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ABSTRACT yln] = y(O)li=nr = Y Ikhln =kl +v[n], (1)

In this paper we introduce a new structured channel impulse ag, 0<k<N-1 _
response (CIR) estimation method for sparse multipath channels I’“:{ dyp, N<n<N' -1, }EA:{O“" coamt (2
where we demonstrate a robust way of restoring the pulse shape
into the composite CIR. We call this novel CIR estimation method Wherely, is the M -ary complex valued transmitted sequendec
Time-Of-Arrival basedBlended Least Squar¢§OA-BLS) which C', and{a;} € C' denote the firstV symbols within aframe
uses symbol rate sampled signals, and it is based on blecolirey of length N’ to indicate that they are the known training symbols;
lation processing followed by OAestimation in the frequency do-  (t) = ©'(¢) * ¢"(—t) denotes the (colored) noise process after the
main by theleast squaredased channel estimation. TOA estima- Pulse matched filter, witl¥(¢) being a zero-mean white Gaussian
tion in the frequency domain is accomplished by estimating the AR hoise process with spectral density per real and imaginary part;
model parameters by solving ttierward and forward-backward ~ %(t) is the complex valued impulse response of the composite chan-
linear predictionequations in the least squares sense. Simulation Nel, including pulse shaping filter(t), the physical channel(t),
examples are drawn from the ATSC digital TV 8-VSB system [1]. and the receive filteg” (—¢), and is given by
The delay spread for digital TV systems can be as long as several =
hundred times the symbol duration; however digital TV channels h(t) = p{t)*ct) = Z crp(t = 7k), @)
aresparsewhere there are only a few dominant multipaths. h=—K

andp(t) = q(t) * ¢*(—t) is the convolution of the transmit and
1. OVERVIEW OF DATA TRANSMISSION MODEL receive filters wherg(t) has a finite support ¢--1;, /2, T, /2], and

the span of the transmit and receive filtefs, is integer multiple
For the communications systems utilizing periodically transmitted of the symbol period7'; that isT;, = N, T', N, € Z*. {cx} cC!
training sequencdeast-square§LS) based channel estimation or denote complex valued physical channel gains, éng denote
the correlationbased channel estimation algorithms have been the the multipath delays, or the Time-Of-Arrivals (TOA). It is assumed
most widely used two alternatives. Both methods use a stored copythat the time-variations of the channel is slow enough #¢figtcan
of the known transmitted training sequence at the receiver. Thebe assumed to be a static inter-symbol interference (1SI) channel, at
properties and the length of the training sequence are generally dif-least throughout the training period with the impulse response
ferent depending on the particular communication system’s stan- =
dard specifications. In the sequel, although the examples follow- ot) = Z cxd(t = 7) (4)
ing the derivations of the blended channel estimator will be drawn k=—K
from the ATSC digital TV 8-VSB system [1], to the best of our for g < t < N7, whereN is the number of training symbols.
knowledge it could be applied with minor modifications to any dig- The summation limitsk” and L denote the number of maximum
ital communication system with linear modulation which employs gnti-causal and causal multi-path delays respectively. The multi-

a training sequence. We should note that we are not using SéMipath delaysr;, are not assumed to be at integer multiples of the
blind techniques (subspace based [6] or IQML[S]). Since our main sampling period’.

focus is applying this technique in real time on the ATSC Digital i o
TV system which has 10.76 MHz symbol rate [1], we want as low 1-1. Review of L east-Squares Channel Estimation
complexity as possible. Computing eigenvectors, or implementing yjithout loss of generality symbol rate sampled composite &R}
an iterative search scheme, may be prohibitive in real-time for the 314 be written as a finite dimensional vedoe [A[=Na], -,
very long channel lengths that one has to deal with in Digital TV, h[0],--- ,h[N.]]T whereN, and N. denote the number of anti-
which may span up to 500 symbols or so. causal and the causal taps of the channel, respectivelyNang
The baseband symbol rate sampled receiver pulse-matched fil-Nv, + 1 is the total memory of the channel. Based on Equation (1)
ter output is given by and assuming thav > N, + N. + 1, we can write the pulse
matched filter output corresponding only to the known training sym-

*This research was partially supported by NSF Grant no. CCF8842 bols compactly as
and by Zenith Electronics Corporation y = Ah+v, (5)
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where unknown symbols involved in the correlation in most of the prac-

y = [y[N,y[N.+1],--- ,y[N—1 _Na”T7 (6) tical applications. Previousl{pzen et al[7] used thresholding in
T the time domain to obtain the locations of the TOAs as well as to
A = T{lane4ne, - av]  [ane4ng, - aol} (7) decrease the contributions of the unknown symbols in the correla-
whereA is (N — N, — N.) x (Na + N. + 1) Toeplitz convolu- tlon[())(lljtput.z_;l'hef co]:;rel_atlor}(s of Equlati)on (9d) |degllcy ylepizdfks
tion matrix with first columnax,+n,, - ,an—1]" and first row at{Dj € 27} fork = —K,---,—1,0, and a{ D € 2"},
andy — ﬁ a’ N ’+ 1‘ o UIN—1— fork = 1,---, L. These delays are the sampling instants clos-
%N?NKS Ion7 ag}é the rlrjlaaix[:i[s ;]ialfll[ mcatrix }z;nd (;f]/f[,lﬂ column est to the locations of the actual physical channel multi-path TOAs
all” 9 T, k = —K,---,—1,0,1,--- , L, within a symbol interval. If

:ﬁgﬁ’tLhearéigt]: Ea?e(ivg(jl_u]t\i]g%—’\—/vlﬁigrl]) r:?igli(r{nﬁ}és:thj\efao—g']evét;é func-We apply a uniform thresholding to the vector obtained by Equa-
q ) tion (11) which is in the form of setting the estimated channel

. 9 . L
tion Jrs(h) = 7Hy — Ah| EXIS'.[S and unique, anq is given by taps to zero if they are below a certain preselected threshold for
hrs = (AT A)"'A¥y. For a single antenna receiver the prob- N —1.0.1.- then in general we can choose
lems associated with the standard least squares based CIR eStImc’{lhe tap Igéatlon W|th7la7rgest mcr;lgnltude and denote it asctie

tion for digital TV systems is summarized zen, et al[7]. sor (reference) path, and the TOAs prior to and after this refer-
ence TOA are denoted as pre- and post-cursor channel impulse
responses. However in this work we introduce the estimation of
TOA's in the frequency domain via linear prediction.

2. OVERVIEW OF THE PROPOSED CIR ESTIMATOR

We will first briefly overview the initial channel estimation which

involvescorrelation, cleaningfollowed by TOA estimation inthe 55 ToA Estimation by Estimating the AR model parameters
frequency domain. Once the TOAs are properly obtained we Will ;i3 Forward and Forward-Backward Linear Prediction
then present the Blended Least Squares (BLS) algorithm.

Consider the CIRA(¢), given by Equation (3). If we take the

2.1. Initial Channel Estimation Fourier transform of(t) we obtain

Cross correlating the stored training sequence with the received L )

sequence, which is primarily done for frame synchronization [3], H(f) = C(/)P(f) = Z cnexp{—j2mfa} | P(f). (12)
n=—K

yields a raw (uncleaned) channel estimate

~ N-1 Evaluating H (f) at Ny discrete frequency points, that is having
hy[n] = Z apylk +n], n=—Ng,---,0,--- ,N. (8) f = k/Ng, and definingl [k] = H(k/Ng), Clk] = C(k/Ng),
ra[ [frwert andP[k] = P(k/Ng) we obtain
N1 9 . . _j2mkT
wherer,[0] = Y |lax||°. Equation (8) can be written as H[k] = Clk]|P[k] = Z Cn €Xp Npr Plk]. (13)
k=0 n=—K
~ 1 =g
h, = ral0] Ay, ) Since the pulse shapét) and its discrete Fourier transforR{k]| is
@ known, we can convert the CIR estimation problem intmenplex
hereA — T o T N hich sinusoid estimatioproblem by writing the CIR discrete frequency
where {lao, an-1,0 O lao, 0]} whic response, for the frequenciksrvhereP[kz] is nonzero, by
No+Ne Na+Ne
means thafA is a (N + N, + N.) x (N, + N. + 1) Toeplitz Clk] = HIK]/ Pk _J2mkTn 14
matrix with first column[ao, a1, - -- ,an—1,0,---,0]7, and first (k] = HIkl/ Pl nZ—K Cn eXP N (14)
row [ao, 0, -+, 0], andy = [y[-Na], - ,y[N + N. — 1]]7. In -

order to get rid of the sidelobes of the aperiodic autocorrelation we for all & such thatP[k] # 0. Without loss of generality we assume
can simply invert the normalized autocorrelation mafgx, of the that P[k] # 0for 0 < k < Ny whereN; = Ng /2. The rest of

training symbols, defined by the sinusoid estimation problem can be accomplished by following
J— a similar approach to the one outlined in [4, 8]: we can form the
Raa = - [O]A A (10) forward linear predictor(FLP) of orderN, of each sample[k]
¢ for Ny — 1 > k > N, based onV,, previous samples, and also
Then thecleanedchannel estimata.. is obtained from backward linear predicto(BLP) of orderN,, of each sampl€’[k]
- - for Ny — N, —1 > k > 0 based onV, forward samples. For the
he = R, he, (11) forward-backward linear prediction (FBLP) we minimize than

of the FLP and BLP errors in the least squares sense, denoted by

however the channel estimate. obtained by Equation (11) has £1°, and we write

the contributions due to unknown symbols prior to and after the
training sequence, as well as the additive channel noise; only the 5;,% = 5;: + S,i’ (15)
sidelobes due to aperiodic auto-correlation is removed. 2

. . . . Ny—1
If all the symbols involved in the correlation of Equation (9
were perfectlyyknown then the baseline noise in the es(zimation(ve)ec- & = D |CIKI-)_ pClk—n] , (16)
tor would have been due to finite correlation of known symbols =N -
only. Then the cleaning algorithm would have cleaned this deter- Nyp-1 Np—1 2
ministic noise perfectly and we wouldn’t have needed any thresh- & = Z Clk — N, — Z phClk—n]| , (A7)
olding on the cleaned estimation vector. But we generally have k=N,

IV - 482



where&; and&; denote the forward and backward LP errors re-
spectivelypf, n =1,--- ,N,,andp’, n =0,--- , N,—1, denote
theforwardandbackwardLP AR-model parameters respectively[8].

It is well known thatp? = p{\;;in forn = 0,1,---,N,, and

p?vp = p'é = 1, which enables us to rewrite the FBLP error equa-
tion (15) in terms of the forward LP parametéys, } only[8]. Then
Equation (15) can be written as (and can be solved via any sta-
ble and numerically efficient algorithm such as Conjugate Gradi-
ents [2])

R{,Rpp = Riyep (18)
wherep = [p{, -+, p{ 1",
Rp = [R?,R{]T, (19)
Rf = T{[C[NP - 1]7 o 7C[Nf - 2HT7
[C[Np —1],---, C[0]]} (20)
R, = H{[C*[l]v T 70*[Nf - NPHTv
[C*[Nf_NPL"' 70*[Nf_1”}7 (21)
e = lef,ep)t, (22)
wherec; = [C[N,],- -+ ,C[N;—1)]", ey = [C*[0],--- ,C*[N;—

Ny — 117, H{Vcot, Vrow} denotesHankelmatrix with first col-
umnw,,; and last romv,.,,. FLP error of Equation (16) only can
be minimized by solving the set of equations

R/R;p = Rjcs. (23)

Once the unknown AR model parameter vectolis obtained then

the complex sinusoidsexp{—ﬂ;i’f"}} which is also equivalent

to estimating the TOA$7,, }, is accomplished via thresholding the
discrete power spectrum

fo
517

W[m] (24)

)
N, 2

14+ Zp pzefj27rmk/th
k=1

for 0 < m < Np — 1, with N > Ny, and the thresholding is
accomplished by

set 7 = KT Ny/Nysp if Uk] > € (25)
wheree’ can be set experimentally to a value which is a few stan-
dard deviations above the average valu&ph|.

We denote the estimated TOAs of the (estimated) channel by
{Dj} and{ Dy, } corresponding to thpre-cursor(anti-causal) TOA's,
and thepost-cursor(causal) TOAs respectively. It is assumed that
1 < Df < --- < D3, and similarlyl < Df < -+ < D%.

The relationship between the actual TOAs and the estimated TOAs
is given by D¢ —round(7%), for —-K < k < 0, Dj
round(7s) for 1 < k < L. Itis also important to note that all

the preceding steps for the TOA estimator can only start with the

cleaned channel estimale of Equation (11).

3. OVERVIEW OF BLSALGORITHM

The channel estimation is performed in two steps using symbol-

Table1. Simulated channel delays in symbol periods, relative gains
(K = 2 pre-cursorghosts,L. = 6 postghosts)

Channeltaps| Delay{r.} | Gain{|ck|}
k=-2 -60.277 0.55
E=-1 -0.957 0.7263

Maink = 0 0 1

k=1 3.551 0.6457
k=2 15.250 0.9848
k=3 24.032 0.7456
k=4 29.165 0.8616
k=5 221.2345 0.6150
k=6 332.9810 0.4900

training sequence, arndeaningis applied, summarized by Equa-
tions (9,11) respectively; and the TOAs are determined as in Sec-
tion 2.2. The purpose of the second step is to incorporate the trans-
mitted pulse shapg(t) into the channel impulse response. To do
this, we locate three copies pft) shifted by one-half of a symbol
period around each multipath location and estimate complex scal-
ing factors using a modified least squares approach.

In order to recover the pulse shapg) into the CIR estimate,
for every multi-path we would like to approximate the shifted and
scaled copies of the pulse shapge) (shifted byr, and scaled by
cr) by a linear combination of three pulse shape functions shifted
by half a symbol interval. More precisely

=—1

L (k) e 1
> p((n—Dp—3)T),

1=—1

cep(nT —71) ~

Where{ylm, —K <k < L}__; c C'. By making this approxi-

mation we claim to efficiently recover the tails of the complex pulse
shapep(t) into the CIR estimate. To accomplish this approximation
we introduce three vectogs,, for k = —1, 0, 1, each containing”
spaced samples of the complex pulse shgpg shifted bykT'/2,
such that

kT
Pr = [p(-N T~

kT
7)7"'7P(_7 )]T7 (27)

for k = —1,0, 1, and by concatenating these vectors side by side
we define 82N, + 1) x 3 matrixP by P = [p_1, po, p1].

Then we form the matrix denoted Hy whose columns are
composed of the shifted vectops., where the shifts represent the
relative delays of the multi-paths; that is

)7' : 7p(NqT_k7T

P
O(pe+D$ )x3 Opa x3
r— P (28)
Op¢ x3 0(pa+D¢ )x3

wherel is of dimension D§; + D}, + 2N +1) x 3(K + L+1),
and0,,, x», denotes ann by n zero matrix. Then the observation
vectory, and the convolution matrixA, composed only of the
known training symbols are defined as in Equations (6, 7) respec-
tively. Since it was assumed thglt) spansiNy symbol durations,

spaced received samples after the receiver pulse matched filter. Init implies thatg[n] has N, + 1 sample points, which in turn im-

the first step, the received samples aeoerelatedwith the stored
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plies p[n] has2N, + 1 samples. Henc&, = D% + N,, and
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N, = D + N,. Definingy® = [y*) ~{ ¥ for —K <

k < L, we definey = [y, ... 4@ ... 4T asthe un-
known vector of the coefficients witl{ry,(f),n = —-1,0,1;k =
—-K,---,0,---,L}, oflength3(K + L + 1). Then the observa-
tion vector is given by

y AT~y +v (29)

wherewv is the noise vector. We can %stimate the unknown coeffi-
cient vector byy 5, ¢ = (I A" A') " I A™y. Once the vec-

tor ¥ 5 ;. is obtained, the new channel estimaters, can simply

be obtained by

hpLs MYpLs- (30)
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Fig. 1. Parts (a-b) show the real and imaginary parts of the ac-
tual CIR; parts (c-d) show the cleaned CIR estimate,parts (e-f)
show the TOA estimates with FLP of ordaf, = 256 at CG itera-
tions 4 and 5 respectively; parts (g-h) show the TOA estimates with
FBLP of orderN, = 256 at CG iterations 4 and 5 respectively.

4. SIMULATIONS

We considered an 8-VSB [1] receiver with a single antenna. 8-VSB

system has a complex raised cosine pulse shape [1]. The CIR we

considered is given in Table 1. The phase angles of individual paths
for all the channels are taken to g {ci } = exp(—j2n fei), for
k= —K,---,L wheref. 50_ andTsym = 92.9nsec. The

simulations were run at 28dBsgi'bnal-to-Noise-Ratio (SNR) mea-
sured at the input to the receive pulse matched filter, and it is calcu-

lated by
85(% [{e(t) * a(t)}e=rr||*)

No
whereE; = 21 is the symbol energy for 8-VSB system, aid
is the variance of channel noiseu(kT). We setNy; = 2'°,

Ny = 2%, ande’ = VU[k] + 4oyup;, that is we set the’ to

SNR = (31)

’

U[k]. Figure 2 shows the simulation results for the test channel
provided in Table 1. Part (a) shows the actual CIR; part (b) shows
the CIR estimateh 5.5, based on BLS with estimated TOAS; part
(c) shows the CIR estimaté,z;.s, based on BLS with perfectly
known TOAs. As can be seen in Figure 2 either the 4th or the
5th iterations of the CG algorithm can be taken as the solutions
to the FBLP and FLP equations (18,23) to compute the spectrum
¥[k]. Finally we have observed a very promising performance by
using estimated TOA parameters for the BLS algorithm to compute
the CIR estimate, where the normalized least-squares error is very
close to that of the BLS when the true TOAs are used.

TOA-BLS CIR stimate via FBLP, at SNR=28dB
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Fig. 2. Parts (a-b) show the real and imaginary parts of the CIR es-
timate,hprs, based on BLS with estimated TOAs via FBLP; parts
(c-d) show the CIR estimate based on BLS with perfectly known
TOAs.
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