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ABSTRACT

Equalizerstrained with alarge margin have an ability to bet-
ter handle noise in unseen data and drift in the target solu-
tion. We present a method of approximating the Bayes op-
timal strategy which provides alarge margin equalizer, the
Bayes point equalizer. The method we use to estimate the
Bayes point isto average N equalizersthat are run on inde-
pendently chosen subsets of the data. To better estimate the
Bayes point we investigated two methods to create diversity
amongst the NV equalizers. We show experimentally that
the Bayes point equalizer for appropriately large step sizes
offers improvement on LMS and LMA in the presence of
channel noise and training sequence errors. This allows for
shorter training sequences a beit with higher computational
requirements.

1. INTRODUCTION

A standard technique for correcting Inter-Symbol Interfer-
ence (1Sl) caused by the communications channel is to ap-
ply an equalizer at the receiver [6]. We consider the case
of training the equalizer with a known sequence, where the
received signal is corrupted by channel noise.

In stochastic gradient methods like L east Mean Squared
(LMS) randomness in the equalizer weights w; can make
the estimate of the gradient based on a single sample prone
to updating w; in the wrong direction. By making the step
sizen small the error is reduced but the convergenceis slow.
Gardner [3] showed that averaging the gradientsover B data
points reduced the effect of the noise but there was a trade
off with convergencerate. Another method known to reduce
the effect of noiseisto apply alow passfilter to the gradient
estimate [6] which also reducesthe effect of noise by adding
momentum to the weights.

A lot of recent research in pattern classification has fo-
cused on producing classifier solutions with alarge margin
(essentially the minimum distance of a data point to the de-
cision boundary) [7]. Itiswell known that alarge margin on
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a training sequence provides immunity to drift in the target
solution and to noise in unseen data [2]. In this paper we
examine the large margin methods of the Bayes Point Ma-
chine (BPM) [5] and the Online Bayes Point Machine [4]
and apply them to the problem of adaptive channel equal-
ization.

1.1. System model
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Fig. 1. Communications system discrete time model with
channel equalization applied at the receiver.

Thebasic signal model at timet consists of atransmitted
binary signal y; € {—1,+1} (We only consider the binary
case in this paper; this could be extended to complex or
multi-class, suitable for quadrature modulation types). As
shown by Figure 1, y, istransmitted over acommunications
channel f = (fo,..., fL—1), resulting in the signal at the
receiver ry,

L1
Ty = Z Ye—1fi + e, @
=0

wheren; is Additive Gaussian White Noise (AGWN) which
is assumed to have zero mean and variance o2 . We con-
sider alinear equalizer w; of length 2K + 1. The equalizer
produces an estimate ¢, of the transmitted signal y. via

e = Wy - Xy, %)
!

wheretheinstancesX; = [ry_r, .- -, Tt, - - Te+ K|

1.2. Stochastic gradient methods

The standard stochastic gradient method which approaches
the optimal equalizer is to make steps scaled by n € R in
the direction of the gradient of the cost function J,

aJ (w,
Wepr = Wy — UaLth)- (3
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We consider two different families of cost functions.
Thefirst family consists of the regression methods using the
cost functions of Least Mean Squared (LMS) [6] and Least
Mean Absolute (LMA) which is known to be more robust
to outliers than LMS [1]. The LMS cost function is given
by,

Tums (We) = (e — W - X¢)”. 4

The LMA cost function is given by,
Jima (We) = [ye — We - X ®)

The second family consists of the methods of the
marginalised Perceptron [2] and relaxation with margin[2].
The marginalised Perceptron’s cost function is

Tpere (Wg) = (0 (We) (p — yeWe - X¢)) (6)

with o (w;) = 1 when y;w; - X; < p and zero otherwise,
and p is the induced margin (p = 0 is the mistake driven
standard Perceptron). The cost function of relaxation with
marginis

Jretas (We) = (o (We) (p = yowe -x0)*) . (D)

1.3. TheBayespoint

Consider afixed class H of classifiers and a sequence of T
training examplesz = ((X1,y1), - - ., (Xr,y7))). Wewould
liketo find a classifier from 7 which correctly classifies fu-
ture examples drawn from the same distribution as z. The
Bayesoptimal classifier choosesthelabel that minimisesthe
probability of error, given the data z. In general, the Bayes
optimal classifier itself is not in # and may be very diffi-
cult to evaluate even if all the probability distributions are
known. The Bayes point is the single hypothesis from #
that achieves the minimum probability of error [5]. For lin-
ear classification the Bayes point is thus given by the weight
vector that minimises the probability of a classification er-
ror. Thisis till quite difficult to find, motivating the use of
approximations.

2. ESTIMATING THE BAYESPOINT

Algorithms which estimate the Bayes point wgp are re-
ferred to as Bayes Point Machines (BPMs). The Bayes
Point is approximated by w..,, the average of w drawn from
‘H according to the posterior distribution [5]. The BPM es-
timate of w,.,, for thelinear classifier is

1 N
Wt = N Zwtia (8)
=1
wherewy, ..., wy are N different linear classifier solutions
toz.

As an illustration of the concepts related to estimating
the Bayes point, consider the example of Figure 2 of atwo
dimensional spacei.e. w € R?. The training set z consists
of five examples, T' = 5, each example (X, y) defines a half
space {w : yw - x > 0}. The weight space defined by the
intersection of half spacesisreferred to asthe version space
V' (z), hence V (z) defines the space of all weight vectors
which correctly classify the five examples.

Now consider the significance of the margin p with re-
spect to unseen examples. If the half space for the five ex-
amplesnow includes p i.e. {w: yw - x > p} (asisthe case
in (6) and (7)) then we get the dotted region of Figure 2.
Thew,,, isinthe centre of this dotted region with amargin
greater than p, providing an ability for w ., to handle noise
in unseen examples. As the number of examplesT' — oo
then w.,, approaches wgp [5], where one can imagine the
version space defined by the curved line.
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Fig. 2. llustration of the Bayes point for atwo dimensional
feature space.

To estimate the wgp we endeavour to create diversity
amongst NV parallel and independently run equalizers, giv-
ing N solutionswy, ..., wy. We now discuss two different
approaches to create the diversity.

2.1. Buffered approach

Consider running N equalizers in paralel where each
equalizer j = 1..., N sees asequence formed from a per-
mutation of B examples randomly selected from z without
replacement. Hence for each equalizer j we associate a
sequence 7 (1),...,m;(B) of integersin {1,...,T'} such
that Vr,s € {1,...,B} withr # s we have 7;(r) #
m;(s). Thesequence of examplesseen by equalizer j isthen
Zigmi(1)s -+ Ze4m;(B)s Se€ Figure 3. The computational
cost varies with B, where the best approximation to the
Bayes point is B = 71" has the highest computational cost.
The number of arithmetic operations required for the buffer
approachis O(N K B) comparedto O(KT') for LMS.
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From (9) in the limit as N — oo in the second term
Zf;l bj\f — 7 and in the third term % Zf;l bi W,y —
TW. Thereforethe subsampling for LMS simply scalesn by

T.

3. EXPERIMENTS

To demonstrate the effectiveness of OBPM and BPM equal -
izers we considered two channels from [6, pages 631 and

Fig. 3. Architecture of the buffer method.

2.2. Subsampling approach

The buffer approach suffers alatency of 7" samples. An a-
ternative method which avoids latency is the Online Bayes
Point Machine (OBPM) [4]. Given atraining example z; =
(Xt,y¢), we run N equalizers “in parallel” and ensure di-
versity of their solutions by randomly choosing to present
z; to each equalizer j only if b;; = 1, where bj;, j =
1,..., N, areindependent Bernoulli random variables with
Pr(bjs = 1) = 1; see Figure 4. This process results in
a subsample which has an average sample size 71" and re-
quiresO(rN KT') arithmetic operations. This approach ex-
ploits the fact that in general some examples are redundant
to learning the best hypothesis.
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Fig. 4. Architecture of the subsampling method.

The cost functions one can use with OBPM are the sec-
ond family of stochastic gradient methods; i.e. the classi-
fiers (6) and (7). Unfortunately thereis no gain by applying
the subsampling of OBPM to regression methods. To see
this, consider the example of LM Swhich is updated accord-
ing to the cost function (4) in (3). If weset w; o = 0 for all
i1 =1,..., N then equation (3) and (8) imply

ZN b

~ ~ it

Wt+1 = Wt + nytxt _]ZV
i=1

1 N
-7 — bi7wi7>-x>x. 9
<<N; t t t t

&2
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686] in the experiments: channel A, f4 = (0.04, —0.05,
0.07,—-0.21,0.72,0.36,0,0.21,0.03,0.07) and channel B,
fg = (0.26,0.96,0.26). The experimental results for the
OBPM and BPM were al produced with the number of
equalizers N = 100, and 200 Monte-Carlotrials. Thetrain-
ing size in the BPM experiments was set at 300 binary la-
beled examples as that sufficed for convergencefor the step
sizestried,  ranging from 0.01 to 0.09 in intervals of 0.01,
and the step sizes reported are those which showed LM Sre-
sults in MSE and probability of error in the best light. The
test set was drawn independently to the training set and con-
sisted of 10000 binary labeled examples.

3.1. Buffered experiments
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Fig. 5. BPM equalizer results for Channel A.

We investigated the performance of a 31 tap BPM equal-
izer on channel A with an SNR=10dB, results are in Figure
5. From Figure 5 (a) we see that the LMS and LMA have
converged to alarger M SE compared to the BPM. The BPM
M SE resultsfor buffer sizes of 100 and 300 as shownin Fig-
ure 5 (a) were close. The relationship between the diversity
of wgivenby 1 S (w; —W)? and the buffer length used
by BPM is shown in Figure 5 (b). We see from Figure 5
(c) that there is an improvement in the probability of error
after 300 training examples for channel A when using the
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Mean Squared Error

BPM(LMS) approach compared to LMS (buffer length of
1) for larger step sizes, 1.

To simulate the possibility of phase tracker errorsin the
receiver we randomly flipped the labels so on average every
tenthlabel wasflipped. Label errorsinthetraining sequence
present a particularly difficult problem for schemes that try
to maximize a margin. The label flipping experiment was
performed on channel B with an SNR of 30dB and an 11 tap
equalizer. The MSE of Figure 6 (a) showsthat BPM(LMYS)
and BPM(LMA) were more stable for n = 0.05 compared
to LMS and LMA (this was true over the range of n used).
Thisindicates that this scheme is robust to label noise. Fig-
ure 6 (b) showed that the BPM (LM A) performed better than
BPM(LMS).
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Fig. 6. Label noise results for Channel B using BPM equal-
izer, where only the training examples had label flipping,
test examples had no label flipping.

3.2. Subsampled experiments

For the subsampled experiment the number of training ex-
amples went up to 20000 and the use of the Perceptron and
relaxation with margin were investigated (i.e. (3) with (6)
and (7)) with an SNR=10dB and p = 0 (we did not want
to study the effect of p on producing large margin but 7).
Dueto limited space we only show the Perceptron resultsin
Figure 7. The Perceptron was chosen instead of the relax-
ation algorithm since the probability of error for the choices
of 7 tried, ranging from 0.01 to 0.9 incrementsof 0.01 were
better over the range. From Figure 7 we see that when 7
was not equal to one (one being the standard Perceptron)
the diversity amongst the N equalizers increased, with an
improved probability of error. The Perceptron had a slower
convergence in these experiments compared to the regres-
sion methods by an order of magnitude; taking 3000 train-
ing examples rather than 300.

4. CONCLUSIONS

We presented two methods which create diversity amongst
N equalizer solutions run independently and in parallel. By
taking the average of the weight vectors obtained by NV equal-
izerswe estimate the Bayes point which improvesimmunity
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Fig. 7. OBPM equalizer results for Channel B.

to noise in the channel. We showed experimentally that,
for appropriately large step sizes, the Bayes point equal-
izer was an improvement on LMSand LMA in the presence
of channel noise and training sequence errors. The use of
a Bayes point equalizer alows the training sequence to be
made shorter, although at the cost of higher computational
demands. Shorter training sequences are desirable increas-
ing channel throughput. An areafor further research is the
incorporation of phase tracking with this equalizer to make
amore practical system.
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