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ABSTRACT munication systems, nonlinear processing is necessary [7]

because radio channels possess nulls in their spectral char-

Compared to wired channels, “”?e d|sper3|ve radio Chan_acteristics. Théecision Feedback Equaliz¢DFE) intro-
nels possess more frequent nulls in their spectral character-

L ; : duced by Austin [8] is one possible nonlinear approach but
istics. Thus, the performance of linear filters to compen- . ; :

; . . has high computational complexity as well as the WF.
sate intersymbol interference degrades dramatically. The . . ; .

: o ) Zoltowski et al. [9] applied &onjugate Gradient al-

well-known nonlineaDecision Feedback EqualizéDFE) ; . L
) . X . ; gorithmwith decision feedback and structured channel es-
is one approach to improve this behavior. However, in sys-

: . . . . . . timation to Digital TV which employs a 8-VSB modula-
tems with observations of high dimensionality, the optimum _. .
! ; : . tion scheme with no memory. Sun et al. [10] analyzed the
DFE structure is computational intensive.

In this paper, we apply the method of tMulti-Stage asymptotic performance of a Krylov subspace based DFE

Wiener Filter (MSWF) to a conventionaWlinimum Mean na multi-user f?”d multi-antenna system.. Qur contribution
; is to apply the ideas of the MSWF to tiMinimum Mean

Square Error(MMSE) DFE in order to reduce computa- . .

; ; I . Square Error(MMSE) implementation of the DFE and an-

tional complexity. The application of the new algorithm to

: alyze the performance of its application to Bnhanced
an Enhanced Data rates f.o.r GSM EVOIuti¢BDGE) sys- Data rates for GSM Evolutio(EDGE) system which suf-
tem demonstrates the ability to outperform the even more

: . - ) fers from severe intersymbol interference due to pulse shap-
computational intensive linedifiener Filter (WF). ing as well as multipath. Since EDGE implies a modula-
tion technique with memory, the problem of applying the

1. INTRODUCTION MSWF to a DFE for EDGE is different from the applica-
_ _ _ tion to a DFE for Digital TV.
The Wiener Filter (WF) [1] estimates an unknown signal The next section reviews briefly the MSWF. Before the

from the observation signal in thdinimum Mean Square  derivation of the Multi-Stage DFE in Section 4, we intro-
Error (MMSE) sense exploiting only second order statis- duce the DFE in Section 3. Finally, in Section 5, we present
tics. In applications with observations of high dimension- simulation results of the application to an EDGE system.
ality, the required inversion of the covariance matrix of the Throughout the paper the covariance matrix of a veefol
observation vector implies high computational complexity. is denoted byR, = E{z[n]xz"[n]}, the cross-correlation
Goldstein et al. developed an computationally cheap ap-pbetween the vectotsn] andy[n] is Ry, = E{m[n}yH[n}},
proximation of the WF, the so-calledulti-Stage Wiener  the cross-correlation between a vectdn] and a scalad[n]
Filter (MSWEF, [2]). More recently, Honig et al. [3] showed s r+.q = E{x[n]d*[n]}, and the variance of a scaldjn]
that the MSWF is the solution of the Wiener-Hopf equa- is 02 = E{|d[n]|?}. The operation(-)™ denotes conjugate
tion in theKrylov subspacef the covariance matrix of the  transpose.
observation vector and the cross-correlation vector between
the observation and the desired signal. Therefore., dme-
zos algorithmmay be used to compute the reduced rank fil-
ter weights [4]. Note that compared to the MSWF, meth- Thewiener Filter(WF) minimizes themean square error
ods based on eigen subspaces like Fhicipal Compo-
nent Method5] or the more sophisticate@ross Spectral §o (w)
Method[6] are suboptimum when the sample supportis low. .
Nevertheless, all mentioned methods to reduce complexi. . the variance of the errak[n] — do[n], where the esti-
ity are based on the optimum linear filter. In mobile com- matedy[n] = w"x,[n] is obtained by applying the linear

2. MULTI-STAGE WIENER FILTER

030 —2Re {ermo,do} +w' Ry w, (1)
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Fig. 1. MSWF as Filter Bank

filter w € C¥ to the observation signaly[n] € CV. This
design criterion leads to th&iener-Hopf equation

Rwowo = rwo,duv

(2)

whose solution, the Wkvg, achieves theMinimum Mean
Square Eror(MMSE) &(wo) = 03, — Two dono T do-
Figure 1 sketches the block diagram of Walti- -Stage
Wiener Filter(MSWEF, [2]), an alternative representation of
the WF. The first filtert; is the normalized matched filter
Tao.do/ I720.do |2 @Nd thei-th filter £; maximizes the real
part of the correlation between its outplyfn] and the out-

put d;,_1[n] of the previous filtert;_;. If we restrict the
filters ¢; to be orthonormal, théth filter can be computed
via the following optimization [4]:
t; = argm?xE {Re {d;[n]d;_,[n]}}
3)
s.t: tt=1 and t't, =0, 1<k<i.
The solution is thé\rnoldi iteration(e. g. [11])
i—1
1 Pr) Reotiy
k=
t: ( ! ) " eV, 4)

RCERDET|

with the projectorP;, = 1y — ¢t onto the space orthog-

onal tot;, and theN x N identity matrix1y. SinceR,, is

Hermitian, we can use tHeanczos algorithm
P, P, 2R, ti

—5 — (5)
HP2—1P2—2Rwotz—1”2
which leads to a tridiagonal covariance matiyg of the
pre-filtered observation vectelin] = [di[n],...,dn[n]] .
The scalar WFsy; estimate the output of the previous filter
d;—1[n] from the error signai;[n].

The MSWF of rank D is obtained by neglecting the
signaldp[n]. Thus, theD-dimensional observation vector
dP)[n] = TP)Hgi[n], where the pre-filter matrig(?) =
[t1,...,tp] € CN*P implies only the firstD filter vec-
tors. The reduced dimension \NLEle) € CP estimates
do[n] from dP)[n], and the rankD approximation of the
full-dimensional Wrw|” = T™®w” € CV can be ex-
pressed as

D) _ (D) (T<D>,H RwT(D)) '

t; =

(D)H

(6)

rwu,doa

which yields to the mean square error

o (wh”) = of, —wi™" 7)

Note that the rankD MSWF is equivalent [3, 4] to the
solution of the Wiener-Hopf equation in tiie-dimensional
Krylov subspacéCP) (R, , Tz, .4,) Where(P) (A, b) =
span{[b, Ab,..., AP~ Vp]}.

RwowéD).

3. MMSE DECISION FEEDBACK EQUALIZER

The Decision Feedback EqualizéDFE, [8, 7]) considers
not only the observation signaly[n] but also prior sym-
bol decisionsdy[n — 1] = §[n — 1] * dp[n] with dy[n] =
Q(cio[ ]). to estimate the desired sign&[n], i.e.do[n] =
g"xo[n] + fHdo[n — 1]. The operation#’ denotes convo-
lution, the functionQ(-) quantization or hard decision, and

d[n—1]=1[0[n—1],...,6n— M]" € {0,1}M.

do[n] RY s coln]

wofn] = off | =0 "L Q0] = doln)
Jo[n — 1} J

£3 fe—{ 8l — 11|

Fig. 2. MMSE Decision Feedback Equalizer

In this paper, we restrict ourselves to the WF version
of the DFE depicted in Figure 2. Thus, the forward filter
go € CV and the feedback filtef, € CM are the results
of the minimization of the mean square eréeee(g, f) =
E{|do[n] — do[n]|?},i. €.

{90, fo} = arg min &pre (g, f) - (8)
{g.f}

For the solution, we assume that the previous M sym-
bols have been decided correctlys[n — 1] = do[n — 1].
Thus,rdmdo = Q, andRGi0 = U?zolM and the mean square
error can be written as

gDFE (g7 f) = 0—50 - 2Re {gHrwo,do} + gHRmog

F2Re g Ry f 4 2 00
We defineRz, = Re, — 0, Ray.a, Rl 4, and getthe
forward and feedback filters
9o = R;Ulrwo,du and f, = _0-5702R20,d090a (10)
respectively, achieving the MMSE of the DFE
Eore (90, Fo) = 0ay — Thag,ao Rz Todo- (1)

If we use Equation (10), we get the following expression
for the estimateido[n] = gh (zo[n] — 05 Ray,a,do[n —
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1]) = gh'®o[n]. This leads to an alternative structure of the of 7max = 10 us or three symbol times. Note that the sec-
DFE shown in Figure 3. There, the forward filter estimates ond antenna is not really necessary but it makes the problem
the desired signaly[n] from the transformed observation of equalization easier but also increases dimensionality by
Zo[n], where the part of the interference in the original ob- a factor of two. We assume a constant channel during one
servation vector,[n] caused by the transmission of prior burst with148 symbols (excluding guard symbols).
symbol decisionsly[n — 1] is removed. The MSWEF for a linear equalizer and the MSDFE are
used as equalizer filters for the received signal at the mobile
do[n] station. We sample two times during one symbol duration.
If we use the MSWF, we tak20 samples of each antenna
to build the space-time observation vectey{n], thus, its
dimensionN = 40 and if we choose the MSDFE, we take
only 15 samples, i.eN = 30, because of the additional
Fig. 3. Alternative DFE Structure M = 10 feedback taps. We keep the total number of taps
N + M constant in order to compare fairly both equalizers
(M = 0 for the MSNWF).

4. MULTI-STAGE MMSE DECISION FEEDBACK

10°
EQUALIZER

The previous defined matriRz, is the covariance matrix 19! . =V g
of the transformed observatidhy[n]. Besides, it can easily S G e
be shown that'y, 4, = Tz,.4,- Thus, the forward filtey, . *§\~E\E~*WN
in Equation (10) is the solution of the Wiener-Hopf equation 1%: o
Rz,90 = Tz,.4, and therefore the WF to estimate the de- @ \‘i\ a
sired signaliy[n] from the transformed observatian [»]. 1072 E DEE (Rank30) <

Now, we approximate the W§, by the rankD MSWF - —— MSDFE Ranks .
as described in Section 2 and get the rdniMulti-Stage 04 L —— \I)/IV'S:[()EE Ezg)kzt N

. . . . E: -—3-- an
DECISIOH Feedback Equaliz€MSDFE) with the forward . MSWE Ranks
filter Jgos L% MSWE Rankd

D —(D) (;=(D),H —(D)\ ! =(D)H 0 2 4 6 8 10 12 14 16 18 20

gt =T (T R, ) TPy 0, (12) SNRIdE

and the feedback filter Fig. 4. BER for known channel

(D) _ _ _—2pH (D)
Foo = =0uy Baya090 - (13) Figure 4 plots the ravBit Error Rate (BER) over the
Signal to Noise Rati¢SNR) in dB for either the MSWF
or the MSDFE with different rank®. We assume perfect
channel knowledge at the mobile station. Firstly, the nonlin-
ear MSDFE outperforms the corresponding linear MSWF
with the same ranlD. Moreover, the MSDFE with rank
is even better than the optimum WF despite the enormous
(D) (D) 5 (D).H (D) reduction in computational complexity. Secondly, the rank
$orFE (90 Jo ) =04, ~ 90 Raygo - (14) 6 MSDFE is a good approximation of the optimum DFE
whereas the BER of the ratkMSWF is still higher than
5. APPLICATION TO AN EDGE SYSTEM the BER of the optimum WF at the same SNR.
This fact is further confirmed by Figure 5 which shows
In the following, we consider an EDGE system with 8PSK the BER of the MSWF and the MSDFE over the rablat
modulation andLaurent pulse shaping The Laurent im-  SNR= 15dB. It can be seen that subjectiiy the MSDFE
pulse is a linearized GMSK impulse [12] which has a dura- converges much faster to the optimum than the MSWF. This
tion of five symbol times. Thus, we have severe intersym- is due to the fact that the observation vector of the MSDFE
bol interference even without channel distortion. The sym- (IV = 30) has less dimensions than the observation vector of
bol timeT" = 3.69 us and the two antennae of the mobile the MSWF (V = 40). Note that despite the smaller forward
station receive the signal of a base station which propagatedilter length, the rankD MSDFE has a lower BER than the
over Rayleigh multipath fading channels with a delay spread rank D MSWF for all D.

The columns of the pre-filter matrik'” are the base vec-
tors of the Krylov subspack”)(Rgz,,7,.4,) and may

be computed by the Lanczos algorithm as shown in Sec-
tion 2. The rankD MSDFE achieves the mean square error
(cf. Equation 9)
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10° ‘ ‘ ‘ 6. CONCLUSIONS
x  MSDFE 3
o II\D/IFSI\EN(E =30) ] In this paper, we derived a reduced rank DFE based on the
=00 N N O N A WF (D = 40) MSWEF. Simulation results of an application to an EDGE

system showed that the MSDFE outperforms the even more
o computational intensive optimum linear WF. Besides, less
o : dimensionsD are necessary to achieve the performance of
@ the corresponding full rank optimum filter, i. e. the DFE for

"""""""""""" &0 00900000004 the MSDFE and the WF for the MSWF.
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