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ABSTRACT

In this paper, we propose a time-varying (TV) finite impulse re-
sponse (FIR) equalizer for doubly-selective (time- and frequency-
selective) channels. We use the basis expansion model (BEM) to
approximate the doubly-selective channel and to design the TV
FIR equalizer. This structure allows us to turn a large design prob-
lem into an equivalent small design problem, containing only the
BEM coefficients of both the doubly-selective channel and the
TV FIR equalizer. Focus is on the minimum mean-square error
(MMSE) solution, but the zero-forcing (ZF) solution is also dis-
cussed. Comparisons with the linear block equalizer (LBE) are
made. Through computer simulations we show that the perfor-
mance of the MMSE TV FIR equalizer approaches the one of the
MMSE LBE, while the design as well as the implementation com-
plexity are much lower.

1. INTRODUCTION

The need for high data rates and high mobility in future wireless
communication systems introduces doubly-selective (time- and fre-
quency-selective) channel effects. To combat these effects, equal-
izers are needed. For frequency-selective channels, such equal-
izers have been extensively studied in literature. We can distin-
guish between block equalizers and serial equalizers. Linear block
equalizers (LBEs) for frequency-selective channels only require a
single receive antenna for the zero-forcing (ZF) solution to exist
[1]. They are usually complex to design and implement. How-
ever, since a frequency-selective channel can be diagonalized by
means of the Fast Fourier Transform (FFT), the design and imple-
mentation complexity can be reduced, at the cost of a slight de-
crease in performance. On the other hand, linear serial equalizers
(LSEs), more specifically finite impulse response (FIR) equaliz-
ers, for frequency-selective channels require at least two receive
antennas for the ZF solution to exist, but are simpler to design and
implement [2, 3].
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Recently, equalizers have also been developed for doubly-se-
lective channels. Similar to the frequency-selective case, LBEs for
doubly-selective channels only require a single receive antenna for
the ZF solution to exist. However, since a doubly-selective channel
can not be diagonalized, they can not be simplified and are always
complex to design and implement. This motivates us to look at
LSEs, more specifically FIR equalizers, for doubly-selective chan-
nels, which should be simpler to design and implement. Up till
now, only time-invariant (TIV) FIR equalizers for doubly-selective
channels have been introduced [4]. However, such a TIV FIR
equalizer requires many receive antennas for the ZF solution to ex-
ist. In this paper, we introduce time-varying (TV) FIR equalizers
for doubly-selective channels. We use the basis expansion model
(BEM) to approximate the doubly-selective channel and to design
the TV FIR equalizer. This structure allows us to turn a large de-
sign problem into an equivalent small design problem, containing
only the BEM coefficients of both the doubly-selective channel
and the TV FIR equalizer. A TV FIR equalizer requires at least
two receive antennas for the ZF solution to exist. However, this is
much lower than the number of receive antennas a TIV FIR equal-
izer requires.

Notation: We use upper (lower) bold face letters to denote ma-
trices (column vectors). Superscripts∗, T , andH represent conju-
gate, transpose, and Hermitian, respectively. We denote the 1- and
2-dimensional Kronecker delta asδn andδn,m, respectively. We
denote theN × N identity matrix asIN and theM × N all-zero
matrix as0M×N . Finally, diag{x} denotes the diagonal matrix
with x on the diagonal.

s(n)
η(Nr)(n)

y(Nr)(n)

ŝ(n)

η(1)(n)

h(1)(n; ν) g(1)(n; ν)

g(Nr)(n; ν)h(Nr)(n; ν)

y(1)(n)

Fig. 1. System Model

2. SYSTEM MODEL

The system under consideration is depicted in Figure 1. We as-
sume a single-input multiple-output (SIMO) system, whereNr

receive antennas are used. Focusing on a baseband-equivalent de-
scription, when transmitting a symbol sequences(n) and sampling
each receive antenna at the symbol rate, the received sample se-
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quence at therth receive antenna can be written as

y(r)(n) =
∞
X

ν=−∞

h(r)(n; ν)s(n − ν) + η(r)(n), (1)

whereη(r)(n) is the additive noise at therth receive antenna, and
h(r)(n; ν) is the doubly-selective (time- and frequency-selective)
channel to therth receive antenna.

In this paper, we model a doubly-selective channel using a ba-
sis expansion model (BEM). Many BEMs exist. In this paper, we
use the BEM of [5], which is shown to accurately approximate the
well-known Jakes’ model. In this BEM (which we simply callthe
BEM from now on), a doubly-selective channel is modeled as an
FIR filter where the taps are expressed as a superposition of com-
plex exponential basis functions with frequencies on an FFT grid.
Let us first make the following assumptions:
A1) The delay-spread is bounded byτmax;
A2) The Doppler-spread is bounded byfmax.
Under assumptions A1) and A2), it is possible to model the doubly-
selective channelh(r)(n; ν) for n ∈ {0, 1, . . . , N − 1} as

h(r)(n; ν) =
L
X

l=0

δν−l

Q/2
X

q=−Q/2

h
(r)
q,l e

j2πqn/N , (2)

whereL andQ satisfy the following conditions:
C1) LT ≥ τmax; C2) Q/(NT ) ≥ 2fmax,
andT is the symbol period. In this expansion model,L represents
the delay-spread (expressed in multiples ofT , the delay resolution
of the model), andQ represents the Doppler-spread (expressed in
multiples of1/(NT ), the Doppler resolution of the model).

Assuming thats(n) = 0 for n /∈ {0, 1, . . . , M − 1}, where
M = N − Lzp andLzp ≥ L, we can rewrite (1) as

y(r)(n) =

L
X

l=0

Q/2
X

q=−Q/2

ej2πqn/Nh
(r)
q,l s(n − l) + η(r)(n).

For convenience, we assume thaty(r)(n) = 0 for n /∈ {0, 1, . . . ,
N − 1}.

The above input-output relation can also be written in block
form. Defining theM×1 symbol block ass := [s(0), . . . , s(M−

1)]T , the received sample block at therth receive antennay(r) :=

[y(r)(0), . . . , y(r)(N − 1)]T can be written as

y
(r) = H

(r)
Tzps + η

(r), (3)

whereη
(r) is similarly defined asy(r), Tzp := [IM ,0M×Lzp

]T ,
andH(r) is anN × N lower triangular matrix. Using (2),H(r)

can be written as

H
(r) =

L
X

l=0

Q/2
X

q=−Q/2

h
(r)
q,l DqZl, (4)

whereDq := diag{[1, · · · , ej2πq(N−1)/N ]T }, andZl is theN ×
N lower triangular Toeplitz matrix with first column[01×l, 1,
01×N−l−1]

T . Substituting (4) in (3), theN × 1 received sample
block at therth receive antenna can be written as:

y
(r) =

L
X

l=0

Q/2
X

q=−Q/2

h
(r)
q,l DqZlTzps + η

(r). (5)

Stacking theNr received sample blocks:y := [y(1)T , . . . ,

y(Nr)T ]T , we obtainy = HTzps + η, whereη is similarly de-
fined asy, andH := [H(1)T , . . . ,H(Nr)T ]T . For simplicity, we
will assume that the data and the noise are zero-mean white, with
variancesσ2

s andσ2
η, respectively. We now review linear block

equalization, and then investigate TV FIR equalization. We as-
sume perfect channel knowledge at the receiver. In practice, the
BEM coefficients have to be estimated. This can be done blindly
[6] or by training [7].

3. LINEAR BLOCK EQUALIZATION

We apply a linear block equalizer (LBE)G(r) on therth receive
antenna. Hence, an estimate ofs is computed as

ŝ =

Nr
X

r=1

G
(r)

y
(r) =

 

Nr
X

r=1

G
(r)

H
(r)

!

Tzps +

Nr
X

r=1

G
(r)

η
(r).

(6)
DefiningG := [G(1), . . . ,G(Nr)], we obtain

ŝ = Gy = GHTzps + Gη.

Let us focus on the minimum mean-square error (MMSE) LBE,
which minimizes the quadratic cost functionE{‖s − ŝ‖2}. The
solution is well-known and given by

GMMSE = (HTzp)H(HTzp(HTzp)H + σ2
η/σ2

sIN )−1

= ((HTzp)H
HTzp + σ2

η/σ2
sIM )−1(HTzp)H .

The corresponding zero-forcing (ZF) LBE is obtained by setting
ση = 0:

GZF = ((HTzp)H
HTzp)−1(HTzp)H .

4. TV FIR EQUALIZATION

In this section, we will apply a TV FIR equalizerg(r)(n; ν) to the
rth receive antenna, as depicted in Figure 1. Hence, an estimate of
s(n − d) is computed as

ŝ(n − d) =

Nr
X

r=1

∞
X

ν=−∞

g(r)(n; ν)y(r)(n − ν), (7)

whered represents the synchronization delay. Since the doubly-
selective channelh(r)(n; ν) was modeled by the BEM, it is also
convenient to design the TV FIR equalizerg(r)(n; ν) using the
BEM. This structure will allow us to turn a large design problem
into an equivalent small design problem, containing only the BEM
coefficients of both the doubly-selective channel and the TV FIR
equalizer.

Using the BEM, we design each TV FIR equalizerg(r)(n; ν)
to haveL′+1 taps, where the time-variation of each tap is modeled
by Q′ + 1 complex exponential basis functions with frequencies
on the same FFT grid as the FFT grid for the channel:

g(r)(n; ν) =

L′

X

l′=0

δν−l′

Q′/2
X

q′=−Q′/2

g
(r)

q′,l′e
j2πq′n/N . (8)
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Instead of continuing to work on the sample level, it’s easier
to switch to the block level at this point. On the block level, (7)
corresponds to estimatings as in (6) but withG(r) constrained to

G
(r) = Rzp

L′

X

l′=0

Q′/2
X

q′=−Q′/2

g
(r)

q′,l′Dq′Zl′ , (9)

whereRzp := [0M×d, IM ,0M×(Lzp−d)]. It is clear that this re-
quires0 ≤ d ≤ Lzp. In the simulation results, we will always take
Lzp = max{L, d}. An estimate ofs is now obtained as

ŝ = Rzp

Nr
X

r=1

0

@

Q′/2
X

q′=−Q′/2

L′

X

l′=0

g
(r)

q′,l′Dq′Zl′

×

Q/2
X

q=−Q/2

L
X

l=0

h
(r)
q,l DqZl

1

ATzps

+ Rzp

Nr
X

r=1

Q′/2
X

q′=−Q′/2

L′

X

l′=0

g
(r)

q′,l′Dq′Zl′η
(r). (10)

Definingp := q + q′, k := l+ l′, and using the propertyZl′Dq =

e−j2πql′/NDqZl′ , (10) can be rewritten as

ŝ = Rzp

(Q+Q′)/2
X

p=−(Q+Q′)/2

L+L′

X

k=0

fp,kDpZkTzps

+ Rzp

Nr
X

r=1

Q′/2
X

q′=−Q′/2

L′

X

l′=0

g
(r)

q′,l′Dq′Zl′η
(r), (11)

where

fp,k :=

Nr
X

r=1

Q′/2
X

q′=−Q′/2

L′

X

l′=0

e−j2π(p−q′)l′/Ng
(r)

q′,l′h
(r)

p−q′,k−l′ .

(12)
Next, we rewrite (11) as

ŝ = (fT ⊗ IM )Ãs +

Nr
X

r=1

(g(r)T ⊗ IM )B̃η
(r)

= (fT ⊗ IM )Ãs + (gT ⊗ IM )(INr
⊗ B̃)η, (13)

where we havef := [f−Q/2−Q′/2,0, . . . , f−Q/2−Q′/2,L+L′ , . . . ,

fQ/2+Q′/2,L+L′ ]T , g(r) := [g
(r)

−Q′/2,0, . . . , g
(r)

−Q′/2,L′ , . . . ,

g
(r)

Q′/2,L′ ]
T , andg := [g(1)T , . . . ,g(Nr)T ]T . Defining the ma-

tricesA andB as

A :=

2

6

6

6

6

6

6

4

D−Q/2−Q′/2Z0

...
D−Q/2−Q′/2ZL+L′

...
DQ/2+Q′/2ZL+L′

3

7

7

7

7

7

7

5

, B :=

2

6

6

6

6

6

6

4

D−Q′/2Z0

...
D−Q′/2ZL′

...
DQ′/2ZL′

3

7

7

7

7

7

7

5

,

the matricesÃ andB̃ in (13) areÃ := (I(Q+Q′+1)(L+L′+1) ⊗

Rzp)ATzp and B̃ := (I(Q′+1)(L′+1) ⊗ Rzp)B, respectively.
Note that the term infp,k corresponding to therth receive antenna
is related to a 2-dimensional convolution of the BEM coefficients

of the doubly-selective channel for therth receive antenna and the
BEM coefficients of the TV FIR equalizer for therth receive an-
tenna. This allows us to derive a linear relationship betweenf and
g. We first define the(L′ + 1) × (L′ + L + 1) Toeplitz matrix

Tl,L′+1(h
(r)
q,l ) :=

2

6

6

4

h
(r)
q,0 . . . h

(r)
q,L 0

. . .
. . .

0 h
(r)
q,0 . . . h

(r)
q,L

3

7

7

5

.

We then introduce the notationH(r)
q := ΩqTl,L′+1(h

(r)
q,l ), where

Ωq := diag{[1, e−j2πq/N , . . . , e−j2πqL′/N ]T }, and define the
(Q′ + 1)(L′ + 1) × (Q + Q′ + 1)(L + L′ + 1) block Toeplitz
matrix

Tq,Q′+1(H
(r)
q ) :=

2

6

6

4

H
(r)

−Q/2 . . . H
(r)

Q/2 0

. . .
. . .

0 H
(r)

−Q/2 . . . H
(r)

Q/2

3

7

7

5

.

Introducing the notationsH(r) := Tq,Q′+1(H
(r)
q ) and H :=

[H(1)T , . . . , H(Nr)T ]T , we can then derive from (12) that

f
T = g

T
H. (14)

Let us focus on the MMSE TV FIR equalizer, which mini-
mizes the quadratic cost functionE{‖s − ŝ‖2}. Using (13) and
(14), the MSE can be written as:

E{‖s − ŝ‖2} = σ2
s tr{(gT

H ⊗ IM )ÃÃ
H(HH

g
∗ ⊗ IM )}

+ σ2
ηtr{(gT ⊗ IM )(INr

⊗ B̃B̃
H)(g∗ ⊗ IM )}

− 2σ2
s<{tr{(gT

H ⊗ IM )Ã}} + σ2
sM. (15)

Introducing the properties

tr{(xT ⊗ IM )X} = x
T red{X},

tr{(xT ⊗ IM )X(x∗ ⊗ IM )} = x
T red{X}x∗,

where red{·} splits the matrix up intoM × M submatrices and
replaces each submatrix by its trace, the MSE can be rewritten as:

E{‖s − ŝ‖2} = σ2
sg

T
Hred{ÃÃ

H}HH
g
∗

+ σ2
ηg

T (INr
⊗ red{B̃B̃

H})g∗

− 2σ2
s<{g

T
Hred{Ã}} + σ2

sM, (16)

where we have used the fact that red{INr
⊗ B̃B̃H} = INr

⊗

red{B̃B̃H}. DefiningrA := red{Ã}, RA := red{ÃÃH}, and
RB := red{B̃B̃H}, and solving∂E{‖s − ŝ‖2}/∂g = 0, we then
obtain

g
T
MMSE = r

H
A H

H(HRAH
H +

σ2

η

σ2
s

(INr
⊗ RB))−1

= e
T
d (HH(INr

⊗ RB)−1
H + σ2

η/σ2
sR

−1
A )−1

× H
H(INr

⊗ RB)−1,

where we have used the fact thatrH
A R−1

A = eT
d , with ed a (Q +

Q′ + 1)(L + L′ + 1)× 1 unit vector with the 1 in positiond(Q +
Q′+1)+(Q+Q′)/2+1. The corresponding ZF TV FIR equalizer
is obtained by settingση = 0 (see also [8]):

g
T
ZF = e

T
d (HH(INr

⊗ RB)−1
H)−1

× H
H(INr

⊗ RB)−1,
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When M � Lzp, i.e., when edge effects can be ignored, it is
not too difficult to show thatRA ≈ MI(Q+Q′+1)(L+L′+1) and
RB ≈ MI(Q′+1)(L′+1), which simplifies the expressions. These
simplified but approximate expressions become exact expressions
when a cyclic prefix (CP) is used to handle the edge effects (such as
in CP-Only or OFDM [1]). Note that in OFDM one can even inter-
change the TV FIR equalizer with the FFT, and apply the equalizer
in the frequency-domain instead of in the time-domain.

5. COMPARISON

Existence: The existence of a ZF LBE requires thatHTzp is of
full column rank, which happens with probability one (for i.i.d.
BEM coefficients), regardless ofNr. On the other hand, the ex-
istence of a ZF TV FIR requires thatH is of full column rank,
which happens with probability one (for i.i.d. BEM coefficients),
if Nr(Q

′+1)(L′+1) ≥ (Q+Q′+1)(L+L′+1), which implies
thatNr ≥ 2. For more detailed identifiability results, we refer the
interested reader to [9].
Complexity: The design of a TV FIR equalizer requiresO{(Q +
Q′+1)3(L+L′ +1)3} flops, instead of theO{M3} flops needed
to design an LBE. Hence, provided that(Q + Q′ + 1)(L + L′ +
1) ≤ M (which usually is the case), a TV FIR equalizer has a
lower design complexity than an LBE. The implementation of a
TV FIR equalizer requiresO{Nr(L

′ + 1)} flops, instead of the
O{NrN} flops needed to implement an LBE. Hence, provided
thatL′ + 1 ≤ N (which always is the case), a TV FIR equalizer
has a lower implementation complexity than an LBE.

6. SIMULATIONS

In the simulations, we consider a system withNr = 1 andNr = 2
receive antennas. Further, we considerN = 800, T = 25µs,
τmax = 75µs, fmax = 100Hz, L = dτmax/T e = 3, Q =
2dfmaxNT e = 4. The channel taps are simulated as i.i.d., corre-
lated in time with a correlation function according to Jakes’ model
rhh(τ) = J0(2πfdτ). The doubly-selective channel is approx-
imated using the BEM. The resulting BEM coefficients are used
to determine the equalizer (serial or block). We use both Jakes’
model and the approximated BEM to simulate propagation. In
all simulations, QPSK signaling is used and the processing de-
lay is chosen to bed = bL+L′

2
c + 1. The performance is mea-

sured in terms of BER vs. SNR. We compare the performance of
the MMSE TV FIR equalizer with the performance of the MMSE
LBE for both Jakes’ model and the BEM. ForNr = 1, we take
Q′ = L′ = 20, whereas forNr = 2, we takeQ′ = L′ = 12. The
results are shown in Figure 2. We see that the performance of the
MMSE TV FIR equalizer approaches the one of the MMSE LBE,
for both Jakes’ model and the BEM, while the design as well as
the implementation complexity are much lower.

7. REFERENCES

[1] Z. Wang and G. B. Giannakis, “Wireless Multicarrier Com-
munications, where Fourier meets Shannon,”IEEE Signal
Processing Mag., pp. 29–48, May 2000.

[2] J. K. Tugnait, L. Tong, and Z. Ding , “Single User Channel
Estimation and Equalization,”IEEE Signal Processing Mag.,
pp. 17–28, May 2000.

0 5 10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

10
0

N
r
=1

Q=4  
L=3  
Q’=20 
L’=20 

SNR (dB)

B
E

R

MMSE TV FIR, BEM
MMSE TV FIR, Jakes
MMSE LBE, BEM
MMSE LBE, Jakes

0 5 10 15 20 25 30 35 40

10
−3

10
−2

10
−1

10
0

N
r
=2

Q=4  
L=3  
Q’=12 
L’=12 

SNR (dB)

B
E

R

MMSE TV FIR, BEM
MMSE TV FIR, Jakes
MMSE LBE, BEM
MMSE LBE, Jakes

Fig. 2. BER vs. SNR forNr = 1 (top) andNr = 2 (bottom).

[3] D. T. M. Slock, “Blind Fractionally-Spaced Equalization,
Perfect-Reconstruction Filter Banks and Multichannel Lin-
ear Prediction,”Proc. ICASSP’94, pp. IV/585–IV/588, April
1994.

[4] H. Liu and G. B. Giannakis, “Deterministic Approaches for
Blind Equalization of Time-Varying Channels with Antenna
Arrays,” IEEE Trans. on Signal Processing, vol. 46, no. 11,
pp. 3003–3013, November 1998.

[5] A. M. Sayeed and B. Aazhang, “Joint Multipath-Doppler Di-
versity in Mobile Wireless Communications,”IEEE Trans.
on Commun., vol. 47, no. 1, pp. 123–132, January 1999.

[6] G. B. Giannakis and C. Tepedelenlioğlu , “Basis Expansion
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