes a digital source with a symbol period) df ms,

and a carrier frequency equalt@Hz. Moreover, we assume that
source moves with a speed13f0 Km/h, and that the crystal oscil-
lator at the receiver has a stability@b ppm. With this model the
mean jump of the direction of the channel vector, from one sample
to the next, isl.82 degrees. Because of this fact we use= 30

relative Coding (CFg) Blind Identification of MIMO Chan-
nels: Isometry Fitting to Second-Order StatisticslEEE
Trans. on Sgnal Proc., vol. 49, no. 5, pp. 1073 — 1086,
May 2001.

M. Simon and M. Alouini,Digital Communication over Fad-
ing Channels, John Wiley & Sons, 2000.

[4] J. Cavers, Mobile Channel Characteristics, Kluwer Aca-
demic Pub., 2000.

(3]

as our von Mises-Fisher concentration parameter. The remaining [5] J. Xavier, V. Barroso, and T. Pai; “Joint MAP Symbol

simulation parameters are maintained @080 Monte-Carlo runs
are performed per simulated SNR. In figure 4, we show the av-

erage absolute difference in degrees between the estimate and the

true value of the direction of the channel vector. The outcome
of this last block of simulations suggest that our method is well

adapted to other channel models although further simulations are

required to reach more conclusive statements, see [5].

5. CONCLUSIONS

We addressed the problem of joint source symbol detection and

multi-channel estimation in the context of flat-fading wireless com-
munications. We rely on a simple vector channel model which,
however, captures the typical channel behavior of many flat-fading

Sequence Detection and Channel Estimation in Fast-Fading
Narrowband Wireless Systems with Spatial Diversity: a
Bayesian Approach,” in preparation.

[6] J. Xavier, V. Barroso, and T. Pai; “Joint symbol de-
tection and multi-channel acquisition in fast-fading narrow-
band wireless environmentsih Proc. of the IEEE Internat.
Telecomm. Symp. ITS 2002, Brasil, 2002.

K. Mardia and P. JuppDirectional Satistics, John Wiley &
Sons, 2000.
[8] A. Edelman, T. Arias, and S. Smith “The geometry of al-

gorithms with orthogonality constraintsih Sam J. Matrix
Anal. Appl., vol. 20, No. 2, pp. 303—353, 1998.

(7]

IV -516



