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ABSTRACT

Compared to wired channels, time dispersive radio chan-
nels possess more frequent nulls in their spectral character-
istics. Thus, the performance of linear filters to compen-
sate intersymbol interference degrades dramatically. The
well-known nonlinearDecision Feedback Equalizer(DFE)
is one approach to improve this behavior. However, in sys-
tems with observations of high dimensionality, the optimum
DFE structure is computational intensive.

In this paper, we apply the method of theMulti-Stage
Wiener Filter (MSWF) to a conventionalMinimum Mean
Square Error(MMSE) DFE in order to reduce computa-
tional complexity. The application of the new algorithm to
an Enhanced Data rates for GSM Evolution(EDGE) sys-
tem demonstrates the ability to outperform the even more
computational intensive linearWiener Filter(WF).

1. INTRODUCTION

The Wiener Filter (WF) [1] estimates an unknown signal
from the observation signal in theMinimum Mean Square
Error (MMSE) sense exploiting only second order statis-
tics. In applications with observations of high dimension-
ality, the required inversion of the covariance matrix of the
observation vector implies high computational complexity.

Goldstein et al. developed an computationally cheap ap-
proximation of the WF, the so-calledMulti-Stage Wiener
Filter (MSWF, [2]). More recently, Honig et al. [3] showed
that the MSWF is the solution of the Wiener-Hopf equa-
tion in theKrylov subspaceof the covariance matrix of the
observation vector and the cross-correlation vector between
the observation and the desired signal. Therefore, theLanc-
zos algorithmmay be used to compute the reduced rank fil-
ter weights [4]. Note that compared to the MSWF, meth-
ods based on eigen subspaces like thePrincipal Compo-
nent Method[5] or the more sophisticatedCross Spectral
Method[6] are suboptimum when the sample support is low.

Nevertheless, all mentioned methods to reduce complex-
ity are based on the optimum linear filter. In mobile com-

munication systems, nonlinear processing is necessary [7]
because radio channels possess nulls in their spectral char-
acteristics. TheDecision Feedback Equalizer(DFE) intro-
duced by Austin [8] is one possible nonlinear approach but
has high computational complexity as well as the WF.

Zoltowski et al. [9] applied aConjugate Gradient al-
gorithmwith decision feedback and structured channel es-
timation to Digital TV which employs a 8-VSB modula-
tion scheme with no memory. Sun et al. [10] analyzed the
asymptotic performance of a Krylov subspace based DFE
in a multi-user and multi-antenna system. Our contribution
is to apply the ideas of the MSWF to theMinimum Mean
Square Error(MMSE) implementation of the DFE and an-
alyze the performance of its application to anEnhanced
Data rates for GSM Evolution(EDGE) system which suf-
fers from severe intersymbol interference due to pulse shap-
ing as well as multipath. Since EDGE implies a modula-
tion technique with memory, the problem of applying the
MSWF to a DFE for EDGE is different from the applica-
tion to a DFE for Digital TV.

The next section reviews briefly the MSWF. Before the
derivation of the Multi-Stage DFE in Section 4, we intro-
duce the DFE in Section 3. Finally, in Section 5, we present
simulation results of the application to an EDGE system.
Throughout the paper the covariance matrix of a vectorx[n]
is denoted byRx = E{x[n]xH[n]}, the cross-correlation
between the vectorsx[n] andy[n] isRx,y = E{x[n]yH[n]},
the cross-correlation between a vectorx[n] and a scalard[n]
is rx,d = E{x[n]d∗[n]}, and the variance of a scalard[n]
is σ2

d = E{|d[n]|2}. The operation ‘(·)H’ denotes conjugate
transpose.

2. MULTI-STAGE WIENER FILTER

TheWiener Filter(WF) minimizes themean square error

ξ0 (w) = σ2
d0
− 2 Re

{
wHrx0,d0

}
+wHRx0w, (1)

i. e. the variance of the errord0[n] − d̂0[n], where the esti-
mated̂0[n] = wHx0[n] is obtained by applying the linear
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Fig. 1. MSWF as Filter Bank

filter w ∈ CN to the observation signalx0[n] ∈ CN . This
design criterion leads to theWiener-Hopf equation

Rx0w0 = rx0,d0 , (2)

whose solution, the WFw0, achieves theMinimum Mean
Square Error(MMSE) ξ0(w0) = σ2

d0
− rH

x0,d0
R−1
x0
rx0,d0 .

Figure 1 sketches the block diagram of theMulti-Stage
Wiener Filter(MSWF, [2]), an alternative representation of
the WF. The first filtert1 is the normalized matched filter
rx0,d0/‖rx0,d0‖2 and thei-th filter ti maximizes the real
part of the correlation between its outputdi[n] and the out-
put di−1[n] of the previous filterti−1. If we restrict the
filters ti to be orthonormal, thei-th filter can be computed
via the following optimization [4]:

ti = arg max
t

E
{

Re
{
di[n]d∗i−1[n]

}}
s. t.: tHt = 1 and tHtk = 0, 1 ≤ k < i.

(3)

The solution is theArnoldi iteration(e. g. [11])

ti =

(∏i−1
k=1 P k

)
Rx0ti−1∥∥∥(∏i−1

k=1P k

)
Rx0ti−1

∥∥∥
2

∈ CN , (4)

with the projectorP k = 1N − tktHk onto the space orthog-
onal totk and theN ×N identity matrix1N . SinceRx0 is
Hermitian, we can use theLanczos algorithm

ti =
P i−1P i−2Rx0ti−1

‖P i−1P i−2Rx0ti−1‖2
, (5)

which leads to a tridiagonal covariance matrixRd of the
pre-filtered observation vectord[n] = [d1[n], . . . , dN [n]]T.
The scalar WFsαi estimate the output of the previous filter
di−1[n] from the error signalεi[n].

The MSWF of rank D is obtained by neglecting the
signal d̂D[n]. Thus, theD-dimensional observation vector
d(D)[n] = T (D),Hx0[n], where the pre-filter matrixT (D) =
[t1, . . . , tD] ∈ CN×D implies only the firstD filter vec-
tors. The reduced dimension WFw(D)

d ∈ CD estimates
d0[n] from d(D)[n], and the rankD approximation of the
full-dimensional WFw(D)

0 = T (D)w
(D)
d ∈ CN can be ex-

pressed as

w
(D)
0 = T (D)

(
T (D),HRx0T

(D)
)−1

T (D),Hrx0,d0 , (6)

which yields to the mean square error

ξ0
(
w

(D)
0

)
= σ2

d0
−w(D),H

0 Rx0w
(D)
0 . (7)

Note that the rankD MSWF is equivalent [3, 4] to the
solution of the Wiener-Hopf equation in theD-dimensional
Krylov subspaceK(D)(Rx0 , rx0,d0) whereK(D)(A, b) =
span{[b,Ab, . . . ,A(D−1)b]}.

3. MMSE DECISION FEEDBACK EQUALIZER

The Decision Feedback Equalizer(DFE, [8, 7]) considers
not only the observation signalx0[n] but also prior sym-
bol decisionsd̃0[n − 1] = δ[n − 1] ∗ d̃0[n] with d̃0[n] =
Q(d̂0[n]), to estimate the desired signald0[n], i. e. d̂0[n] =
gHx0[n] + fHd̃0[n− 1]. The operation ‘∗’ denotes convo-
lution, the functionQ(·) quantization or hard decision, and
δ[n− 1] = [δ[n− 1], . . . , δ[n−M ]]T ∈ {0, 1}M .
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d0[n]

d̂0[n]
d̃0[n]gH

0

fH
0 δ[n− 1]
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Q(·)
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Fig. 2. MMSE Decision Feedback Equalizer

In this paper, we restrict ourselves to the WF version
of the DFE depicted in Figure 2. Thus, the forward filter
g0 ∈ CN and the feedback filterf0 ∈ CM are the results
of the minimization of the mean square errorξDFE(g,f) =
E{|d0[n]− d̂0[n]|2}, i. e.

{g0,f0} = arg min
{g,f}

ξDFE (g,f) . (8)

For the solution, we assume that the previous M sym-
bols have been decided correctly:̃d0[n − 1] = d0[n − 1].
Thus,rd̃0,d0

= 0, andRd̃0
= σ2

d0
1M and the mean square

error can be written as

ξDFE (g,f) = σ2
d0
− 2 Re

{
gHrx0,d0

}
+ gHRx0g

+ 2 Re
{
gHRx0,d0f

}
+ σ2

d0
fHf .

(9)

We defineRx̄0 = Rx0−σ−2
d0
Rx0,d0R

H
x0,d0

and get the
forward and feedback filters

g0 = R−1
x̄0
rx0,d0 and f0 = −σ−2

d0
RH
x0,d0

g0, (10)

respectively, achieving the MMSE of the DFE

ξDFE (g0,f0) = σ2
d0
− rH

x0,d0
R−1
x̄0
rx0,d0. (11)

If we use Equation (10), we get the following expression
for the estimate:d̂0[n] = gH

0 (x0[n] − σ−2
d0
Rx0,d0d̃0[n −
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1]) = gH
0 x̄0[n]. This leads to an alternative structure of the

DFE shown in Figure 3. There, the forward filter estimates
the desired signald0[n] from the transformed observation
x̄0[n], where the part of the interference in the original ob-
servation vectorx0[n] caused by the transmission of prior
symbol decisions̃d0[n− 1] is removed.

x0[n]
x̄0[n] d̂0[n]

d̃0[n]gH
0

δ[n− 1]
d̃0[n− 1]

Q(·)

σ−2
d0
Rx0,d0

+

−

Fig. 3. Alternative DFE Structure

4. MULTI-STAGE MMSE DECISION FEEDBACK
EQUALIZER

The previous defined matrixRx̄0 is the covariance matrix
of the transformed observation̄x0[n]. Besides, it can easily
be shown thatrx0,d0 = rx̄0,d0. Thus, the forward filterg0

in Equation (10) is the solution of the Wiener-Hopf equation
Rx̄0g0 = rx̄0,d0, and therefore the WF to estimate the de-
sired signald0[n] from the transformed observation̄x0[n].

Now, we approximate the WFg0 by the rankD MSWF
as described in Section 2 and get the rankD Multi-Stage
Decision Feedback Equalizer(MSDFE) with the forward
filter

g
(D)
0 = T̄

(D)
(
T̄

(D),H
Rx̄0T̄

(D)
)−1

T̄
(D),H

rx0,d0 , (12)

and the feedback filter

f
(D)
0 = −σ−2

d0
RH
x0,d0

g
(D)
0 . (13)

The columns of the pre-filter matrix̄T
(D)

are the base vec-
tors of the Krylov subspaceK(D)(Rx̄0 , rx0,d0) and may
be computed by the Lanczos algorithm as shown in Sec-
tion 2. The rankD MSDFE achieves the mean square error
(cf. Equation 9)

ξDFE

(
g

(D)
0 ,f

(D)
0

)
= σ2

d0
− g(D),H

0 Rx̄0g
(D)
0 . (14)

5. APPLICATION TO AN EDGE SYSTEM

In the following, we consider an EDGE system with 8PSK
modulation andLaurent pulse shaping. The Laurent im-
pulse is a linearized GMSK impulse [12] which has a dura-
tion of five symbol times. Thus, we have severe intersym-
bol interference even without channel distortion. The sym-
bol timeT = 3.69µs and the two antennae of the mobile
station receive the signal of a base station which propagates
over Rayleigh multipath fading channels with a delay spread

of τmax = 10µs or three symbol times. Note that the sec-
ond antenna is not really necessary but it makes the problem
of equalization easier but also increases dimensionality by
a factor of two. We assume a constant channel during one
burst with148 symbols (excluding guard symbols).

The MSWF for a linear equalizer and the MSDFE are
used as equalizer filters for the received signal at the mobile
station. We sample two times during one symbol duration.
If we use the MSWF, we take20 samples of each antenna
to build the space-time observation vectorx0[n], thus, its
dimensionN = 40 and if we choose the MSDFE, we take
only 15 samples, i. e.N = 30, because of the additional
M = 10 feedback taps. We keep the total number of taps
N +M constant in order to compare fairly both equalizers
(M = 0 for the MSNWF).
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Fig. 4. BER for known channel

Figure 4 plots the rawBit Error Rate (BER) over the
Signal to Noise Ratio(SNR) in dB for either the MSWF
or the MSDFE with different ranksD. We assume perfect
channel knowledge at the mobile station. Firstly, the nonlin-
ear MSDFE outperforms the corresponding linear MSWF
with the same rankD. Moreover, the MSDFE with rank4
is even better than the optimum WF despite the enormous
reduction in computational complexity. Secondly, the rank
6 MSDFE is a good approximation of the optimum DFE
whereas the BER of the rank6 MSWF is still higher than
the BER of the optimum WF at the same SNR.

This fact is further confirmed by Figure 5 which shows
the BER of the MSWF and the MSDFE over the rankD at
SNR= 15 dB. It can be seen that subject toD, the MSDFE
converges much faster to the optimum than the MSWF. This
is due to the fact that the observation vector of the MSDFE
(N = 30) has less dimensions than the observation vector of
the MSWF (N = 40). Note that despite the smaller forward
filter length, the rankD MSDFE has a lower BER than the
rankD MSWF for allD.
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Fig. 5. BER for known channel at SNR= 15 dB
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Fig. 6. BER for estimated channel

Finally, we see the BER over SNR for either the MSWF
or the MSDFE in Figure 6, where the necessary statistics
is derived from a channel matrix estimated vialeast squares
method[13] from the26 training symbols of a burst. The re-
sults are slightly worse than the simulation results for known
channel in Figure 4, but again, the MSDFE beats the MSWF
in performance or computational complexity.

Besides lowering computational complexity, the MSWF
improves performance in cases of low sample support where
there are not enough training symbols or data snapshots to
average over in estimating either the cross-correlation vec-
tor or the covariance matrix. However, the simulation ex-
amples presented in this paper had adequate sample support
so that we focus mainly on the reduction in computational
complexity.

6. CONCLUSIONS

In this paper, we derived a reduced rank DFE based on the
MSWF. Simulation results of an application to an EDGE
system showed that the MSDFE outperforms the even more
computational intensive optimum linear WF. Besides, less
dimensionsD are necessary to achieve the performance of
the corresponding full rank optimum filter, i. e. the DFE for
the MSDFE and the WF for the MSWF.
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