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ABSTRACT

Electronic equalizers, which have been used widely in wireless and
wireline communications, have recently been recognized as effec-
tive solutions for mitigating the impairments in the optical commu-
nications channel as well. Now with the increasing availability of
voltage-tunable integrated circuits for high speed operation, equal-
izers, in particular those based on the minimum mean-square er-
ror (MMSE) criterion have emerged as practical and cost-effective
solutions. Certain properties of the optical domain, however, are
different than other communications systems where these equaliz-
ers have been used. We study the effects of these properties on the
performance of the MMSE equalizers through eigenanalysis of the
input autocorrelation matrix.

1. INTRODUCTION

Physical impairments in the optical fiber, in particular, chromatic
dispersion, fiber nonlinearities, polarization effects, and amplified
spontaneous emission noise from the amplifiers, all interact, lim-
iting the data rate and/or the transmission distances. Solutions
for mitigating effects of these impairments are traditionally based
on techniques in the optical domain, i.e, before the detection.
The primary reason for this trend has been the background of re-
searchers working in the field, who are mostly device physicists.
Optical compensators, however, rely on adaptive optics and are
usually slow in responding to the system degradation, and are ex-
pensive and bulky devices. Electrical domain approaches based
on signal processing, on the other hand, offer great flexibility in
design and can be integrated within the chip sets at the receiver,
reducing bulkiness. Also, they can potentially operate after the
optical signal has been partially demultiplexed so that electrical
processing is done at a lower rate, hence substantially lowering
the costs.

The promise of signal processing approaches for optical com-
munications has been noted more than a decade ago [12], but their
successful demonstrations for high-speed optical communications
have appeared more recently (see e.g. [2] and the references therein).
In particular, it has been shown that equalizers based on the MMSE
criterion are effective in reducing the penalty due to polarization
mode dispersion (PMD), the primary source of inter-symbol and
inter-carrier interference (ISI and ICI) in installed terrestrial fiber
systems [3]. Experimental results at 10 Gbit/s use SiGe and GaAs
technology and implement the adaptive filter in the analog domain
through weighted tapped-delay lines using feedforward and deci-
sion feedback filter structures [2]. The coefficients of the filters
are adapted using gradient-descent type minimization techniques
through a control signal such as eye opening or an error monitor
[2], or by the practical least mean squares (LMS) algorithm [11].
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However, certain properties of the optical domain are differ-
ent than transmission media such as wireless and wireline where
the MMSE equalizers have widely been used. In optical systems,
bipolar signal transmission formats are seldom used, hence the
transmitted signal is non-zero mean and the use of photodetectors
that act as square-law devices at the receiver introduces a noncen-
tral and signal-dependent noise into the received signal, the input
of the equalizer. In this paper, we present eigenanalysis of the input
autocorrelation matrix when the input is a direct-detected nonzero
mean signal. We discuss how the properties of this signal affects
the eigenvalues of the signal when compared to the zero mean ad-
ditive noise input that is typically encountered in other communi-
cations applications. The results of the eigenanalysis are then ap-
plied to PMD equalization, an area where electronic equalizers are
shown to be particularly useful and practical. We then show how
eye opening penalty can effectively be reduced using equalization
with an all-order PMD model and a realistic receiver structure. We
use importance sampling to evaluate the performance for very low
values of outage probabilities efficiently. Issues in the implemen-
tation of MMSE equalizers for PMD mitigation are considered as
well as ways to improve the performance, such as by centralizing
the input.

2. EIGENANALYSISOF THE INPUT CORRELATION
MATRIX

Autocorrelation matrix of the input describes the behavior of MMSE
equalizers, in terms of their misadjustment, and convergence char-
acteristics when they rely on gradient optimization. In this anal-
ysis, we are interested in the deviation in the performance of the
adaptive algorithm in the presence of noncentral and multiplicative
noise as well as noncentral signal. The notation used in the analy-
sis is discrete as even when the filter is implemented in the analog
domain, its implementation is through a tapped delay line structure
and it is the samples taken at the sampling rate that determine the
behavior of the adaptive algorithm used.

Let the output of the photodetector be written as u(n) = (s(n)
+n(n))? where s(n) is the transmitted signal, n(n) is white am-
plifier noise, distributed A(0, o3) in the optical domain, prior to
detection. Even though the nonlinearities present in the fiber in-
troduces correlation to the amplifier noise in an optical system,
which is the dominant noise term, it can be assumed to be white
in the band of interest. Define v(n) = s2(n), w(n) = n*(n),
and the signal-dependent noise term {(n) = 2s(n)n(n). De-
fine the two autocorrelation matrices R = E[u(n)u” (n)] and
Ro = E[v(n)vT (n)] where the sample vectors are defined such
that they contain the last M samples, e.g., v(n) = [v(n),v(n —
1),...,v(n—M+1)]T. We can establish the relationship between
these two matrices by:

R =R+ ol + 8117 &N
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Fig. 1. (a) An example of the characteristics of f(A) forab x 5
matrix; (b) Close-up of the range shown in the top figure

where a = 02 + 4o, B = p2 + 2popw, and 1isthe M x 1
vector of all 1s. Note that g, = o3 and the variance of w(n) is
given by 203.

The noiseless correlation matrix Ro is a symmetric positive
definite matrix and can be written as Ry = QAo Q7T where Ag
is a diagonal matrix with all positive and real eigenvalues A >
A > .-+ > A%, on its diagonal, and Q is the orthogonal matrix
with its columns as the corresponding eigenvectors. Define

Q'RQ
Ao+ol+8Q"11"Q=G +Baq” (2

A

where the diagonals of G- are given by g; = A\? + o, and q =
Q"1 = [q1, 42, ...,qu]%, i.e, ¢; is the sum of the entries of the
ith eigenvector. Note that A and R are similar matrices, hence
they have the same eigenvalues.

The eigenvalues of A are given by the roots of the secular
equation [4]:

2
%
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M
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The characteristics of f() is shown in Figure 1 for a first-order
autoregressive (AR) process, with AR coefficient of 0.7 and 24
dB signal-to-noise ratio (SNR) defined as E[v?(n)]/E[(¢(n) +
w(n))?]. The proximity of zero crossings to the poles in f(\) will
allow a useful approximation as we show next. As observed in
the figure, roots of f(\) are bounded on the right by g;s, except
the maximum one. To obtain an approximation for the maximum

eigenvalue, rewrite equation (3) as:

M

fA)=1+8 ey

=2

Since f(\) has a pole at g1, the last term dominates the behavior of
f(X) for A > g1, and the second term, the sum of terms associated
with the other eigenvalues is almost constant in this region. Thus
we can write

Bai
g1 — Amax

M 2
q;
f(Amax) 1+ +

Solution of f(Amax) = 0 yields

Bt

Y 0
Amax = Amax + @ + ]__ﬂE—Mqu
=2 g1-g;

where we have replaced g1 by its definition given in (2). Note that
Amax > Amax Where Amax IS the true maximum eigenvalue of R.

We can make use of a further approximation when the input
autocorrelation matrix Ry is positive. This will be the case when
the input is nonnegative, the typical case in optical communica-
tions systems. Then, we can use Perron’s theorem [5] that states
that the maximum eigenvalue A2, of a positive matrix is simple
and positive, and the eigenvector associated with this eigenvalue
has all positive elements. This implies that all other eigenvec-
tors of Ro have alternating negative and positive entries because
of the orthogonality condition among the eigenvectors. Hence,
@ > ql,i=23,...,M. Thus, the maximum eigenvalue can
further be approximated as

Amax & Anax + @ + B4; -

Also notice that even when matrix R is not positive, 8 will typ-
ically be small compared to the eigenvalues and such an approxi-
mation might be plausible for these cases as well.

From the characteristics shown in Figure 1, note that all roots
of equation (3), except the maximum one, are very close to the
corresponding poles. This suggests the use of similar arguments
to approximate the other eigenvalues of the correlation matrix R.
For example, the approximate minimum eigenvalue of R can be
written as

Bas

& Amin + . (4)
M—1 12 min
R FD Db v wem

S\min = )‘?nin +a+

Thus we can obtain the eigenvalue spread of R as:

Amax + @ + Bt

)\0

X(R) = )\max/)\min ~ o ¥ a

®)

Note the effect of the two terms in the autocorrelation matrix given
in (1) on the final eigenvalue spread: the bias on the diagonal en-
tries, « decreasing, and the bias on all coefficients, the term 3,
increasing the eigenvalue spread. We discuss the effect of differ-
ent cases of noise and signal statistics in the simulations section
for the output of a PMD channel as well as the implications for the
performance of an MMSE equalizer.
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3. EQUALIZATION FOR POLARIZATION MODE
DISPERSION

Polarization mode dispersion (PMD) is the primary barrier to achiev-
ing single-channel data rates at 40 Gbit/s and beyond in installed
terrestrial fiber systems. Electronic equalizers have emerged as
one of the most promising solutions for its mitigation. Here, we
first briefly discuss the properties of PMD and then the properties
of equalizers used for mitigating its effects.

Perturbations that cause loss of circular symmetry in the core
and cladding of the fiber lead to birefringence and hence to PMD.
The PMD-induced distortion can be considered to be a stationary
process in a system whose bit rate is on the order of Gbit/s, and can
be characterized by two principal states of polarization (PSP) at a
given frequency, which propagate through the fiber with different
group velocity. The propagation delay between the two PSP is
defined as the differential group delay (DGD), 7. This difference
in the arrival times of the two polarization states leads to pulse
broadening, i.e, to ISI.

Given a fixed input polarization, the output polarization of the
fiber undergoes a rate of rotation on the Poincaré sphere with re-
spect to the frequency that can be characterized by [8]: ds/dw =
Q x s, where s is the unit Stokes vector describing the output po-
larization state and €2 is the polarization dispersion vector of the
fiber. The magnitude of the polarization dispersion vector is equal
to the DGD between the two PSP, |€2| = 7, while its direction de-
termines the direction of the two orthogonal PSP, £/ |2|. The
higher-order PMD distortion is due to the frequency dependence
of the polarization dispersion vector 2.

The effects of first-order PMD can be represented by the chan-
nel response

h(t) = 76(t) + (1 = 7)é(t —7) (6)

where y, a random variable uniformly distributed in [0, 1], repre-
sents the distribution of power between the PSP pair, and 7 is the
DGD value that is Maxwellian distributed. Hence, the continuous
time frequency response has zeros at the frequencies fr = Z’le
k € Z when v = 0.5 and its location depends on the value of
the DGD, moving into the signal spectrum and introducing severe
distortion when the DGD is large (for 7 > 50ps in a 10 Gbit/s sys-
tem). This property exhibits itself as a penalty pole for the PMD
equalizers at v = 0.5 as observed experimentally in [2]. Hence,
the feedforward equalizer will place a large gain in the vicinity of
the spectral null to compensate for the distortion, amplifying the
additive noise in the system, observed for the optical noise dom-
inated system in [2]. The decision feedback equalizer (DFE), on
the other hand, can compensate for the distortion without signifi-
cant noise amplification when the PMD is severe. Also, important
to note is that the pulse shape and the sampling instant determines
the response of the discrete channel response that is actually being
equalized.

Based on the first-order PMD model, it is also easy to see that
high PMD distortion (when + is close to 0.5 and the DGD is large)
introduces significant correlation into the signal, slowing down the
convergence of gradient descent type minimization schemes, such
as the LMS. Also, as we have shown in Section 2, the noncentral
and multiplicative noise characteristics contribute to the increased
eigenvalue spread of the equalizer input. They also introduce a bias
to the optimal MMSE coefficients [10]. Processing the signal prior
to the equalizer by subtracting its mean is one way to improve the
conditioning of the input signal, and hence of the gradient descent-
based estimation of the filter coefficients.

The selection of modulation formats and the receiver filter
characteristics also play an important role in the performance of
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Fig. 2. Eigenvalue spread of R for a 10 Gbit/s RZ system at the
output of a first order PMD channel with (i) both additive and mul-
tiplicative noise; (ii) only additive noise.

adaptive equalizers. PMD distortion introduces significant ISI into
non return-to-zero (NRZ) pulses while for return-to-zero (RZ) pul-
ses, the amount of ISI introduced is usually limited except in the
case of RZ pulses with larger full-width-half-maximum (FWHM)
values. The adaptive filter optimizes its coefficients to minimize
the ISI at its output and hence works more effectively for NRZ
signals, and typically needs fractionally-spaced samples for RZ
signals, especially when the pulses are narrow. Thus, as the in-
terplay between the noise and additional ISI introduced into the
system is taken into account for receiver design, the implications
for the following processing steps, such as adaptive filters, should
be carefully accounted for as well.

4. SIMULATIONS

4.1. Eigenanalysis

A first-order PMD channel as given in (6) is simulated for trans-
mission of 10 Gbhit/s RZ Gaussian pulses with 50 ps FWHM and
the eigenvalue spread at its input is shown in Figure 2. To iso-
late the effect of multiplicative noise, the true and approximated
values of the eigenvalue spread are drawn with and without the
multiplicative noise term. As observed in the figure, the given ap-
proximations are very close to the actual values for all cases that
we considered. An interesting observation is on the role of the
signal-dependent noise component. This term adds a positive bias
to the diagonal entries of the autocorrelation matrix when the input
is nonzero mean thus reducing the eigenvalue spread. As shown
on the top plot for a single case (DGD = 60 ps and v = 0.5), the
eigenvalue spread then is close to that of an additive white Gaus-
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sian noise (AWGN) channel, i.e., a channel with zero mean noise
and the same, noncentral signal. Also shown on the same plot
is the eigenvalue spread for the same case after preprocessing the
input by subtracting its mean. As shown, this simple procedure
that can be implemented with a simple circuitry to block the DC
component at the photodetector effectively decreases the eigen-
value spread. Hence, this simple preprocesing will improve the
convergence rate of the gradient-descent based algorithm, such as
the LMS and its misadjustment, as also suggested in [7]. In the
next section, we show that it also decreases the outage probability
even in the absence of noise. Note that the decrease in the eigen-
value spread will not be as significant when centralizing an AR
type process.

Also important to note is the observation that the noncentral
noise alone (no multiplicative noise term), increases the eigen-
value spread. For this case, the spread increases with increasing
noise levels but there is a point after which the spread starts to de-
crease as then, noise starts to dominate in the statistics improving
the conditioning of the matrix.

4.2. Outage Probability Analysis

We also perform the outage probability analysis of equalizers for
a practical optical transmission system in the presence of all order
PMD as in [6], and use importance sampling to evaluate the per-
formance of equalizers in the range that is of interest to systems
designers, such as 10~%. The use of importance sampling applied
to PMD [1] allows one to efficiently study events that have low
probability. In our case, the important rare events are the large
DGD values, those in the tails of the Maxwellian pdf of the DGD.
Importance sampling biases the Monte-Carlo simulations so that
these large DGD configurations occur more frequently than they
normally would.

Outage probability is the measure most typically used to eval-
uate PMD sensitivity. Designers specify a penalty margin for the
PMD (typically 2 or 3 dB), and they want to ensure that the outage
probability, i.e., the probability that that the actual penalty exceeds
this margin is very low. The eye opening is defined as the dif-
ference between the the minimum value for a mark (bit 1) I; and
the maximum value for a space (bit 0) of the electrical signal at
the sampling instant, Io. The eye opening penalty ¥ is the ratio
of the eye opening without PMD to that with PMD, and hence
the outage probability of 8 in dBs is given by Prob (y > 8) =

Prob (11 —Ip < 1078/10)

The pulses generated by the modulator are standard NRZ with
raise time of 30 ps, optical carrier wavelength of 1532nm and peak
power of 1 mW. We use an optical fiber as the source of PMD
and assume that the fiber passes ergodically through all possible
polarization states with the same PMD. Thus, we analyze ensem-
bles of fibers with the same PMD in order to compute the out-
age probability for each case. We use 10,000 fiber realizations
each 100 km in length and model the fiber using 80 sections of
birefringent elements with the coarse step method [9], which re-
produces first and higher-order PMD distortions. As the optical
filter we use a Gaussian bandpass filter with 60 GHz of full width
of half maximum and as an electrical filter a lowpass Bessel fil-
ter of 5-th order that is placed after the photodetector. The filters
are used primarily for noise suppression. The feedforward filter
structures are chosen as symmetric, i.e,, the input vector is given
by [u(n — L)...u(n)...u(n + L)] where M = 2L + 1 to ac-
count for the fact that the pulses are likely to interact with both
the preceding and the following pulses. In Figure 3, we show the
outage probability caused by PMD in an NRZ system with average
DGD value of () = 25 ps, and the performance of two types of
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Fig. 3. Outage Probability (probability that the eye opening
penalty exceeds the value on the horizontal axis) for direct detec-
tion (i) No-EQ: without equalization; (ii) FFE; (iii) FFE-ZM: FFE
with centralized input; (iv) DFE.

MMSE equalizers: a feed-forward equalizer (FFE) with 7 taps and
a DFE with 5 forward and 3 feedback taps. The use of an equal-
izer reduces the eye opening penalty by about 1.5 dB at an outage
probability of 10~ 7, and since the system tested here is noise-free,
the DFE does not lead to significant performance gain. We also
evaluate the performance of the FFE when it is employed after
subtraction of the input mean As shown, subtraction of the mean
results in some improvement on the performance of the equalizer
in reducing the outage probability. As is obvious from equation (5)
and the examples shown in Figure 2, this procedure will also sig-
nificantly improve the convergence of gradient descent learning.
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