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Abstract— Future wireless personal and sensor networks will be
established by a huge number of mobile nodes with transceiver capa-
bilities. In this context, cost aware and power efficient technologies
have attracted considerable attention. A proven technology for phys-
ical layer cost reduction is the use of Continuous Phase Modulation
(CPM) and hard (amplitude) limiting receiver structures that sub-
stantially reduce the cost for the analogue domain of the receivers.
The major penalty of those systems is their failure in severe inter-
symbol-interference (ISI) environments even in combination with Max-
imum Likelihood Sequence Estimation (MLSE) decoders.
In this paper we present a family of new MLSE based decoders that
improve the ISI performance to such an extent that receiver struc-
tures with hard limiter become an attractive alternative to the expen-
sive linear receivers. The most powerful equalizers for such nonlin-
ear receivers are phase-space equalizers: MLSE decoders for phase
detection generally use a Look-Up-Table (LUT) consisting of the phase
values of the desired signal [1]. The key idea of the new decoder is
to use a LUT that additionally includes amplitude values associated
with the phase values. Based on this information metrics with dif-
ferent and feasible complexity are derived. By means of simulations
the performance of a GMSK transmission system is examined for a
set of representative channels. Resulting bit error ratios (BERs) are
compared with BERs for state-of-the-art decoders.

I. I NTRODUCTION

Future wireless networks will provide high data rates, multiple
services, high flexibility and will be heterogenous. The networks
will be ad hoc organized and a huge number of nodes can par-
ticipate in an entire network. For personal, pervasive and in par-
ticular for sensor networks low cost and low power technologies
will play an essential role [2] [3] [4]. Hard amplitude limiting re-
ceivers are known as very low cost receiver types. Compared to
linear receivers power consumption and hardware effort can be
reduced. Due to the amplitude limitation the dynamic range of
those systems is minimized and no adaptive gain control (AGC)
circuit is required.
However, these receivers fail in multipath propagation where se-
vere intersymbol interference (ISI) is present. State-of-the-art re-
ceivers use phase values to perform a Maximum Likelihood Se-
quence Estimation (MLSE)[1]. Reference phase values are stored
in a Look-Up-Table (LUT) which is the basis for the computing
of a decision cost function. These phase values (also denoted de-
sired phases) are approximately a priori known – at least for ideal
propagation channels.
The key idea of this paper is to extend the LUT by amplitude val-
ues which means that the LUT is complex. Therefore, an estima-
tion of the channel impulse response (CIR) is performed using an
appropriate training sequence. Note, that the estimation is only
based on phase samples which can be provided by a hard limiter
receiver – no additional envelope detection is required. The esti-
mation of the complex CIR on basis of phase samples is shown
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Fig. 1. System model

in [5]. The complex LUT allows to deduce new Maximum Like-
lihood (ML) based decoders that outperform today’s state-of-the-
art receivers.
In Section II the considered system model with the examined
model channels is introduced. Section III describes the new ML
decoder and shows bit error ratio (BER) simulation results com-
pared to a ”State-of-the-art” decoder. In Section IV some approx-
imations of the metric are given which establish a family of ML
based decoders with scalable complexity and performance.

II. SYSTEM MODEL

Representative for Continuous Phase Modulation (CPM) a GMSK
transmission system is considered. The block diagram is shown
in Fig.1. The system is described in its equivalent baseband rep-
resentation. The transmit signal is

s(t) = exp( jφs(t))

= exp

(
jπh·∑

k

(
α(k) ·q(

t−kTS

))
)

,
(1)

whereα(k) ∈ {−1,1} are binary symbols andq(t) is the phase
pulse.

q(t) =
t∫

−∞

g(τ)dτ (2)

g(t) is the GMSK frequency pulse as described in [6] (BT = 0.3).
With the impulse response of the propagation channelhc(t) the
input signal of the receiver is:

rc(t) = s(t)∗hc(t)+w(t) (3)
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Fig. 2. Amplitude of model channels

w(t) is complex symmetrical additive white Gaussian noise
(AWGN) with the two sided spectral noise power densityN0/2.
With

r(t) = rc(t)∗hBP(t)

= |r(t)| · exp( jφr (t))
(4)

the output of the sampler is the sum of a desired (reference) phase
φd(k) value and a noise component∆φ(k):

φr (k) = φd(k)+∆φ(k), (5)

phases distributed within[−π,π].
The simulations in this paper are based on exemplary model
channels representing typical propagation environments. An
ideal propagation channel

hc(t) = δ (t) (6)

represents good and moderate conditions. The second model
channel introduces large and critical ISI. The impulse response
is given by:

hc(t) = δ (t)−δ (t−TS) (7)

It is denoted as1−D-channel, whereD represents the delay op-
erator with a delay of one symbol duration1·TS. This channel in-
troduces amplitude zeros as exemplarily shown in Fig.2(a). The
third channel is an example for an extremely critical ISI channel.

hc(t) = δ (t)−δ (t−2TS) (8)

This 1− D2-channel introduces amplitude zeros over several
symbol periods which theoretically can result in a full zero-
amplitude burst. The amplitude is shown in Fig.2(b).
The bandpass is assumed to have Nyquist characteristic.

III. N EW MAXIMUM L IKELIHOOD DECODER WITH KNOWN

CIR

Generally, the Maximum Likelihood approach for phase de-
tection of a symbol sequence~α is given by the maximum of the
probability density function:

~̂α = max
~α (l)

p
(
~φr

∣∣∣~α(l)
)

(9)

Up to now, since only phase samples are available at the receiver,
the state-of-the-art decoders use a phase LUT. Therefore, this ap-
proach could be written as

max
l

p
(
~φr

∣∣∣~φd
(l) )

, (10)

where~φd
(l)

is the noiseless (”desired”) phase sequence associated

with the l th symbol sequence~α(l). This probability density ac-
tually depends on the instantaneous signal-to-noise ratio (SNR).
Since the SNR is not known it is assumed to be constant in liter-
ature and the density is approximated: In [7] a Gaussian approx-
imation is used and in [1] the density is computed for a constant
SNR. This method yields best results to the author’s knowledge
and is called ”State-of-the-art” decoder.
In [5], for the first time, a method is proposed to estimate the
complex desired valuesd(l)(k) on basis of phase samples.

d(l)(k) = |d(l)(k)| · exp
(

φ (l)
d

(k)
)

(11)

Neglecting the impact of the bandpass filter, the complex desired
valuesd(l)(k) correspond to samples of the channel’s output sig-
nalsc(t). It is shown thatd(l)(k) can be estimated nearly perfectly
even for critical channels [5] [8]. With it, a new ML decoder with
known CIR can be deduced:

max
l

p
(
~φr

∣∣∣~d(l)
)

(12)

In contrast to standard MLSE approaches the dimension of the re-
ceived signal (real) and the desired signal (complex) are different.
It is assumed thatd(k) is perturbed by complex white Gaussian
noise. Therefore, the phase errors are statistically independent
and (12) can be factorized:

max
l

p
(
~φr

∣∣∣~d(l)
)

= max
l

K

∏
k=1

p
(

φr (k)
∣∣∣d(l)(k)

)

= max
l

K

∏
k=1

p
(

∆φ (l)(k)
∣∣∣|d(l)(k)|

)
(13)

The probability density p
(

∆φ (l)(k)
∣∣∣|d(l)(k)|

)
is given by

Pawula in [9]:

p∆φ |ρ (∆φ(k)|ρ(k))

=
exp(−ρ(k))

2π
+

√
ρ(k)
4π

· exp
(
−ρ(k)sin2(∆φ(k))

)

· cos(∆φ(k)) · erfc
(
−

√
ρ(k)cos(∆φ(k))

)
(14)

ρ(k) =
|d(k)|2

σ2
w

(15)

The signal-to-noise ratioρ(k) is also known from the channel es-
timation. So, the new decoder can be implemented.σ2

w is a sys-
tem parameter which is determined by the quality of the amplifier
stages of the receiver. For practical reasons the Log-Likelihood
function is implemented and the resulting metric is:

min
l

{
−

K

∑
k=1

ln p∆φ |ρ
(

∆φ (l)(k)
∣∣∣ρ(l)(k)

)}
(16)

a) Simulation results: Fig.3 shows simulation results for
the 1−D-channel. At a BER of10−2 the performance of the
State-of-the-art decoder is about6dBworse than the performance
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Fig. 3. BER for1−D-channel
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Fig. 4. BER for1−D2-channel

of the new decoder. Its loss compared to the optimum linear re-
ceiver is only about1dB. The same simulations have been done
for the1−D2-channel. In this case the State-of-the-art decoder
fails more or less whereas the new decoder keeps unaffected
(Fig.4).

IV. M ETRIC APPROXIMATIONS

The complexity of the receiver is essentially determined by the
metric of the decoder. With the density in (14) the metric of the
new phase decoder (16) is very complex. Therefore, approxi-
mated metrics with lower complexity are derived, here. All met-
rics assume statistically independent noise samples. For a linear
receiver the Euclidean metric is optimal:

min
l

∑
k

∣∣∣r(k)−d(l)(k)
∣∣∣
2

(17)

The phase detector is not able to detect|r(k)|. The idea is to
replace|r(k)| by its hypothesis|d(l)(k)|:

min
l

∑
k

∣∣∣|r(k)|exp( jφr (k))−|d(l)(k)|exp( jφ (l)
d

(k))
∣∣∣
2

≈min
l

∑
k

∣∣∣|d(l)(k)|exp( jφr (k))−|d(l)(k)|exp( jφ (l)
d

(k))
∣∣∣
2

= min
l

∑
k

|d(l)(k)|2 ·
∣∣∣exp( jφr (k))−exp( jφ (l)

d
(k))

∣∣∣
2

(18)

The result is a new metric that weights the phase difference by
the amplitude. Since large phase errors occur usually at low am-
plitudes their relevance decreases through this metric.

The weighting of the phase difference by the amplitude seems
reasonable whereas the usage of the squared of the amplitude
seems to be arbitrary. The metric can be modified by the ex-
ponent of the amplitude:

min
l

∑
k

|d(l)(k)|κ ·
∣∣∣exp( jφr (k))−exp( jφ (l)

d
(k))

∣∣∣
2

(19)

Simulations have shown that a linear amplitude weighting yields
best performance:

κopt = 1 (20)

A further simplification is to approximate the difference of the
phasors from (19) by the phase difference.

min
l

∑
k

|d(l)(k)| ·
∣∣∣φr (k)−φ (l)

d
(k)

∣∣∣
2

= min
l

∑
k

|d(l)(k)| ·
∣∣∣∆φ (l)(k)

∣∣∣
2

(21)

with |∆φ (l)(k)| ∈ [0,π]. This metric is the simplest way to use the
weighting function.
From (14) can be seen that not the amplitude but the instanta-
neous SNRρ(k) determines the probability density function of
the phase. (Usingρ(k) instead of|d(k)|2 in the metrics does not
change the decoder’s performance because the minimum search
is independent of a constant factor.)
Equation (19) looks similar to Ariyavisitakul’s approximation of
p∆φ |ρ (∆φ(k)|ρ(k)) in [10] which results in the metric:

min
l

= ∑
k

(
−1

2
ln

ρ(l)(k)
π

+

ρ(l)(k)
∣∣∣exp( jφr (k))−exp( jφ (l)

d
(k))

∣∣∣
2
) (22)

This metric has a major advantage compared to the simpler
weighting metrics. For the metrics in (19) and (21) zero am-
plitudes yield zero costs: For propagation channels that intro-
duce zeros over several symbol periods, like the1−D2-channel,
a useful decision is not possible, because the transitions associ-
ated with the zeros have minimum costs anyway. However, the
first term of the sum in (22) prevents this effect. Forρ(k) ¿ 1
this term determines the sum and causes higher costs for zero am-
plitudes.
A simpler Gaussian approximation

p(∆φ(k))≈ 1√
2πσ (l)

∆φ (k)
exp


− (∆φ(k))2

2(σ (l)
∆φ (k))2


 (23)

with
σ (l)

∆φ (k) =
σw√

2· |d(l)(k)| (24)

results in the metric:

min
l

∑
k

(
−σ2

w ln |d(l)(k)|+ |d(l)(k)|2(∆φ (l)(k))2
)

(25)

This metric looks similar to (21) and again promises to outper-
form (21) for the1−D2-channel. For low SNR this approxima-
tion deteriorates because the mod2π distribution of the phase is
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TABLE I
COMPLEXITY OF METRICS

Label Equation + · ln
simpl. AWP (21) 1 2 0

AWP-1 (19) 3 3 0
Gauss (25) 2 4 1
Ariya (22) 4 5 1
CGU (28) 2 4 1Q(!)

ignored. Therefore, the integral from−π to π over this density
is not 1. A normalized Gaussian distribution where the integral
is 1 is given in (26) where the indexk is neglected for a better
visibility:

p(∆φ)≈




1

Q

(
− π

σ∆φ

)
−Q

(
π

σ∆φ

) · 1√
2πσ∆φ

· exp

(
− ∆φ2

2σ2
∆φ

)
, |∆φ |6 π

0, else

(26)

Q(x) is the well known function:

Q(x) =
1√
2π
·

∞∫

x

exp

(
ζ 2

2

)
dζ (27)

A better way to handle the phases being outside of[−π,π] is to
approximate their distribution by a uniform distribution. Here, a
compound Gaussian and uniform approximation is proposed:

p(∆φ)≈




an · 1√
2πσ∆φ

· exp

(
− ∆φ 2

2σ2
∆φ

)
+ puni , for |∆φ |6 π

0, else

(28)

an is determined in a way that the integral is 1.
An estimation of the complexity is done by means of the num-
ber of required multiplications, additions, logarithms. The com-
puting of an from (28) is difficult. Therefore,an is assumed to
be quantized and stored in additional memory. This reduces the
number of multiplications and additions but increases the hard-
ware effort. So, it must not be compared with the other metrics
except if the logarithms are also realized this way. As shown in
Table I the simplified amplitude-weighted phase metric (AWP)
needs the fewest number of operations. The metrics are sorted
according to its complexity.

b) Simulation results: The BER performance of the
metrics is shown in Fig.5 over the SNR (behind the bandpass).
Surprisingly, the performance of the AWP-2 metric is much
worse than the performance of the simplified AWP. AWP-1 is not
shown because it is quite similar to its simplified version. For
SNR < 2dB the compound Gaussian and uniform distribution
(CGU : puni = 1/(20π)) yields best results. For SNR≥ 4dB
Ariyavisitakul’s approximation achieves the best performance.
The Gaussian approximation is quite good between−4dB and
0dB.
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V. CONCLUSION

A new MLSE decoder for phase detection with hard limiting
receiver was presented. In severe ISI channels it outperforms
state-of-the-art decoders to a very high extent. Even in critical ISI
this receiver structure achieves a performance which is competi-
tive to that of expensive linear structures. With a family of sim-
pler approximated metrics the employment of the new decoder
becomes scalable in complexity and performance.
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