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Abstract— Future wireless personal and sensor networks will be
established by a huge number of mobile nodes with transceiver capa- u

bilities. In this context, cost aware and power efficient technologies 4 s(t) s il 7.(t)
have attracted considerable attention. A proven technology for phys- — CPM » h(t) —p—>
ical layer cost reduction is the use of Continuous Phase Modulation -

(CPM) and hard (amplitude) limiting receiver structures that sub- Modulator  Propagation

stantially reduce the cost for the analogue domain of the receivers. Channel

The major penalty of those systems is their failure in severe inter-

symbol-interference (ISI) environments even in combination with Max- (a) Sender and propagation channel

imum Likelihood Sequence Estimation (MLSE) decoders.

In this paper we present a family of new MLSE based decoders that
improve the ISI performance to such an extent that receiver struc- () r(t) 4.(0) 40 R
tures with hard limiter become an attractive alternative to the expen- — 5l hgp(t) » arg(s) —» ~“» EQ/D Yy,
sive linear receivers. The most powerful equalizers for such nonlin-

ear receivers are phase-space equalizers: MLSE decoders for phase Bandpass Phase Sampler  Equalization
detection generally use a Look-Up-Table (LUT) consisting of the phase Detector Decision
values of the desired signal [1]. The key idea of the new decoder is

to use a LUT that additionally includes amplitude values associated (b) Phase detection receiver

with the phase values. Based on this information metrics with dif-
ferent and feasible complexity are derived. By means of simulations
the performance of a GMSK transmission system is examined for a
set of representative channels. Resulting bit error ratios (BERS) are
compared with BERs for state-of-the-art decoders.

Fig. 1. System model

in [5]. The complex LUT allows to deduce new Maximum Like-
lihood (ML) based decoders that outperform today’s state-of-the-
I. INTRODUCTION art receivers.

Future wireless networks will provide high data rates, multiple In Section Il the considered system model with the examined
services, high flexibility and will be heterogenous. The networksmodel channels is introduced. Section Il describes the new ML
will be ad hoc organized and a huge number of nodes can padecoder and shows bit error ratio (BER) simulation results com-
ticipate in an entire network. For personal, pervasive and in parPared to a "State-of-the-art” decoder. In Section IV some approx-
ticular for sensor networks low cost and low power technologiesmations of the metric are given which establish a family of ML
will play an essential role [2] [3] [4]. Hard amplitude limiting re- based decoders with scalable complexity and performance.
ceivers are known as very low cost receiver types. Compared to
linear receivers power consumption and hardware effort can be Il. SYSTEM MODEL
reduced. Due to the amplitude limitation the dynamic range of Representative for Continuous Phase Modulation (CPM) a GMSK
those systems is minimized and no adaptive gain control (AGC}ransmission system is considered. The block diagram is shown
circuit is required. in Fig.1. The system is described in its equivalent baseband rep-
However, these receivers fail in multipath propagation where seresentation. The transmit signal is
vere intersymbol interference (ISI) is present. State-of-the-art re-

ceivers use phase values to perform a Maximum Likelihood Se- S(t) = exp(jes(t))
quence Estimation (MLSE)[1]. Reference phase values are stored ) Q)
in a Look-Up-Table (LUT) which is the basis for the computing =exp| jmh- % (a(k)-at—KkTg)) |,

of a decision cost function. These phase values (also denoted de-
sired phases) are approximately a priori known — at least for idealvherea (k) € {—1,1} are binary symbols and(t) is the phase

propagation channels. pulse.

The key idea of this paper is to extend the LUT by amplitude val- t

ues which means that the LUT is complex. Therefore, an estima- qt) = /g(r)dr )
tion of the channel impulse response (CIR) is performed using an oo

appropriate training sequence. Note, that the estimation is onlyt) js the GMSK frequency pulse as described in BT (= 0.3).

based on phase samples which can be provided by a hard limitgty the impulse response of the propagation chahgg) the
receiver — no additional envelope detection is required. The estippyt signal of the receiver is:

mation of the complex CIR on basis of phase samples is shown
re(t) = s(t) = he(t) + w(t) 3)
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Where@d is the noiseless ("desired”) phase sequence associated

with the Ith symbol sequencg (). This probability density ac-
2 2 tually depends on the instantaneous signal-to-noise ratio (SNR).
19 19 Since the SNR is not known it is assumed to be constant in liter-
1 1 ature and the density is approximated: In [7] a Gaussian approx-
o5 o5 imation is used and in [1] the density is computed for a constant
SNR. This method yields best results to the author’s knowledge
fo ™10 2 1% 140 150 fo 10 @ 10 140 10 and is called "State-of-the-art” decoder.
In [5], for the first time, a method is proposed to estimate the
(2)1— D channel (b) 1— D? channel complex desired values!) (k) on basis of phase samples.
Fig. 2. Amplitude of model channels d(l)(k) = |d(|)(k)| : eXp(‘Pé”(")) (11)

Neglecting the impact of the bandpass filter, the complex desired

w(t) is complex symmetrical additive white Gaussian noisevaluesd' (k) correspond to samples of the channel's output sig-

(AWGN) with the two sided spectral noise power dendily/2. ~ nalsc(t). Itis shown that!) (k) can be estimated nearly perfectly
With even for critical channels [5] [8]. With it, a new ML decoder with

known CIR can be deduced:
r(t) = re(t) * hgp(t)

. 4 -
= Ir(t)]- exp(jgr(t)) maxp (@ |d") (12)
the output of the sampler is the sum of a desired (reference) phasle dard MLSE hes the di ) fth
@,(K) value and a noise componelh(K): n contrast to standar S approaches the dimension of the re-
ceived signal (real) and the desired signal (complex) are different.
@ (k) = @y(k) +Ap(k), (5)  Itis assumed thad(k) is perturbed by complex white Gaussian
phases distributed withif-7z, 7. noise. Therefore, the phase errors are statistically independent

The simulations in this paper are based on exemplary mode"TmOI (12) can be factorized:
channels representing typical propagation environments. An
ideal propagation channel

represents good and moderate conditions. The second model I kil
channel introduces large and critical ISI. The impulse response
e g P P =max[] (80”00 4" ()
he(t) = o(t) — 3(t —Tg) @)
It is denoted ad — D-channel, wher® represents the delay op- The probability densityp(A(p(U(k) ‘\d('>(k)|) is given by
erator with a delay of one symbol duratidnTg. This channelin-  Pawula in [9]:
troduces amplitude zeros as exemplarily shown in Fig.2(a). The
third channel is an example for an extremely critical ISI channel.  Pagy, (A9(K)|P(K))

— 5t — exp(—p(k k .

Me(t) = 5(t) —6(t — 2Tg) @ PPl PN (- sitiaek))  (14)
. 2 . . rr an

This 1 — D“-channel introduces amplitude zeros over several

symbol periods which theoretically can result in a full zero- ~cos(A(p(k))-erfc(f\/ p(k) COS(A‘P(k)))

amplitude burst. The amplitude is shown in Fig.2(b).

The bandpass is assumed to have Nyquist characteristic.

maxp ((ﬁ ’oT“)

(15)
I1l. NEW MAXIMUM LIKELIHOOD DECODER WITH KNOWN . ) . .

CIR The signal-to-noise ratip (k) is also known from the channel es-
timation. So, the new decoder can be implementgglis a sys-
tem parameter which is determined by the quality of the amplifier
stages of the receiver. For practical reasons the Log-Likelihood
function is implemented and the resulting metric is:

Generally, the Maximum Likelihood approach for phase de-
tection of a symbol sequenceis given by the maximum of the
probability density function:

g = a g
a=TaeP (a[a®) @) & Do |o®
. ‘ . min{ — 3 In Pagip (Acp (k) ’p (k)) (16)
Up to now, since only phase samples are available at the receiver, ' K=1
the state-of-the-art decoders use a phase LUT. Therefore, this ap-

proach could be written as a) Simulation results: Fig.3 shows simulation results for
the 1 — D-channel. At a BER 0fl0~2 the performance of the
maxp <¢( ’@ d('> ) ) (10) State-of-the-art decoder is ab@atB worse than the performance

| ;
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The weighting of the phase difference by the amplitude seems
reasonable whereas the usage of the squared of the amplitude
seems to be arbitrary. The metric can be modified by the ex-
ponent of the amplitude:

min ¥ 14091 [exeia () - exeigf) () ST

Simulations have shown that a linear amplitude weighting yields

—=— New decoder :
4~ State-of-the-ar best performance:
_g| Optimum linear j . j j o
10 0 2 4 6 £ /NS (d] 10 12 14 16 KOp'[ =1 (20)
v A further simplification is to approximate the difference of the
Fig. 3. BER forl— D-channel phasors from (19) by the phase difference.

min 409109 g ]
- mlingm(l)(k)\. ‘A(p(l)(k)‘z )

with |ap!) (k)| € [0, 71]. This metric is the simplest way to use the
weighting function.
From (14) can be seen that not the amplitude but the instanta-

—=— New decoder ﬁ neous SNRp(k) determines the probability density function of
—a— Stat_e—of—t_he—ar i . . 2 .
l==Cptmumlinear | the phase. (Using(k) instead ofid(k)|“ in the metrics does not
o 2 4 GEb’Nso g M change the decoder’s performance because the minimum search
is independent of a constant factor.)
Fig. 4. BER forl— D2-channel Equation (19) looks similar to Ariyavisitakul's approximation of

pAw‘p(Aqo(k)\p(k)) in [10] which results in the metric:

of the new decoder. Its loss compared to the optimum linear re- 1 p(')(k)

ceiver is only aboudB. The same simulations have been done min = Z (2 In +

for the 1 — D2-channel. In this case the State-of-the-art decoder n (22)
fails more or less whereas the new decoder keeps unaffected . . 2

pagly P9 [exat i (k) - explief (0)|*)

This metric has a major advantage compared to the simpler

weighting metrics. For the metrics in (19) and (21) zero am-

The complexity of the receiver is essentially determined by theplitudes yield zero costs: For propagation channels that intro-
metric of the decoder. With the density in (14) the metric of the y,ce zeros over several symbol periods, liketheD2-channel

new phase decoder (16) is very complex. Therefore, approxiz sefyl decision is not possible, because the transitions associ-
mated metrics with lower complexity are derived, here. All met- 504 with the zeros have minimum costs anyway. However, the
rics assume statistically independent noise samples. For a lin€@fst term of the sum in (22) prevents this effect. Fik) < 1
receiver the Euclidean metric is optimal: this term determines the sum and causes higher costs for zero am-
2 plitudes.

’ 17 A simpler Gaussian approximation

IV. METRIC APPROXIMATIONS

mlin% ‘r(k)fd(')(k)

The phase detector is not able to detg¢k)|. The idea is to Ak ~ 1
replacejr (k)| by its hypothesisd() (k)|: PAg(K) ~ \/ﬁgg)(k) exp ~2(60)(k))
o

Ap
min 3 [Ir ol exatigr () - a0 expt i) ()| with . o
< 1O o alexct il o)~ 72100 N
~ mﬂ”% “d( )(k)|exp)(1qq(k)) B Id( >(k)|exp(j(pc(i )(k))‘ (18) results in the metric:
=min3 409 exp(ir () ~expligl (k)| miny (~oiinid 0]+ d" W Eee" )?)  25)

The result is a new metric that weights the phase difference byhis metric looks similar to (21) and again promises to outper-
the amplitude. Since large phase errors occur usually at low anform (21) for thel — D2-channel. For low SNR this approxima-
plitudes their relevance decreases through this metric. tion deteriorates because the niyddistribution of the phase is
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TABLE |
COMPLEXITY OF METRICS

Label Equation | + | - In
simpl. AWP (21) 112] 0
AWP-1 (29) 3|3 0
Gauss (25) 2 |4 1
Ariya (22) 4 |5 1
CGuU (28) 2 | 4] 1Q(

ignored. Therefore, the integral fromrt to 1T over this density

is not 1. A normalized Gaussian distribution where the integral

is 1 is given in (26) where the indekis neglected for a better
visibility:

P(Ag) ~
o) el ) e
0, else

(26)

Q(x) is the well known function:

Q= / exp( )z (27)

A better way to handle the phases being outsidg-of, 17 is to

approximate their distribution by a uniform distribution. Here, a

compound Gaussian and uniform approximation is proposed:
p(Ag) ~

an: \/ZJT-U eXp( 2;;2 ) + Puni - for [Ag| < 7T (28)

0, else

an is determined in a way that the integral is 1.

An estimation of the complexity is done by means of the num-
ber of required multiplications, additions, logarithms. The com-

puting of a, from (28) is difficult. Thereforea, is assumed to

BER

=V(on)

< Ariya

10" > simpl.AWP
Gauss

—-= AWP-2

- p(@p)

1075 T T i i i
-6 -4 -2 0 2 4 6
SNR[dB]

Fig. 5. BER for metric approximationsl,— D-channel

V. CONCLUSION

A new MLSE decoder for phase detection with hard limiting
receiver was presented. In severe ISI channels it outperforms
state-of-the-art decoders to a very high extent. Even in critical ISI
this receiver structure achieves a performance which is competi-
tive to that of expensive linear structures. With a family of sim-
pler approximated metrics the employment of the new decoder
becomes scalable in complexity and performance.
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