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ABSTRACT

Equalizers trained with a large margin have an ability to bet-
ter handle noise in unseen data and drift in the target solu-
tion. We present a method of approximating the Bayes op-
timal strategy which provides a large margin equalizer, the
Bayes point equalizer. The method we use to estimate the
Bayes point is to average � equalizers that are run on inde-
pendently chosen subsets of the data. To better estimate the
Bayes point we investigated two methods to create diversity
amongst the � equalizers. We show experimentally that
the Bayes point equalizer for appropriately large step sizes
offers improvement on LMS and LMA in the presence of
channel noise and training sequence errors. This allows for
shorter training sequences albeit with higher computational
requirements.

1. INTRODUCTION

A standard technique for correcting Inter-Symbol Interfer-
ence (ISI) caused by the communications channel is to ap-
ply an equalizer at the receiver [6]. We consider the case
of training the equalizer with a known sequence, where the
received signal is corrupted by channel noise.

In stochastic gradient methods like Least Mean Squared
(LMS) randomness in the equalizer weights w� can make
the estimate of the gradient based on a single sample prone
to updating w� in the wrong direction. By making the step
size � small the error is reduced but the convergence is slow.
Gardner [3] showed that averaging the gradients over� data
points reduced the effect of the noise but there was a trade
off with convergence rate. Another method known to reduce
the effect of noise is to apply a low pass filter to the gradient
estimate [6] which also reduces the effect of noise by adding
momentum to the weights.

A lot of recent research in pattern classification has fo-
cused on producing classifier solutions with a large margin
(essentially the minimum distance of a data point to the de-
cision boundary) [7]. It is well known that a large margin on
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a training sequence provides immunity to drift in the target
solution and to noise in unseen data [2]. In this paper we
examine the large margin methods of the Bayes Point Ma-
chine (BPM) [5] and the Online Bayes Point Machine [4]
and apply them to the problem of adaptive channel equal-
ization.

1.1. System model
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Fig. 1. Communications system discrete time model with
channel equalization applied at the receiver.

The basic signal model at time � consists of a transmitted
binary signal �� � ������� (We only consider the binary
case in this paper; this could be extended to complex or
multi-class, suitable for quadrature modulation types). As
shown by Figure 1, �� is transmitted over a communications
channel f � �	�� 
 
 
 � 	����, resulting in the signal at the
receiver ��,

�� �

����
���

����	� � ��� (1)

where �� is Additive Gaussian White Noise (AGWN) which
is assumed to have zero mean and variance � ��� . We con-
sider a linear equalizer w� of length �� � �. The equalizer
produces an estimate ��� of the transmitted signal �� via

��� � w� � x�� (2)

where the instances x� � ����� � 
 
 
 � ��� 
 
 
 � ���� 	
�.

1.2. Stochastic gradient methods

The standard stochastic gradient method which approaches
the optimal equalizer is to make steps scaled by � � � in
the direction of the gradient of the cost function 
,

w��� � w� � �


 �w��


w�


 (3)
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We consider two different families of cost functions.
The first family consists of the regression methods using the
cost functions of Least Mean Squared (LMS) [6] and Least
Mean Absolute (LMA) which is known to be more robust
to outliers than LMS [1]. The LMS cost function is given
by,


��� �w�� � ��� � w� � x��
�

 (4)

The LMA cost function is given by,


��	 �w�� � ��� � w� � x�� 
 (5)

The second family consists of the methods of the
marginalised Perceptron [2] and relaxation with margin [2].
The marginalised Perceptron’s cost function is



��
 �w�� � �� �w�� ��� ��w� � x��� � (6)

with � �w�� � � when ��w� � x� � � and zero otherwise,
and � is the induced margin (� � � is the mistake driven
standard Perceptron). The cost function of relaxation with
margin is


����� �w�� �
�
� �w�� ��� ��w� � x��

�
�

 (7)

1.3. The Bayes point

Consider a fixed class � of classifiers and a sequence of �
training examples z � ��x�� ���� 
 
 
 � �x� � �� ���. We would
like to find a classifier from� which correctly classifies fu-
ture examples drawn from the same distribution as z. The
Bayes optimal classifier chooses the label that minimises the
probability of error, given the data z. In general, the Bayes
optimal classifier itself is not in � and may be very diffi-
cult to evaluate even if all the probability distributions are
known. The Bayes point is the single hypothesis from �
that achieves the minimum probability of error [5]. For lin-
ear classification the Bayes point is thus given by the weight
vector that minimises the probability of a classification er-
ror. This is still quite difficult to find, motivating the use of
approximations.

2. ESTIMATING THE BAYES POINT

Algorithms which estimate the Bayes point w�
 are re-
ferred to as Bayes Point Machines (BPMs). The Bayes
Point is approximated by w
� the average of w drawn from
� according to the posterior distribution [5]. The BPM es-
timate of w
� for the linear classifier is

�w� �
�

�

��
���

w�� � (8)

where w�� 
 
 
 �w� are� different linear classifier solutions
to z.

As an illustration of the concepts related to estimating
the Bayes point, consider the example of Figure 2 of a two
dimensional space i.e. w � �

� . The training set z consists
of five examples, � � 
, each example �x� �� defines a half
space �w � �w � x 	 ��. The weight space defined by the
intersection of half spaces is referred to as the version space
� �z�, hence � �z� defines the space of all weight vectors
which correctly classify the five examples.

Now consider the significance of the margin � with re-
spect to unseen examples. If the half space for the five ex-
amples now includes � i.e. �w � �w � x � �� (as is the case
in (6) and (7)) then we get the dotted region of Figure 2.
The w
� is in the centre of this dotted region with a margin
greater than �, providing an ability for w
� to handle noise
in unseen examples. As the number of examples � 
 �
then w
� approaches w�
 [5], where one can imagine the
version space defined by the curved line.
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Fig. 2. Illustration of the Bayes point for a two dimensional
feature space.

To estimate the w�
 we endeavour to create diversity
amongst � parallel and independently run equalizers, giv-
ing � solutions w�� 
 
 
 �w� . We now discuss two different
approaches to create the diversity.

2.1. Buffered approach

Consider running � equalizers in parallel where each
equalizer � � � 
 
 
 � � sees a sequence formed from a per-
mutation of � examples randomly selected from z without
replacement. Hence for each equalizer � we associate a
sequence �	���� 
 
 
 � �	��� of integers in ��� 
 
 
 � �� such
that ��� � � ��� 
 
 
 � �� with � 
� � we have �	��� 
�
�	���. The sequence of examples seen by equalizer � is then
���
����� 
 
 
 � ���
����; see Figure 3. The computational
cost varies with �, where the best approximation to the
Bayes point is � � � has the highest computational cost.
The number of arithmetic operations required for the buffer
approach is ������ compared to ���� � for LMS.
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Fig. 3. Architecture of the buffer method.

2.2. Subsampling approach

The buffer approach suffers a latency of � samples. An al-
ternative method which avoids latency is the Online Bayes
Point Machine (OBPM) [4]. Given a training example � � �
�x�� ���, we run � equalizers “in parallel” and ensure di-
versity of their solutions by randomly choosing to present
�� to each equalizer � only if �	� � �, where �	�, � �
�� 
 
 
 � � , are independent Bernoulli random variables with
����	� � �� � � ; see Figure 4. This process results in
a subsample which has an average sample size �� and re-
quires ������ � arithmetic operations. This approach ex-
ploits the fact that in general some examples are redundant
to learning the best hypothesis.
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Fig. 4. Architecture of the subsampling method.

The cost functions one can use with OBPM are the sec-
ond family of stochastic gradient methods; i.e. the classi-
fiers ��� and ���. Unfortunately there is no gain by applying
the subsampling of OBPM to regression methods. To see
this, consider the example of LMS which is updated accord-
ing to the cost function (4) in (3). If we set w �
� � � for all
� � �� 
 
 
 � � then equation (3) and (8) imply

�w��� � �w� � ���x�
��
���

��
�

�

� �

��
�

�

��
���

��
�w�
�

�
� x�

�
x�
 (9)

From (9) in the limit as � 
 � in the second term��
���

��	�
�


 � and in the third term �
�

��
��� ��
�w�
� 


� �w. Therefore the subsampling for LMS simply scales � by
� .

3. EXPERIMENTS

To demonstrate the effectiveness of OBPM and BPM equal-
izers we considered two channels from [6, pages 631 and
686] in the experiments: channel A, f� � ��
�����
�
�
�
�����
��� �
��� �
��� �� �
��� �
��� �
��� and channel B,
f� � ��
��� �
��� �
���. The experimental results for the
OBPM and BPM were all produced with the number of
equalizers � � ���, and 200 Monte-Carlo trials. The train-
ing size in the BPM experiments was set at 300 binary la-
beled examples as that sufficed for convergence for the step
sizes tried, � ranging from �
�� to �
�� in intervals of �
��,
and the step sizes reported are those which showed LMS re-
sults in MSE and probability of error in the best light. The
test set was drawn independently to the training set and con-
sisted of 10000 binary labeled examples.

3.1. Buffered experiments
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Fig. 5. BPM equalizer results for Channel A.

We investigated the performance of a 31 tap BPM equal-
izer on channel A with an SNR=10dB, results are in Figure
5. From Figure 5 (a) we see that the LMS and LMA have
converged to a larger MSE compared to the BPM. The BPM
MSE results for buffer sizes of ��� and ��� as shown in Fig-
ure 5 (a) were close. The relationship between the diversity
of w given by �

�

��
����w�� �w�� and the buffer length used

by BPM is shown in Figure 5 (b). We see from Figure 5
(c) that there is an improvement in the probability of error
after ��� training examples for channel A when using the
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BPM(LMS) approach compared to LMS (buffer length of
1) for larger step sizes, �.

To simulate the possibility of phase tracker errors in the
receiver we randomly flipped the labels so on average every
tenth label was flipped. Label errors in the training sequence
present a particularly difficult problem for schemes that try
to maximize a margin. The label flipping experiment was
performed on channel B with an SNR of 30dB and an 11 tap
equalizer. The MSE of Figure 6 (a) shows that BPM(LMS)
and BPM(LMA) were more stable for � � �
�
 compared
to LMS and LMA (this was true over the range of � used).
This indicates that this scheme is robust to label noise. Fig-
ure 6 (b) showed that the BPM(LMA) performed better than
BPM(LMS).

0 50 100 150 200 250 300
0.2

0.7

1.2

(a) Number of iterations

M
ea

n 
S

qu
ar

ed
 E

rr
or

LMS η = 0.05
LMA η = 0.05
BPM(LMS) η = 0.05 B=100
BPM(LMS) η = 0.05 B=300
BPM(LMA) η = 0.05 B=300

1 50 100 150 200 250 300
10

−5

10
−4

10
−3

10
−2

10
−1

(b) Buffer length

T
es

t E
rr

or

BPM(LMS) η = 0.05
BPM(LMS) η = 0.025
BPM(LMA) η = 0.05
BPM(LMA) η = 0.025
BPM(Percepton) η = 1.0

Fig. 6. Label noise results for Channel B using BPM equal-
izer, where only the training examples had label flipping,
test examples had no label flipping.

3.2. Subsampled experiments

For the subsampled experiment the number of training ex-
amples went up to 20000 and the use of the Perceptron and
relaxation with margin were investigated ( i.e. (3) with (6)
and (7)) with an SNR=10dB and � � � (we did not want
to study the effect of � on producing large margin but � ).
Due to limited space we only show the Perceptron results in
Figure 7. The Perceptron was chosen instead of the relax-
ation algorithm since the probability of error for the choices
of � tried, ranging from �
�� to �
� increments of �
�� were
better over the range. From Figure 7 we see that when �

was not equal to one (one being the standard Perceptron)
the diversity amongst the � equalizers increased, with an
improved probability of error. The Perceptron had a slower
convergence in these experiments compared to the regres-
sion methods by an order of magnitude; taking 3000 train-
ing examples rather than 300.

4. CONCLUSIONS

We presented two methods which create diversity amongst
� equalizer solutions run independently and in parallel. By
taking the average of the weight vectors obtained by� equal-
izers we estimate the Bayes point which improves immunity
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Fig. 7. OBPM equalizer results for Channel B.

to noise in the channel. We showed experimentally that,
for appropriately large step sizes, the Bayes point equal-
izer was an improvement on LMS and LMA in the presence
of channel noise and training sequence errors. The use of
a Bayes point equalizer allows the training sequence to be
made shorter, although at the cost of higher computational
demands. Shorter training sequences are desirable increas-
ing channel throughput. An area for further research is the
incorporation of phase tracking with this equalizer to make
a more practical system.
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